
IMPLEMENTATION OF A SECURITY MODULE FOR CYBER-PHYSICAL
SYSTEMS

Públio M. Lima∗, Lilian K. Carvalho∗, Marcos V. S. Alves∗, Marcos V. Moreira∗

∗COPPE - Electrical Engineering Program, Universidade Federal do Rio de Janeiro, Cidade
Universitária, Ilha do Fundão, Rio de Janeiro, 21.945-970, RJ, Brazil.

Emails: publio@poli.ufrj.br, lilian.carvalho@poli.ufrj.br, mvalves@poli.ufrj.br,

moreira.mv@poli.ufrj.br

Abstract— Communication networks are commonly used to connect sensors, actuators, and controllers to
monitor and control Cyber-Physical Systems (CPS). The use of communication networks increases the vulnera-
bility of the CPS to cyber attacks that can drive the system to unsafe states. One of the most powerful cyber
attacks is the so-called man-in-the-middle attack, where the intruder can observe, hide, create or replace informa-
tion in the attacked network channel. In a previous paper we introduced the definition of NA-Safe Controllability,
that is related with the capability of detecting intrusions and preventing damages caused by man-in-the-middle
attacks in the sensor and/or control communication channels in supervisory control systems. We present in this
paper a method for the implementation of a security module based on the definition of NA-Safe Controllability
proposed in our previous work.

Keywords— Cyber-Physical Systems, Security, Cyber Attacks, Discrete-Event Systems, Automata.

Resumo— Redes de comunicação são frequentemente usadas para conectar sensores, atuadores e controladores
em sistemas ciber-f́ısicos (SCF). O uso de comunicação por redes aumenta a vulnerabilidade do sistema a ataques
cibernéticos. Um dos ataques cibernéticos mais poderosos é o denominado man-in-the-middle, em que o intruso
pode ler, esconder, criar ou modificar a informação que flui no canal de rede atacado. Em um artigo anterior
é introduzida a definição de NA-Safe Controllability, que é relacionada com a capacidade de detectar intrusos
e prevenir danos causados por ataques do tipo man-in-the-middle nos canais de comunicação de sensores e/ou
atuadores em sistemas de controle supervisório. Neste artigo é apresentado um método para a implementação de
um módulo de segurança baseado na definição de NA-Safe Controllability proposta em nosso trabalho anterior.

Palavras-chave— Sistemas Ciber-F́ısicos, Segurança, Ataques Cibernéticos, Sistemas a Eventos Discretos,
Autômatos.

1 Introduction

Systems that integrate computing and communi-
cation capabilities to monitor and control physi-
cal processes are known as cyber-physical systems
(CPSs) (Baheti and Gill; 2011). The increase in
the use of communication networks for monitor-
ing and control of physical systems also increases
the vulnerability of CPSs to attacks in the net-
work, which shows that the implementation of de-
fense strategies is crucial for the reliable use of
networked controlled systems.

Several works in the literature present strate-
gies to detect and prevent the effects of cyber
attacks considering different approaches (Mo and
Sinopoli; 2010; Goes et al.; 2017; Sundaram and
Hadjicostis; 2011; Pasqualetti et al.; 2013; Fawzi
et al.; 2014). In the majority of these works, the
system is modeled as a continuous-variable dy-
namic system.

Intrusion detection and prevention of dam-
ages caused by attacks in the context of supervi-
sory control of discrete event systems are consid-
ered in Thorsley and Teneketzis (2006). The main
objective of the work proposed in Thorsley and
Teneketzis (2006) is to design a supervisor that
achieves the specification in normal operation, and
also after an attack. The attacks considered in
Thorsley and Teneketzis (2006) can be interpreted
as an interference in the communication channel

between the supervisor and the plant. More re-
cently, in Carvalho et al. (2016), the problem of
intrusion detection and prevention in supervisory
control systems, where the attacker has the abil-
ity to enable vulnerable actuator events that are
disabled by the supervisor is addressed. A defense
strategy that is capable of detecting attacks and
disabling controllable events is proposed. In Car-
valho et al. (2016), the defense strategy disables
all controllable events of the system immediately
after the detection of the attack.

