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Abstract— This paper presents a new path planning strategy obtained from the combination between Growing
Neural Gas (GNG) and Ant Colony Optimization (ACO) algorithms. The proposed strategy was tested in a real
mobile robot for two different scenarios and compared with the APF approach. Positive and negative points of
the proposed strategy are highlighted throughout the text. As one positive point, the proposed path planning
strategy presented a better end positioning of the robot in comparison with APF in the performed tests - an
aspect of great interest for practical applications in industry and medical area.
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1 Introduction

The field of robotics has grown in recent years, as
it became crucial to a wide diversity of applica-
tions. To cite a few, mobile robots are used in the
manufacturing industry (where robots transport
loads and assemble parts) and in the medical area,
with robots acting in medicine manipulation at
pharmaceutical labs and even performing super-
vised actions in surgery rooms (Dogangil, 2010).

Motivated by such needs, autonomous robots
are crucial to execute tasks where machines must
be able to read data from an environment and
produce adequate navigation routes. However, in
order to achieve this goal, it is mandatory to use
techniques that are able to classify areas between
occupied and available free spaces, so that the
robot can autonomously avoid collisions. Thus,
getting a map that represents the environment
workspace is the very first needed in order to im-
plement robot navigation algorithms. In this re-
spect, different types of sensors can be adopted for
2D and 3D mapping (Correa, 2013).

Several path planning strategies have been
employed in the field of mobile robotics as sur-
veyed by (Ottoni, 2000). To cite a few, both (Yao
et al., 2010) and in (Wang et al., 2011) apply
techniques based on A* Algorithm, with the later
specifically using the Dijkstra Algorithm. There
is a group of techniques that base themselves
with Metaheuristic, such as the strategy proposed
in this paper. On what concerns Methaeuris-
tic strategies, some variations have been pre-
sented by using a merge between two techniques
like the joint between Ant Colony Optimization
(ACO) and the Artificial Potential Fields Ap-
proach (APF) in (Mei et al., 2006). Combination
between ACO and Genetic Algorithms has also

been studied by (Châari et al., 2012).

That way, this paper objective is to expose
and test a strategy for path planning in real
time environments based on two techniques: the
Growing Neural Gas (Fritzke, 1995) and Ant
Colony Optimization (Stützle and Hoos, 2000) al-
gorithms. The implemented strategy is compared
with an already established strategy, the Artifi-
cial Potential Fields Approach (Goodrich, 2002).
Experimental results for both strategies are pre-
sented.

The paper content is split in six sections.
After the introduction, Section 2 describes the
structure of the mobile robot in terms of both
software and hardware. In Section 3 the Grow-
ing Neural Gas (GNG) is explained while details
on its implementation are presented. In Section
4, the Ant Colony Optimization (ACO) is pre-
sented. In Section 5, the results are presented and
comments about the experiments are given to es-
tablish a comparison between Artificial Potential
Field (APF) and the proposed fusion of GNG with
ACO. Conclusion remarks are finally brought in
the last section of this paper.

2 Mobile Robot Description

A real mobile robot was used to evaluate the path
planning and reference tracking of the proposed
strategy. The mobile robot possesses geared DC
motors that drive two differential wheels, while
other two smaller passive wheels are responsible
for the mobile robot equilibrium.

The planning algorithm is implemented in an
embedded Linux Raspberry Pi 3 system running
the ROS (Robotic Operating System) environ-
ment (Quigley et al., 2009). The ROS was used
to handle messages between the Raspberry Pi and



Figure 1: Mobile Robot

a supervisory computer on which both GNG and
ACO algorithms were taking place. The Rasp-
berry Pi was responsible for communicating with
a Hokuyo Laser Scanner and constructing a topo-
logical map of the experimental domain. Different
settings of obstacles were tested for evaluating the
algorithms performance.

The motor control and path tracking was im-
plemented in the NXP FRDM-K64F development
board, which received the reference path at each
time from the Raspberry Pi. Non-Linear control
strategies were used (Klancar et al., 2005) to cor-
rect the mobile robot path along the planned ref-
erence. The motors were controlled using digital
PI controllers.

The ROS environment (Robot Operating Sys-
tem) is a framework system that support the de-
velopment of robotics applications, and a collab-
orative community (Quigley et al., 2009). In the
platform, ROS was used as a way of reading the
Laser Scanner data with functions of the package
(Kohlbrecher et al., 2011) that handles the scan-
ner signal to create a map of the room around the
robot, and that feeds the algorithms implemented
by the authors. In general lines, ROS was the
bridge to communicate the scanner connected on
a Raspberry PI 3 and a supervisor computer, that
was responsible to execute the algorithms. Once
executed, the planned path is sent back to the
Raspberry Pi, which in turn transmits the infor-
mation to the NXP FRDM-K64F microcontroller
by UART communication. Figure 2 represents the
complete hardware system and how they commu-
nicate to each other.

