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Abstract— The usage of serial manipulators in industry is very common, mostly for repetition tasks. Their
dynamic models are nonlinear and usually involve uncertainties due to dynamic modeling error, dynamic parame-
ter variation, unmodeled dynamics and unknown disturbances. To control this type of system, a combination of a
feedback linearization algorithm and a H∞ robust control method is proposed. Simulations have been performed
to prove the control system robustness against model uncertainties.

Keywords— H-Infinity Control, Feedback Linearization, Serial Mechanism, Nonlinear Control, Robust Con-
trol.

Resumo— O uso de robôs seriais na indústria é muito comum, principalmente para tarefas repetitivas. Seus
modelos dinâmicos são não-lineares e geralmente envolvem incertezas devido a erros de modelagem dinâmica,
variação de parâmetros dinâmicos, dinâmicas não modeladas e distúrbios desconhecidos. Para controlar este tipo
de sistema, uma combinação de linearização por realimentação e controle robusto H∞ é proposta. Simulações
foram realizadas para comprovar a robustez do sistema de controle frente à incertezas de modelo.

Palavras-chave— Controle H-Infinito, Linearização por Realimentação, Mecanismo Serial, Controle Não-
linear, Controle Robusto.

1 Introduction

Serial manipulators are widely used in industry for
material handling, pick and place operations and
other processes that involve repeated movements
(Moradi et al., 2010). Although serial mechanisms
have simpler and more consolidated models than
parallel ones, it is known that its dynamics are
highly coupled and nonlinear, requiring a nonlin-
ear controller or a robust linear controller capable
of dealing with these nonlinearities.

Regarding the robust linear controller, the H∞
control technique has been proved to be a pow-
erful method to control not only nonlinear sys-
tems, but also systems with uncertainties due to
dynamic modeling error, dynamic parameter vari-
ation, unmodeled dynamics and unknown distur-
bances (Franco et al., 2006; Fu and Mills, 2007;
Lee and Cheng, 1996). Yet, the H∞ control
method assumes that the dynamic system is lin-
ear, so a linearization technique is needed to suc-
cessfully apply it to a nonlinear system. One op-
tion is the feedback linearization procedure. Al-
though its algorithm is complex to evaluate in
real time applications, it has shown a good per-
formance (Buondonno and De Luca, 2016).

In the work reported here, the proposed control
system combines the performance of the feedback
linearization algorithm with the robustness of the
H∞ control method to control a nonlinear uncer-
tain system. The article is organized as follows.
Section 2 describes the dynamic model of the 3-

DOF RRR spatial serial mechanism and Section 3
deduces the feedback linearization algorithm used
to linearize it. Section 4 computes the H∞ ro-
bust control and analyzes its robustness proper-
ties. Section 5 presents and discusses the simula-
tion results. Finally, the conclusions are drawn in
Section 6.

2 Dynamic Modeling

The dynamic model of a serial mechanism can be
written as:

M(q)q̈ + V (q, q̇) +G(q) = τ, (1)

where M(q) is the inertia matrix, V (q, q̇) is the
vector of centrifugal and Coriolis terms, G(q) is
the vector of gravitational forces, q is a column-
matrix of independent generalized coordinates,
whose entries are relative displacements of the
joints, and τ is a column-matrix of the general-
ized actuators’ efforts in the directions of the inde-
pendent quasi-velocities q̇ (Coutinho and Coelho,
2016; Dobrianskyj et al., 2014; Craig, 2005).

To obtain the dynamic model of a 3-DOF RRR
spatial serial mechanism (Fig. 1), the Lagrangian
formalism was applied (Lanczos, 2012) using the
Denavit-Hatenberg parameters described in Table
1. The resultant dynamic model is given by:

M(q) =

 D11 D12 D13

D12 D22 D23

D13 D23 D33

 , (2)



V (q, q̇) =

 D111 D122 D133

D211 D222 D233

D311 D322 D333

 q̇21
q̇22
q̇23

+

2

 D112 D113 D123

D212 D213 D223

D312 D313 D323

 q̇1q̇2
q̇1q̇3
q̇2q̇3

 ,
(3)

G(q) =
[
D1 D2 D3

]T
, (4)

q =
[
q1 q2 q3

]T
, (5)