In Lima et al. (2017), automaton models of
the plant and supervisor under man-in-the-middle
attacks in the sensor and/or communication chan-
nels are proposed. In addition, the property of
NA-Safe controllability, that is related with the
capability of detecting intrusions and preventing
damages caused by man-in-the-middle attacks, is
introduced, and a verification algorithm is pro-
posed. However, in Lima et al. (2017), the au-
thors do not present the implementation of a se-
curity module that detects and prevents the dam-
ages caused by cyber-attacks.

In this paper, we present a method for the
implementation of a security module based on the
definition of NA-Safe Controllability introduced in
Lima et al. (2017). A small practical example is
used to illustrate the implementation scheme, and
to explain the basic ideas of the logic of protection

against cyber-attacks proposed in this work.
This paper is organized as follows. In Sec-

tion 2, we present some preliminary concepts. In
Section 3, we formulate the problem of intrusion
detection and prevention of damages caused by
man-in-the-middle attacks in CPSs. In Section 4,
we define NA-Safe controllability. In Section 5,
we present a necessary and sufficient condition for
the existence of the security module, and a method
for its online implementation. We also present in
Section 5 a practical example, from modeling to
implementation of the security module. Finally,
in Section 6, the conclusions are drawn.

2 Preliminaries

Let G = (X,Σ, f, x0, Xm) be a deterministic au-
tomaton, where X is the state-space, Σ is the fi-
nite set of events, f : X × Σ → X is the tran-
sition function, x0 ∈ X is the initial state of
the system, and Xm ⊆ X is the set of marked
states. The set of marked states will be omit-
ted unless stated otherwise. The domain of the
transition function f can be extended to X ×Σ?,
where Σ? denotes the Kleene-closure of Σ, as fol-
lows: f(x, ε) = x, and f(x, sσ) = f(f(x, s), σ),
∀s ∈ Σ?, and ∀σ ∈ Σ, where ε denotes the empty
trace. The language generated by G is defined as
L(G) = {s ∈ Σ? : f(x, s) is defined}, and the set
of active events of a state x of G is denoted as
ΓG(x) = {σ ∈ Σ : f(x, σ) is defined}.

A nondeterministic automaton, on the other
hand, is a five-tuple G = (X,Σ∪{ε}, fnd, x0, Xm),
where the elements of G have the same interpre-
tation as in the deterministic automaton G, ex-
cept for the nondeterministic transition function
fnd : X × Σ ∪ {ε} → 2X , and the set of ini-
tial states x0 ⊆ X. In order to define the lan-
guage generated by G, it is necessary to extend
the domain of fnd to X × Σ?, obtaining the ex-
tended transition function fend. Let εR(x) denote
the ε-reach of a state x, i.e., the set of states
reached from x by following transitions labeled
with ε, including state x (Cassandras and Lafor-
tune; 2008). The ε-reach can be extended to a
set of states B ⊆ X as εR(B) = ∪x∈BεR(x).
The extended nondeterministic transition func-
tion fend : X×Σ? → 2X , can be defined recursively
as fend(x, ε) = εR(x), and fend(x, sσ) = εR[{z : z ∈
fnd(y, σ) for some state y ∈ fend(x, s)}]. Thus,
the language generated by G can be defined as
L(G) = {s ∈ Σ? : (∃x ∈ x0)[fend(x, s) is defined]}.

The prefix closure of a language L ⊆ Σ? is
defined as L = {s ∈ Σ? : (∃t ∈ Σ?)[st ∈ L]}.
The post language after a trace s is defined as
L/s = {t ∈ Σ? : st ∈ L}.

The set of events Σ can be partitioned as
Σ = Σc∪̇Σuc where Σc and Σuc are, respectively,
the sets of controllable and uncontrollable events
of the system. The event set Σ can also be parti-

tioned as Σ = Σo∪̇Σuo where Σo and Σuo are the
sets of observable and unobservable events of the
system.