3 Growing Neural Gas (GNG)

Once the Hokuyo Laser Scanner reads the envi-
ronment around the robot, the result is a ma-
trix of points containing information about the
occupancy of the spots read by the scanner, in-
cluding free spaces, occupied spaces and uncertain

Figure 2: Hardware Diagram

spaces. Depending on the resolution of the read-
ing, it could be thousands of points for the robot
to process.

In order to simplify the Path Planning goal in
computational aspects, the Growing Neural Gas
(Fritzke, 1995) application is a way of reducing the
complexity of the reading without losing its pri-
mary properties, like dimensions and free spaces
where the robot can navigate, generating a topo-
logical map.

The main goal of using GNG is to reduce dras-
tically the number of points of interest, once it will
only focus on representing free spots, avoiding oc-
cupied spaces and preserving the original shape of
the map. The number of points that has to be
analyzed, that once was around the thousands of
points, is now around 100 points, depending on
the parameters used in the algorithm.

The algorithm works receiving a probability
density function P (ξ), based on the points of the
original read. It starts by randomly inserting two
nodes in the current created space, and contin-
ues by moving nodes, creating or deleting edges
between nodes according to P (ξ), which evolves
based on previous determined parameters exposed
as follow.

The main idea of the algorithm is to update
the nodes position under influence of the real read-
ing, our probability density P (ξ). A very impor-
tant parameter is λ, because it controls the pe-
riod of iterations when nodes are created. In ev-
ery kλ iteration (with k = 1, 2, 3, ..., n) a new
node is created between the node with the biggest
accumulated error and its neighbor with biggest
accumulated error. Hence, the greater is λ, the
greater is the time that the algorithm reallocates
its network before adding new units. There is a
list containing the parameters.

• λ = controls node creation;

• sizemax = controls the maximum number of
nodes;

• agemax = controls the maximum age of
edges;



• α = factor that changes error of nodes in kλ
iterations;

• eb, en = moves nodes through iterations;

• d = factor that decreases error of all nodes.

Figure 3: GNG Graph

Figure 3 shows the result of applying GNG
in a theoretical space (Braga, 2004), which is a
network graph containing several nodes, less than
in the original read, with edges connecting close
nodes and a great similarity with the space it-
self, in a very simplified way. It is now given sev-
eral paths connecting every pair of nodes in the
graph. It is the Ant Colony Optimization (ACO)
algorithm duty to recognize the path between two
nodes in the graph that would take less time for
the robot to perform, hence, the better path.

The space that will base the GNG algorithm
and that the robot will navigate is not actually
theoretical, is a real time reading from the Laser
Scanner of the space where the robot is. Figure 4
is the result of GNG applied on a real laser reading
of a test room. The obstacles were augmented
by 0.3m on software to feed GNG, in order to
cover the robot’s radius and guarantee that it can
navigate safely (in Figure 4 GNG is overlaid in
the scanner reading without augmentation, in real
size).

Figure 4: GNG Graph based on LIDAR reading

Notice that GNG network does a great repre-
sentation of the room, displaying available spots
where the robot can navigate and connecting it so

it can give multiple paths from some point to an-
other. The test room was a complex space, with
different kinds of obstacles in several sizes, includ-
ing some very thin ones. That is the advantage of
using a laser scanner allied with GNG. Even in
complex scenarios with a high difficult level the
robot can safely navigate.

4 Path Planning Strategy with ACO

Following the generation of the the topological
map by the GNG, a graph G(N,E) that rep-
resents the environment in which the robot is in-
serted is obtained. Disregarding the kinematics
and dynamics constraints and since the GNG only
uses the free space data to construct the topologi-
cal map, which guarantees the absence of obstacles
in the generated graph, the path planning problem
comes down to finding an optimal or sub-optimal
path between two points in a graph.

For this task it was used the meta-heuristic
ACO (Dorigo and Stützle, 2004), which provides a
framework to solve discrete optimization problems
through the use of artificial ants. Those ants move
randomly between the nodes and across the edges
of a graph. They use the data of the amount of
pheromone deposited by the ants themselves in
the edges of the graph as basis for the decision
making process of the movement.

The ant algorithm used was the MAX-MIN
Ant System (MMAS) (Stützle and Hoos, 2000)
with adaptations to improve its performance re-
garding the task of finding short paths in a graph.
MMAS algorithms insert maximum τmax and min-
imum τmin limits for pheromone values, thus
avoiding a quick convergence to a sub-optimal
path and encouraging greater exploitation by the
ants.