τ =
[
τ1 τ2 τ3

]T
, (6)

with its coefficients given in terms of the vector q,
the massmi of the ith rigid body of the mechanical
system, li and lgi whereas the first is the ith link
length and the second is the distance from the
beginning of the ith link to its center of mass, and
the principal moments of inertia Jxi , Jyi , Jzi of the
ith mechanical system’s rigid body in relation of
its center of mass:

D1 = 0

D2 = m2lg2 cos(q2) +m3(l2 cos(q2))+

lg3 cos(q2 + q3)

D3 = m3lg3 cos(q2 + q3)

D11 = Jx2
sin2(q2) + Jx3

sin2(q2 + q3) + Jy1
+

Jy3
cos2(q2 + q2) + (Jy2

+m2l
2
g2) cos2(q2)+

m3(l2 cos(q2) + lg3 cos(q2 + q3))2

D22 = Jz2 + Jz3 +m2l
2
g2+

m3(l22 + 2l2lg3 cos(q3) + l2g3)

D33 = Jz3 +m3l
2
g3

D12 = D13 = 0

D23 = Jz3 +m3lg3(l2 cos(q3) + lg3)

D111 = D122 = D133 = 0

D112 =
1

2
sin(2(q2 + q3))(Jx3

− Jy3
)+

sin(2q2)(Jx2 − Jy2 −m2l
2
g2) − 2m3(l2 cos(q2)+

lg3 cos(q2 + q3))(l2 sin(q2) + lg3 sin(q2 + q3))

D113 = sin(q2 + q3)(−m3l2lg3 cos(q2)+

(Jx3 − Jy3 −m3l
2
g3) cos(q2 + q3))

D123, D222, D212, D213 = 0

D211 =
1

2
(−Jx2

sin(2q2)) + (Jy2
+m2l

2
g2) sin(2q2)+

m3(sin(2q2))l22 + 2l2lg3 sin(2q2 + q3)+

(−Jx3
+ Jy3

+m3l
2
g3) sin(2q2)

D233 = −m3l2lg3 sin(q3)

D311 = (m3l2lg3 cos(q2)+

(−Jx3
+ Jy3

+m3l
2
g3) cos(q2 + q3)) sin(q2 + q3)

D322 = m3l2lg3 sin(q3)

D333 = 0

D312 = D313 = D323 = 0.

(7)

Table 1: Denavit-Hatenberg parameters for the
RRR spatial serial mechanism.

i ai αi di θi

1 0 π/2 l1 θ1

2 l2 0 0 θ2

3 l3 0 0 θ3
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Figure 1: RRR spatial serial mechanism.

3 Feedback Linearization

The feedback linearization technique allows to ob-
tain a linear input-output response from a nonlin-
ear system by defining a new input to algebraically
transform the original nonlinear system into a lin-
ear one (El Hajjaji and Ouladsine, 2001; Slotine
et al., 1991; Craig, 2005). For the dynamic model
presented in Section 2, the input τ could be de-
fined in terms of a new input τ̄ as:

τ = ατ̄ + β, (8)

resulting in a new dynamic model given by:

M(q)q̈ + V (q, q̇) +G(q) = ατ̄ + β. (9)

Defining α = M(q), β = V (q, q̇) + G(q) and
τ̄ = −2λq̇ − λ2(q − τ̂) with τ̂ as the new con-
trol signal and λ a scalar factor working as the
natural frequency of τ̄ , equation (9) becomes:

q̈ + 2λq̇ + λ2q = λ2τ̂ , (10)

which corresponds to the dynamic model of a sec-
ond order linear system with transfer function ma-



trix given by:

q(s)

τ̂(s)
=

λ2

(s+ λ)2
× I3, (11)

with I3 as the third order identity matrix. How-
ever, in practice it’s not possible to exactly remove
all nonlinearities from (9) due to uncertain param-
eters in the system model. To design a controller
capable of dealing not only with model uncertain-
ties but also with external disturbances, a robust
control technique is proposed in the next section.

4 H∞ Control

The H∞ control methods solve mathematical op-
timization problems to synthesize controllers that
guarantee robust stability and performance of the
closed-loop system. Despite the high level mathe-
matical understanding needed to apply them suc-
cessfully, H∞ techniques have the advantage to
be easily applicable to multi-variable systems with
cross-coupling between channels.