The projection Po : Σ? → Σ?
o, where Σo ⊂ Σ,

is defined as Po(ε) = ε, Po(σ) = σ, if σ ∈ Σo or
Po(σ) = ε, if σ ∈ Σ\Σo, and Po(sσ) = Po(s)Po(σ),
for all s ∈ Σ? and σ ∈ Σ. The projection oper-
ation can be extended to languages by applying
it to all traces in the language (Cassandras and
Lafortune; 2008). The coaccessible part of G, de-
noted as CoAc(G), is defined as usual (Cassandras
and Lafortune; 2008).

Let G1 and G2 be two automata, then G1‖G2

and G1 × G2, denote, respectively, the parallel
composition and the product of G1 and G2 (Cas-
sandras and Lafortune; 2008).

Let s ∈ L(G), then |s| denotes the length of
s. Let Σs ⊂ Σ, and let s ∈ Σ?. Then, with a
slight abuse of notation, Σs ∈ s denotes that at
least one of the events that form s belongs to Σs.

3 Communication Network Attacks

In this paper we consider a networked supervi-
sory control system, with attacks in communica-
tion channels and a Security Module, as shown
in Figure 1. We assume that the communication
between supervisor and plant is carried out by us-
ing several different channels. The channels that
are used to send information, gathered by sen-
sors, from the plant to the supervisor are denoted
as sensor channels, and the channels that trans-
mit the control actions, enabling actuators, from
supervisor to plant are called supervisory control
channels. In Figure 1, we can see the communica-
tion channels, where the physical bus and its con-
nections with the devices are represented by solid
lines, and the flow of information by dashed lines.
The plant in the networked supervisory control
system is modeled by a deterministic automaton
G = (X,Σ, f, x0), the realization of the supervi-
sor S is modeled by a deterministic automaton
H = (XH ,Σ, fH , x0H), and the closed-loop sys-
tem model T = (XT ,Σ, fT , x0T) is obtained by
the parallel composition T = G‖H. We consider
that the plant has a set of unsafe states denoted
by XUS ⊂ X, and we assume that the supervisor
is designed to avoid the plant from reaching any
unsafe state x ∈ XUS , i.e., no unsafe states are
reachable in T .

Let us consider that there are vulnerable com-
munication channels in the networked supervisory
control system of Figure 1, and assume that the
intruder can execute man-in-the-middle attacks,
i.e., the information in the attacked channel can
be completely changed by the intruder. Let us also
assume that both sensor communication channels
and supervisory control communication channels,
can be attacked. Thus, the intruder can hide,
insert or replace events whose occurrence is de-

Physical Plant

Actuator 1 Actuator m Sensor 1 Sensor n

Controler

b b b b b b

Control
Channel
Attack

Sensor
Channel
Attack

Security

Module

Figure 1: Closed-loop system under attack

tected by sensors in the plant, and can modify the
enabling action commanded by the supervisor to
the actuators of the plant connected through at-
tacked channels, with the objective to drive the
system to reach unsafe states. Let chsi and chaj

,
for i = 1, . . . , ns and j = 1, . . . , na, denote the at-
tacked sensor channels and the attacked supervi-
sory control channels, respectively, where ns is the
number of attacked sensor channels and na is the
number of attacked supervisory control channels.
Let Σsi ⊂ Σo and Σaj

⊂ Σc, denote, respectively,
the set of observable events transmitted through
channel chsi and the set of controllable events
enabled through channel chaj . Then, the set of
events associated with the vulnerable sensor chan-
nels is defined as Σvs =

∑ns

i=1 Σsi , and the set of
events associated with the vulnerable supervisory
control channels is defined as Σva =

∑na

j=1 Σaj
.