4.1 Algorithm Description

At the beginning of the algorithm a total number
of M ants are created having as the initial position
s, which is the location where the robot is. In
addition, the same pheromone value τ0 is given to
all the edges in the graph G(N,E). From this,
each ant start the construction of the solution to
the destination node t randomly. The probability
Pmij of an ant m that is on the node i moves to
the neighbor node j, which belong to the neighbor
node group of i, called J , through the edge that
connects i to j, is given by Equation 1:

Pmij =
[τij ]

α[ηjt]
β∑

j∈J([τij ]α[ηjt]β)
(1)

Where τij is the amount of pheromone de-
posited on the edge that connects i to j, ηjt is a
parameter based on the available heuristic infor-
mation, which in this case is the inverse of dis-
tance between node j and the destination node



t, measured by the Manhattan metric, given by
Equation 2, where x and y are the coordinates of
i and j in each axis:

Hjt =
1

|xj − xt|+ |yj − yt|
(2)

The parameters α and β are used to deter-
mine, respectively, the level of contribution the
pheromone trail and the heuristic information has
on the decision making process of the ant.

During the construction of the solution the
ants store the path traversed, eliminating the
loops that can occur during this process. After
all the ants reach the destination, the pheromones
are updated according to the best path obtained
by ant f and the evaporation rate ρ according to
the Equation 3:

τfab = ρτfab + ∆τ (3)

Where τfab represents all the arcs present in
the path traversed by ant f and ∆τ represents
the amount of pheromone to be deposited, cal-
culated by the inverse of the euclidean distance
distfst traveled by the ant f between the starting
point s and the destination point t (Equation 4):

∆τ =
1

distfst
(4)

After the update of the pheromones, it is ver-
ified if they are within the limits imposed by the
maximum and minimum parameters, and they are
updated according to Equation 5. The parame-
ters τmax e τmin are obtained by Equations 6 e 7
(Pellegrini et al., 2006). Where Cbest is the eu-
clidean distance of the best path found so far, and
n is the number of nodes from the graph G(N,E):

τ =

τmin if τ ≤ τmin
τ if τmin ≤ τ ≤ τmax

τmax if τ ≥ τmax

 (5)

τmax =
1

ρCbest
(6)

τmin =
τmax(1− n

√
0.05)

(n2 − 1) n
√

0.05
(7)

The last part of the algorithm is the conver-
gence test. For MMAS algorithm the notion of
convergence is defined in (Stützle and Hoos, 2000)
as follow: “The MMAS has converged if for each
choice point, one of the solution components has
τmax as associated pheromone trail, while all al-
ternative solution components have a pheromone
trail τmin” (p. 899). In case the algorithm takes
too long to converge, a parameter number of iter-
ations I has been inserted, so that the algorithm
ends if it reaches this limit.

4.2 Aspects of the Practical Implementation

To avoid problem of numerical order, such as nega-
tive numbers and magnitude discrepancies, at the
beginning of the algorithm, the coordinates of the
map generated are normalized between 0 and 1 ac-
cording to the dimension of the map. Before the
end of the algorithm the final path is re-scaled to
the original scale of the map.

The algorithm requires the following parame-
ters:

• The Graph G(N,E) given by the GNG al-
gorithm;

• The current and the target position (s and t)
of the robot;

• Data of resolution and dimension from the
map, given by the ROS package hector-
mapping.

By the start of the algorithm the following
parameters must be initiated:

• Number of the ants M ;

• Number of iterations;

• Evaporation rate ρ;

• α and β parameters.

The pheromones related parameters τmax,
τmin and τ0 are started with the value of 1.

5 Experimental Results

In order to experiment the proposed path plan-
ning strategy and for comparative purposes, an
already established strategy was implemented, the
Artificial Potential Field Approach, which is a
simple and very used path planning approach that
presents great results without extreme computa-
tional processing (Goodrich, 2002) and (Qureshi
and Ayaz, 2016). This technique is based on the
behavior of a charged particle in a magnetic field,
and its actions on the environment depends on
the combination of the attractive fields (influenced
by the destination points) and the repulsive fields
(represented by the obstacles on the map). The
Artificial Potential Fields algorithm implemented
used these parameters:

• r = target radius;

• a = attractive field scalar factor;

• robs = obstacle radius;

• b = scalar factor of the repulsive field;

• s = field propagation factor;

• λ = less distance increment.