Differently from classical control theory, the H∞
control performance specifications are expressed
not in terms of, for example, settling time or maxi-
mum peak response, but essentially in terms of the
H∞ norm. In the specific case of the H∞ loop-
shaping technique, performance specifications are
defined through low and high frequency barriers
(Skogestad and Postlethwaite, 2007). To fit the
system response according to these barriers – thus
guaranteeing robustness – pre and pos compen-
sator functions must be defined to shape the con-
trolled mechanism singular values into the desired
format.

In order to synthesize a controller using H∞ loop-
shaping method and guarantee robustness, four
steps need to be followed:

1. Define control requirements through fre-
quency barriers;

2. Choose appropriate weight functions (W1 and
W2) in order to impose that the shaped plant
Gs = W2GW1 singular values respect the fre-
quency barriers;

3. Solve the robust stabilization problem for the
shaped plant Gs = W2GW1 to obtain the
stabilizing controller Ks and then define H∞
controller as K = W1KsW2;

4. Verify robust stability and performance.

Since the feedback linearization algorithm turned
the nonlinear system into a fully decoupled linear
one given by (11), the system could be considered
SISO during the H∞ control design and the re-
sulting controller could be expanded to the MIMO
case at the end of the process.

4.1 Frequency barriers

Following the procedures described in (da Cruz,
1996), two barriers were defined: one at low fre-
quency values to evaluate robust performance and
one at high ones to evaluate robust stability.

The high frequency barrier regards model uncer-
tainties. As done in (Stevens et al., 2015), assum-
ing that the robot model is accurate to within 20%
up to a frequency of ω = 200 rad/s then growing
without bound at the rate of 20 dB/decade after
that, this behavior could be modeled by:

eM (s) =
s+ 200

1000
. (12)

Thus, the robust stability barrier is approximately
defined as:

RSB(s) =
1

eM (s)
=

1000

s+ 200
. (13)

The low frequency barrier regards reference track-
ing and disturbance rejection. Supposing a max-
imum 10% reference tracking error up to ω = 80
rad/s and a maximum 15% disturb rejection er-
ror up to ω = 100 rad/s, the low frequency bar-
rier that combines the most strict requirements
coming from these two control objectives could be
modeled by:

p(s) =
1

αp

1
s
ωp

+ 1
=

1000

s+ 100
, (14)

with αp = min (0.1, 0.15) and ωp = max (80, 100),
resulting in a robust performance barrier approx-
imately defined as:

RPB(s) =
p(s)

1 − eM (s)
=

−1 × 106

(s− 800)(s+ 100)
.

(15)

After all robustness barriers had been defined
(Fig. 2), weight functions could be proposed.

As shown in Fig. 2, the robust performance bar-
rier begins above the robust stability one, lead-
ing to an intersection between them. This means
it’s impossible to find a controller capable of fit-
ting the closed-loop singular values under the ro-
bust stability barrier and the open-loop singu-
lar values above the robust performance barrier
at the same time. In theoretical words, it’s not
possible to guarantee nominal performance for all
plants considered within the model uncertainty, so
the robust performance requirement could not be
achieved by any controller.

4.2 Weight functions

Weight functions W1(s) and W2(s) work as pre
and pos compensators for the nominal plant
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Figure 2: Robust stability (RSB) and performance
(RPB) frequency barriers.

G(s) = q(s)/τ̂(s) with λ = 45 rad/s. Intend-
ing to guarantee robust stability and performance,
the weight functions should be chosen so that the
shaped plant Gs(s) = W2GW1 respects robust
performance barrier at low frequencies and robust
stability barrier at high ones.

However, in this particular case, it’s impossible to
guarantee robust performance, so the weight func-
tions were defined focusing in improving nominal
performance and guaranteeing robust stability. To
do so, Classical Control Theory guidelines regard-
ing frequency domain designs were used to esti-
mate the pre and pos compensators. Intending
to increase the system’s gain at low frequencies to
minimize the stationary error without compromis-
ing the transient performance, a lag compensator
was designed. Then, the gain was adjusted to re-
spect the robust stability barrier, resulting in the
weight functions given by:

W1(s) =
25(s+ 11.5)

(s+ 0.19)
, (16)

W2(s) = 1. (17)

The singular values of the resulting shaped plant
Gs(s) satisfy the robust stability condition as
shown in Fig. 3.