In this paper, we consider that the supervisor
has been designed and implemented in the sys-
tem without considering possible network attacks.
Thus, instead of changing all the control logic im-
plemented in the system, we propose the design
of a security module, as shown in Figure 1. These
proposed Module observes the traces observed by
the supervisor and, after detecting an attack that
leads to unsafe states, prevent the system from
reaching these states by forcing the supervisor to
disable all controllable events of the system. No-
tice that, the communication between supervisor
and Security Module it is not transmitted through
the network, therefore it is not vulnerable to at-
tacks. It is important to remark that Security
Module allows that traces generated after network
attacks, that do not belong to T = G‖H, be ex-
ecuted if these traces do not lead the system to
reach unsafe states.

The following assumption is made in this
work.

A1. The sets of controllable and observable events
are disjoint, i.e., Σo ∩ Σc = ∅.

Assumption A1 is necessary for the correct
modeling of the plant and supervisor under net-
work attacks. This assumption can always be re-
laxed by replacing the controllable and observable
events σ ∈ Σo∩Σc with σcσo, where σc is control-
lable and unobservable, and σo is uncontrollable

and observable, leading to new disjoint sets of con-
trollable and observable events, as presented in
Lima (2017).

4 NA-Safe Controllability

In order to prevent damages to the plant after
network attacks, we propose in this paper the im-
plementation of a module that is capable of iden-
tifying traces such that their continuations cer-
tainly lead the plant to reach an unsafe state,i.e.,
a state in XUS , and then disable events to avoid
the reaching of these unsafe states. In order to
do so, a nondeterministic automaton that mod-
els the plant under attack Ga, and a determin-
istic automaton that models the supervisor un-
der attack Ha, must be computed as shown in
Lima et al. (2017)1. Then, the model of the
closed-loop system under attack is computed as
Ta = Ga‖Ha = (XTa ,Σ ∪ {ε}, fTa , x0,Ta). Notice
that, a state of Ta is composed of a state of Ga,
and a state of Ha. Thus, we can define the set of
unsafe states of the attacked closed-loop system
as XTaUS = {(x, y) ∈ XTa : x ∈ XUS}.

Since the malicious agent can enable attacked
events in Σva, these events become uncontrollable.
This leads to the following definition of the set of
controllable events Σca = Σc \Σva, and of uncon-
trollable events Σuca = Σuc ∪ Σva of the attacked
closed-loop system model Ta.

Let L(Ta) denote the language generated by
Ta. Then, L(Ta) can be partitioned as L(Ta) =
Ls(Ta)∪̇Lus(Ta), where Ls(Ta) denotes the safe
language, composed of traces s ∈ L(Ta) such that
it is not possible to reach an unsafe state in XTaUS

after the occurrence of s, i.e., Ls(Ta) = {s ∈
L(Ta) : (∀t ∈ L(Ta)/s)[feTa(x0,Ta , st)∩X

Ta
US = ∅]},

and Lus(Ta) denotes the unsafe language, com-
posed of traces s ∈ L(Ta) such that it is possible
to reach an unsafe state in XTaUS after the occur-
rence of s, i.e., Lus(Ta) = {s ∈ L(Ta) : (∃t ∈
L(Ta)/s)[feTa(x0,Ta , st) ∩ X

Ta
US 6= ∅]}. Notice that

a trace in the unsafe language may be part of the
normal behavior of the system, i.e., may belong
to the language generated by T , L(T), or even be
part of Ls(Ta). Therefore, the module may act
only after distinguishing traces of LTa that will
certainly reach an unsafe state, and do not belong
to the language generated by the system before an
attack L(T). This leads to the following definition
of NA-Safe Controllability.

Definition 1 (NA-Safe Controllability)
L(Ta) is said to be NA-Safe Controllable with
respect to Po : Σ? → Σ?

o and a set of unsafe states
XTaUS if

1In order to facilitate the readability of the paper the
modeling technique proposed in Lima et al. (2017) is pre-
sented in Appendix A.

(∀s ∈ L(Ta))[feTa(x0,Ta , s) ∩X
Ta
US 6= ∅]⇒ (s =

s1s2)[(∀ω ∈ L(T) ∪ Ls(Ta))[Po(s1) 6= Po(ω)] ∧
(Σca ∈ s2)]. 2

According to Definition 1, L(Ta) is NA-Safe Con-
trollable if all traces s ∈ L(Ta), that lead the sys-
tem to an unsafe state in XTaUS , can be divided
as s = s1s2, such that: (i) s1 ∈ Lus(Ta) can be
distinguished from any trace of L(T) and Ls(Ta);
and (ii) s2 ∈ Σ? has an event from Σca. These two
conditions allow that unsafe traces that certainly
lead the system to an unsafe state be detected, and
the reach of unsafe states prevented by disabling
the controllable events of Σca.

Notice that, the supervisor could be designed
to disable all controllable events of the plant after
detecting the observation of traces that do not be-
long to Po(L(T)). However, this approach would
be more restrictive than the approach proposed
in this paper, since the system can execute safe
traces in Ls(Ta) after an attack that do not rep-
resent danger to the system.

An algorithm for the verification of NA-Safe
Controllability of the language of the attacked sys-
tem L(Ta) is presented in Lima et al. (2017).

5 Implementation of the Security Module

We state in the sequel that the NA-Safe Controlla-
bility of L(Ta) is a necessary and sufficient condi-
tion for the existence of the security module (Lima
et al.; 2017).

Theorem 1 There exists a security module that
is capable of preventing G from reaching an unsafe
state in XUS if, and only if, L(Ta) is NA-Safe
Controllable with respect to Po : Σ? → Σ?

o and
XTaUS.

According to Theorem 1, if L(Ta) is NA-
Safe Controllable, then the security module im-
plemented would always prevent damage in the
system. Notice that the security module ob-
serves the same trace observed by the supervi-
sor, and then it verifies if this trace belongs to
Po(L(T)∪Ls(Ta)). If the observed trace does not
belong to Po(L(T) ∪ Ls(Ta)), then the security
module must send an information to the supervi-
sor to disable all controllable events.

In order to construct the security module, we
need first to compute automaton TS whose gener-
ated language is L(T) ∪ Ls(Ta). This automaton
is construct as shown in Algorithm 1.

Algorithm 1 Construction of TS.

Inputs: T = (XT ,Σ, fT , x0,T), Ta = (XTa ,Σ ∪
{ε}, fTa , x0,Ta), Σca, XTaUS.
Output: TS = (XTS ,Σ ∪ {ε}, fTS , x0,TS)

1: Define XTaUS as the set of marked states of Ta.

2: Define TU = CoAc(Ta) = (XU ,Σ ∪ {ε}, fU ,
x0,U , X

Ta
US), and unmark its states.

3: Define XTa \XU as the set of marked states
of Ta.

4: Define T ′S = CoAc(Ta), and unmark its
states.

5: Construct automaton TS such that L(TS) =
L(T ′S) ∪ L(T).

After the computation of automaton TS , the
security module operation can be implemented as
shown in Algorithm 2.

Algorithm 2 Security module operation

1: Compute the initial state estimate of automa-
ton TS, x0,Obs, and define the current state
estimate as xc,Obs = x0,Obs.

2: Define the set of events Γc in the current
state estimate xc,Obs that belong to the active
events

⋃
x∈xc,Obs

Γ(x).

3: Wait for the next event observation e:

3.1: If e /∈ Γc, disable all controllable events
of Σca.

3.2: Else, update the current state estimate
xc,Obs of automaton TS, and go back to
Step 2.

In order to illustrate the implementation of
the security module following the method de-
scribed in Algorithm 2, let us consider an example
of a railway system shown in Figure 2, which con-
sists of two tracks connected with a secondary line
where trains can move in these tracks. The sec-
ondary line connect both tracks and allow Train
2 to move to Track 1, once Train 2 is in the sec-
ondary line it can also return to Track 2. In Figure
2 sensors are represented by arrows, and identify
the passing of a train through a position in the
track. The switches are represented by red lines
in tracks, and change the direction of trains.

The railway system desired behavior is that
Train 1 moves only in Track 1, and Train 2 moves
only in Track 2. Thus, the supervisor objective is
to avoid the crashing of the trains, i.e., the objec-
tive is to keep Train 2 in Track 2.