4.3 Controller synthesis

Synthesize the H∞ controller K(s) means to solve
a mathematical optimization problem. To do so,
a simple option is to use the built-in function ncf-
syn from the MATLAB Robust Control Toolbox®

which provides the controller Ks(s) used to com-
pute the H∞ controller K(s) = W2KsW1 and the
stability margin γ. The final second order MIMO
controller K(s) = τ̂(s)/r(s) where r(s) regards
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Figure 3: Robust stability (RSB) and performance
(RPB) barriers and shaped plant open-loop sys-
tem (OLS) response.

the reference signal is:

K(s) =
47.40(s+ 134.75)(s+ 12.17)

(s+ 513.37)(s+ 0.19)
× I3. (18)

The nominal system’s open loop model with the
combination of the feedback linearization algo-
rithm with the H∞ controller results in:

q(s)

r(s)
= K(s)

λ2

(s+ λ)2
. (19)

4.4 Robustness analysis

Verifying robust stability means to check if the
closed-loop system’s singular values are below the
robust stability barrier, whereas assessing robust
performance means to see if the open-loop sys-
tem’s singular values are above the robust per-
formance barrier (da Cruz, 1996). According to
Fig. 4, just the robust stability criteria is satis-
fied due to the impossibility of satisfaction of the
robust performance criteria, concluding that the
controller K(s) can only guarantee robust stabil-
ity.

Also, as discussed in (Skogestad and Postleth-
waite, 2007), given an H∞ controller K(s)
with stability margin γ, the open-loop system
KW2GW1 converges to the shaped plant W2GW1

if and only if ε = 1/γ ≥ 0.2. The controller
described in (18) resulted in a stability margin
γ = 2.1436, thus ε = 0.4665 ≥ 0, 2 which satisfies
the convergence condition as can be seen in Fig.
4.

5 Results and Discussion

To support the theoretical results presented in
Subsection 4.4, simulations with sinusoidal inputs
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(a) Robust stability barrier (RSB) and shaped and con-
trolled plants closed-loop system (CLS) response.
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(b) Robust performance barrier (RPB) and shaped and
controlled plants open-loop system (OLS) response.

Figure 4: Robustness analysis.

were performed in the MATLAB/Simulink envi-
ronment. The model parameters are shown in Ta-
ble 2. For the gravity, the standard value g = 9.8
m/s2 was adopted.

A feedback linearization (FL) control with λ =
100 rad/s was also implemented for performance
comparison. Its control law is defined by τ̄ =
−2λq̇−λ2(q−r) and follows (8), so that the nom-
inal system open loop model considering only the
feedback linearization control is given by:

q(s)

r(s)
=

λ2

(s+ λ)2
. (20)

Feed forward terms were added in both control
laws.

The first simulation considered the robot nomi-
nal parameters – that is, the exact values pre-
sented in Table 2 – and the results are shown
in Fig. 5. Figs. 5(a) and 5(b) show that the
H∞/feedback linearization combination and the
FL technique only leaded almost to exact the same

Table 2: Robot nominal parameters.

Parameter Value

m1 20 [kg]

m2 20 [kg]

m3 5 [kg]

l1 1 [m]

l2 1 [m]

l3 1 [m]

lg1 0.75 [m]

lg2 0.75 [m]

lg3 0.5 [m]

Jx1 1.6667 [kg.m2]

Jy1 1.6667 [kg.m2]

Jz1 0 [kg.m2]

Jx2 0 [kg.m2]

Jy2 1.6667 [kg.m2]

Jz2 1.6667 [kg.m2]

Jx3 0 [kg.m2]

Jy3 0.4167 [kg.m2]

Jz3 0.4167 [kg.m2]

control signals with the exception of one compo-
nent that the FL technique presented smaller val-
ues. In Fig. 5(c), the errors for a sinusoidal input
are shown, concluding that the H∞/feedback lin-
earization combination and the feedback lineariza-
tion control provided equivalent results regarding
the nominal model.