In this example, the set of observable events is
given by Σo = {a, b, d, e}, that are associated with
observation by sensors placed in the tracks. The
set of controllable events is given by Σc = {a, g, c},
where a and g are associated with switches such
that when a is enabled, Train 2 is deviated to the
secondary line, and when g is enabled, Train 2

Figure 2: Railway example.

1

2

3

4

6 7 8

1’
ac

ao

g e c

b

d

d

Figure 4: Similar plant model G̃ obtained from G
for the railway example.

moves in the direction of Track 1. Event c rep-
resents the entrance of Train 2 in Track 1. Thus,
when event c is disabled, Train 2 cannot enter in
Track 1. This can be done, for instance, by turn-
ing off Train 2 or derailing it. Notice, therefore,
that event c must be enabled during the non at-
tacked operation of the system.

With a view to designing the security mod-
ule for the system of Figure 2, it is first necessary
to obtain the automaton model for the plant, de-
picted in Figure 3. Each state of G represents a
position of Train 2 on the railway, such that state
8 represents that Train 2 has reached Track 1 and,
therefore, is an unsafe state, XUS = {8}.

1

2

3

4

6 7 8

a

g e c

b

d

d

Figure 3: Automaton model G.

In order to implement a security module, as-
sumption A1 must be valid. However, in this case,
this assumption is violated, since event a is con-
trollable and observable. This problem can be eas-
ily circumvented by replacing event a with trace
acao, where ac is controllable and unobservable
and ao is observable and uncontrollable, and by
constructing a similar system G̃, represented in
Figure 4, whose set of controllable events is given
by Σ̃c = {ac, c, g} and the set of observable events
is given by Σ̃o = {ao, b, d, e}. As shown in Lima
(2017), G̃ generates the same observed language
as G, and satisfies Assumption A1.

A supervisor H that keeps both trains in their

1 2

b, e, ao, c b, d, e, c

d

Figure 5: Supervisor H.

1,1 4,2
d

Figure 6: Closed-loop system T for the railway
example.

respective tracks, avoiding Train 2 to reach Track
1, is shown in Figure 5. Thus, the closed-loop
system T = G̃ ‖ H is presented in Figure 6 where
Train 2 stays in Track 2. Notice that, as expected,
the unsafe state 8 does not belong to the non at-
tacked system behavior.

Let us consider now that the set of vulnerable
observable events is given as Σvs = {ao}. Thus,
following Algorithm 3 presented in Appendix A,
that was proposed in Lima et al. (2017). The at-
tacked plant model Ga is represented in Figure 7.
Notice that self loops labeled with the vulnerable
events are added to each state of G̃ to represent
the capability of the malicious agent of creating
observations of an vulnerable event. Moreover,
transitions labeled with ε are added in parallel to
the transitions labeled with vulnerable events in
order to represent the capability of the intruder
of hiding events. The capability of changing an
observation has the same effect as hiding an event
and then creating a new event. Thus, this type
of modification is already represented by the self
loop and ε transitions added to G̃.

Let Σva = {ac, g} be the set of vulnerable
actuator events. Then, the supervisor under at-
tack Ha is represented in Figure 8. For the con-
struction of the attacked supervisor we used the
Algorithm 4 presented in Appendix A that was
proposed in Lima et al. (2017), where the super-
visory channel attack is modeled by adding a self
loop labeled with the vulnerable actuator events
in the states of H to represent that these events
are uncontrollable after the attack.

The resulting attacked closed-loop system
Ta = Ga‖Ha is represented in Figure 9. No-

1

2

3

4

6 7 8

1’
ac

g e c

b

d

d

ao

ao

ao ao
ao ao

ao

ao

ε

ao

Figure 7: Plant model under attack Ga.

1 2

ac, b, e, g, ao, c

ac, b, d, e, g, ao, c

d

Figure 8: Supervisor model under attack Ha.

1,1

3,14,2

1’,1 2,1 6,1 8,17,1

ao

ao

ac ε g e c

d

d

b
ao

ao

aoaoaoaoao

Figure 9: Closed-loop system model under attack
Ta for the railway example.

tice that state (8, 1) represents that Train 2 has
reached Track 1, i.e., the attack can make the sys-
tem reach the unsafe state 8. In order to verify if
it is possible to avoid reaching the unsafe state
by implementing the security module, the verifi-
cation algorithm proposed in Lima et al. (2017)
can be used. In this example, the language gener-
ated by Ta, L(Ta), is NA-Safe Controllable, which
according to Theorem 1, implies that it is possible
to implement the security module that avoids the
plant from reaching state 8.

In order to implement the security module, it
is first necessary to compute automaton TS follow-
ing the steps of Algorithm 1. In Steps 1 and 2 of
Algorithm 1, we compute automaton TU , depicted
in Figure 10, by removing from Ta the states from
which it is not possible to reach the unsafe state
(8, 1), i.e., in this example, states (4, 2) and (3, 1).
The computation of automaton T ′S , depicted in
Figure 11, is carried out by following Steps 3 and
4 of Algorithm 1. In this example, states (6, 1),
(7, 1), and (8, 1) are removed from Ta to obtain au-
tomaton T ′S . Now, following Step 5 of Algorithm
1, TS = T ′S is constructed.

As shown in Algorithm 2, the security module
performs the online state estimate of TS after the
observation of the events executed by the plant.
If the observed event is not feasible in the current
state estimate, then the attack is detected and all
non vulnerable controllable events are disabled by
the security module.

In order to illustrate the security scheme pro-
posed in this paper, let the observer of TS be

1,1 1’,1 2,1 6,1 8,17,1

ao

ac ε g e c

a

aoaoaoaoao

Figure 10: Unsafe automaton model TU .

1,1

3,14,2

1’,1 2,1

ao

ac ε

d

d

b
ao

ao

aoaoao

Figure 11: Safe automaton model TS = T ′S .

presented in Figure 12. Now, consider that the
system is in its initial state 1, and the cur-
rent state estimate of TS is in the initial state
{(1, 1), (1′, 1), (2, 1)}. Then, let us consider that
the intruder enables event ac, which makes Train 2
deviates to the secondary line. Then, the observa-
tion of event ao is erased by the intruder, and the
security module is not capable of detecting the in-
trusion. Notice that in state {(1, 1), (1′, 1), (2, 1)}
the feasible events of the observer of TS are ao,
b, and d. If the attacker does not enable event g,
then Train 2 goes back to Track 2, and event b is
observed. In this case, the security module does
not force the disablement of the non vulnerable
controllable events in Σca. However, if event g is
enabled by the intruder after trace acao has been
executed by the plant, then event e is observed
by the security module when Train 2 crosses the
switch associated with g. Since e is not feasible
in the current state estimate of TS , then event c
is disabled by the security module, and Train 2
is stopped without reaching Track 1. This shows
that the plant will never reach state 8 due to the
action of the security module.

Notice that if disabling event c is also not de-
sired, because it may represent, for instance, the
derail of Train 2 by the security module, then, the
supervisory control communication channel asso-
ciated with event g must have a higher level of pro-
tection against attacks. The verification of which
communication channels must have a higher level
of hardware protection against cyber attacks can
also be addressed using the method proposed in
this paper.

It is important to remark that in this small
example, it is not difficult to obtain the protec-
tion logic against cyber attacks without using the
strategy proposed in this paper. However, this
can be a very difficult task for large and complex
systems. In these cases, the method proposed in
this paper for the design and implementation of a
security module can be used.

6 Conclusions

In this paper, we propose the implementation of
a security module that is capable of preventing
damages caused by man-in-the-middle attacks in
sensor and/or control communication channels in

(4,2)

ao

(1,1),(1’,1),(2,1)

ao

(4,1)
aod

d b

Figure 12: Observer of TS .

Cyber-Physical Systems. A small practical ex-
ample is used to illustrate the implementation of
the security module, and to explain the protection
logic.