To perform the second simulation, 10 uncertain
samples were considered for the robot model pa-
rameters from Table 2 within a 20% tolerance
for the inertia parameters and a 5% tolerance
for the link lengths, since the last ones could
be precisely measured. The results are shown
in Fig. 6. As in the nominal case simulation,
in Figs. 6(a) and 6(b) the control signals of
the H∞/feedback linearization combination and
the FL technique only are very similar too, but
now it was the H∞/feedback linearization com-
bination that leaded to slightly smaller values.
Fig. 6(c) show that, in the presence of remaining
nonlinear dynamics, the H∞/feedback lineariza-
tion combination led to almost a ten times bet-
ter performance than only the feedback lineariza-
tion control. This result was achieved due only
to the H∞/feedback linearization combination ro-
bustness, since no significant increase in the con-
trol signal was observed – as a matter of fact,
the H∞/feedback linearization combination con-
trol signals were slightly smaller than only the
feedback linearization control ones.
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Figure 5: Nominal model response for sinusoidal
input.

6 Conclusions

The simulations have shown that the combination
of a feedback linearization algorithm and a lin-
ear robust H∞ controller is sufficiently robust to
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Figure 6: Uncertain model response for sinusoidal
input.

control a nonlinear uncertain model, which in this
case of study was a 3-DOF RRR spatial mech-
anism. More than that, it has shown that this
combination leads to better performance using ba-
sically the same energy in comparison to use only



the feedback linearization control technique, re-
garding uncertain models. Future work will apply
this control configuration on more complex struc-
tures, such as parallel mechanisms.

Acknowledgments

The authors would like to thank Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior (CAPES) for the first author’s scholarship
(process number 1771660) and Programa de Pós-
Graduação em Engenharia Elétrica (PPGEE)
from POLI – USP for the financial support to
the first author participation in this conference.
Also, the authors acknowledge the collaboration
of Arthur Castello Branco de Oliveira.

References

Buondonno, G. and De Luca, A. (2016). Efficient
computation of inverse dynamics and feed-
back linearization for vsa-based robots, IEEE
Robotics and Automation Letters 1(2): 908–
915.

Coutinho, A. G. and Coelho, T. A. H. (2016).
A new approach for obtaining the dynamic
balancing conditions in serial mechanisms,
International Journal of Mechanisms and
Robotic Systems 3(1): 32–47.

Craig, J. J. (2005). Introduction to robotics: me-
chanics and control, Vol. 3, Pearson/Prentice
Hall Upper Saddle River, NJ, USA:.

da Cruz, J. J. (1996). Controle Robusto Multivar-
iável: O Método LGQ/LTR Vol. 05, EdUSP.

Dobrianskyj, G. M., Coutinho, A. G. and Hess-
Coelho, T. A. (2014). Development of a con-
troller for a 3-dof robotic platform for user in-
teraction in rehabilitation therapies, Biomed-
ical Robotics and Biomechatronics (2014 5th
IEEE RAS & EMBS International Confer-
ence on, IEEE, pp. 819–824.

El Hajjaji, A. and Ouladsine, M. (2001). Mod-
eling and nonlinear control of magnetic levi-
tation systems, IEEE Transactions on indus-
trial Electronics 48(4): 831–838.

Franco, A. L. D., Bourlès, H., De Pieri, E. R. and
Guillard, H. (2006). Robust nonlinear control
associating robust feedback linearization and
h/sub/spl infin//control, IEEE transactions
on automatic control 51(7): 1200–1207.

Fu, K. and Mills, J. K. (2007). Robust con-
trol design for a planar parallel robot, Inter-
national Journal of Robotics & Automation
22(2): 139.

Lanczos, C. (2012). The variational principles of
mechanics, Courier Corporation.

Lee, G.-W. and Cheng, F.-T. (1996). Robust
control of manipulators using the computed
torque plus h-infinity compensation method,
IEE Proceedings-Control Theory and Appli-
cations 143(1): 64–72.

Moradi, M., Nikoobin, A. and Azadi, S. (2010).
Adaptive decoupling for open chain planar
robots, Scientia Iranica. Transaction B, Me-
chanical Engineering 17(5): 376.

Skogestad, S. and Postlethwaite, I. (2007). Mul-
tivariable feedback control: analysis and de-
sign, Vol. 2, Wiley New York.

Slotine, J.-J. E., Li, W. et al. (1991). Applied
nonlinear control, Vol. 199, Prentice hall En-
glewood Cliffs, NJ.

Stevens, B. L., Lewis, F. L. and Johnson, E. N.
(2015). Aircraft control and simulation: dy-
namics, controls design, and autonomous
systems, John Wiley & Sons.