References

Baheti, R. and Gill, H. (2011). Cyber-physical
systems, in T. Samad and A. Annaswamy (eds),
The Impact of Control Technology, IEEE Con-
trol Systems Society.

Carvalho, L. K., Wu, Y.-C., Kwong, R. and Lafor-
tune, S. (2016). Detection and prevention of
actuator enablement attacks in supervisory con-
trol systems, 2016 13th International Workshop
on Discrete Event Systems (WODES), Xi’an,
China, pp. 298–305.

Cassandras, C. G. and Lafortune, S. (2008). In-
troduction to discrete event systems, Springer.

Fawzi, H., Tabuada, P. and Diggavi, S. (2014).
Secure estimation and control for cyber-physical
systems under adversarial attacks, IEEE Trans-
actions on Automatic Control 59(6): 1454–
1467.

Goes, R. M., Kang, E., Kwong, R. H. and Lafor-
tune, S. (2017). Stealthy deception attacks
for cyber-physical systems, Proceedings of the
56th IEEE Conference on Decision and Con-
trol, Melbourne, Australia, pp. 4224–4230.

Lima, P. M. (2017). Security against network at-
tacks in supervisory control systems, Master’s
thesis, Federal University of Rio de Janeiro.

Lima, P. M., Alves, M. V., Carvalho, L. K. and
Moreira, M. V. (2017). Security against network
attacks in supervisory control systems, Proceed-
ings of the 20th IFAC World Congress, Vol. 50,
Toulouse, France, pp. 12333–12338.

Mo, Y. and Sinopoli, B. (2010). False data injec-
tion attacks in control systems, Preprints of the
1st workshop on Secure Control Systems, Stock-
holm, Sweden, pp. 1–6.

Pasqualetti, F., Dörfler, F. and Bullo, F. (2013).
Attack detection and identification in cyber-
physical systems, IEEE Transactions on Auto-
matic Control 58(11): 2715–2729.

Sundaram, S. and Hadjicostis, C. N. (2011). Dis-
tributed function calculation via linear iter-
ative strategies in the presence of malicious
agents, IEEE Transactions on Automatic Con-
trol 56(7): 1495–1508.

Thorsley, D. and Teneketzis, D. (2006). Intru-
sion detection in controlled discrete event sys-
tems, Proceedings of the 45th IEEE Conference
on Decision and Control, San Diego, CA, USA,
pp. 6047–6054.

A Modeling of the attacked plant and
supervisor

The modeling of the plant and supervisor under
cyber-attacks is presented in Lima et al. (2017).
In order to facilitate the readability of this paper,
we present in the sequel Algorithms 3 and 4, that
compute automata Ga and Ha, respectively.

Algorithm 3 Computation of automaton GA
that models the plant subject to sensor channel at-
tacks

Input: G = (X,Σ, f, x0), Σvs ⊆ Σo.
Output: Ga = (X,Σ ∪ {ε}, fa, x0).

1: Define fa(x, σ), ∀x ∈ X, and ∀σ ∈ Σ ∪ {ε},
as follows:

fa(x, σ) =
{f(x, σ)}, if σ ∈ ΓG(x) ∩ (Σ \ Σvs),
{x}∪{f(x, σv) :σv∈ΓG(x)∩Σvs}, if σ∈Σvs,
{f(x, σv) : σv ∈ ΓG(x) ∩ Σvs}, if σ = ε,
undefined, otherwise.

Algorithm 4 Computation of automaton Ha

that models the supervisor subject to control chan-
nel attacks

Input: H = (XH ,Σ, fH , x0H), Σva ⊆ Σc.
Output: Ha = (XH ,Σ, fHa , x0H).

1: Define fHa(x, σ), ∀x ∈ XH , and ∀σ ∈ Σ as
follows:

fHA(x, σ) =

 fH(x, σ), if σ ∈ ΓH(x)
x, if σ ∈ (Σuc ∪ Σva)\ΓH(x)
undefined, otherwise.

Thanks

This work has been partially supported by CNPq
and CAPES.