The tests were made in two different scenarios,
both in a closed room with obstacles differently
placed in space and fixed starting and finishing



positions (Figures 5 and 7). The obstacles are the
walls and the objects deliberately placed to com-
pose the scenario. With the purpose of not hit-
ting the obstacles properly, all of them were aug-
mented on software by 0.3m, which is the radius
of the robot, so the map can feed both strategies
safely. The robot navigates with constant speed
of 0.1 meters per second for both algorithms. The
first scenario is composed with only two objects to
avoid, with the intuition to stimulate well curved
paths. The second scenario is composed with
three objects making a bifurcated way through to
the finishing position. The robot traveled (man-
ually) in the room to read the scenario around
it with the LIDAR sensor and, after that, it came
back to the origin point, compiled all the informa-
tions and executed its path to the finishing point
sufficiently close to the exit door, selected by an
operating person in real time. The real path was
measured with the robot odometry.

As values of comparison between the two
strategies in both scenarios, it was measured com-
putational time (t), total distance traveled (D),
the difference between the real ending position and
finishing point (df ) and an MSE (Mean Squared
Error) of θ, the orientation of the robot, in order
to analyze the smoothest path, which is the path
with less mean variations in θ. The MSE(θ) mea-
sure is taken as follow, with N being the number
of θs:

MSE(θ) =
1

N − 1

N−1∑
i=1

(θ(i+ 1)− θ(i))2 (8)

The path supplied by the path planning algo-
rithm was controlled using a non-linear approach
(Klancar et al., 2005). The controller is tuned by
linearizing the mobile robot model and allocating
the system poles so that it remains stable while
also specifying performance parameters. The mo-
tor speed is controlled using a PI controller whose
gains were tuned to allow fast response and elimi-
nate steady-state error for each motor velocity ref-
erences. Since the reference tracking is computed
in a digital micro-controller, it is required to spec-
ify a reasonable sampling time for the closed-loop
performance. A sampling time of 10 Hz for ref-
erence tracking closed-loop exhibited good perfor-
mance considering the mobile robot dynamics.

These are the parameters for all algorithms
used:

GNG : ACO : APF :

sizemax = 60 epochmax = 50 r = 0.03

agemax = 100 nants = 50 robs = 4

λ = 300 evapfactor = 0.98 a = 5

b = 5

s = 18

λ = 0.03

In order to make explanation easier to under-
stand and more organized, GNG and ACO will
be called Strategy A and the Artificial Potential
Fields approach will be called Strategy B. It is
important to affirm that the ending and starting
points for both algorithms are the same for Sce-
nario A and Scenario B, in order to have a fair
comparison between the two techniques.

5.1 1st Scenario

The first scenario was composed by two deliber-
ated obstacles, one close to the robot’s starting
position and the other close to the finishing po-
sition. Intuitively, the greatest path is not diffi-
cult to achieve, but will result in some curved way
while exploring the room and that could represent
greater variations on θ. Figure 5 represents this
scenario.

Figure 5: 1st Scenario

In this scenario it was possible to notice that
both algorithms were able to execute very well
the path proposed. In the collected results ex-
posed in Table 1 the conclusions were very tight,
with the Strategy A presenting a longer processing
time and a longer path, with a difference of 0.40m.
Also, Strategy A had a bigger MSE(θ), represent-
ing a path with more orientation changes. In the
precision parameter df (m) the difference was also
very slight, with a really smooth advantage for
Strategy A.

Table 1: 1st Scenario’s Results
GNG and ACO APF

t(s) 0.9643 0.0621
D(m) 6.091 5.686
df (m) 0.071 0.123
MSE(θ) 0.0062 0.0007

The reading of the Laser Scanner in the actual
test such as the curves of reference path and real
executed path are available to see in Figure 6.
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Figure 6: 1st Scenario’s Paths

These curves are important to see how the con-
troller behaved in the proposed paths. Strategy
A have some points with high θ variation, result-
ing in a bad behavior of the controller, that has a
little delay to go back to the right path.

5.2 2nd Scenario

The second scenario was composed by three ob-
stacles, configuring together a bifurcated path.
Now the complexity of the problem had increased,
since now there is more than one possible solution
for the problem, with a higher obstacle density
and narrow paths, a challenge for the robot to go
through without hitting the anything. Figure 7
represents this scenario.

Figure 7: 2nd Scenario

In this scenario it was possible to observe a
typical APF problem, the local minimum prob-
lem. Usually it occurs due to a great repulsion
that the obstacles cause denying the robot to
achieve its objective, because before it reach the
goal position, attractive and repulsive fields be-
come with extreme close module values, causing a
resulting field equal to zero.

While Strategy B was impaired by this issue,

Strategy A behaved very well, achieving the goal
position and avoiding all obstacles, although the
narrow spaces. Observing Table 2, Strategy A
again presented a larger computational time, a
higher MSE(θ) and a really higher precision mea-
sured by df (m), due to that Strategy B limitation,
which do not effect at all Strategy A, since it has
no local minimum problems.

Table 2: 2nd Scenario’s Results
GNG and ACO APF

t(s) 0.9936 0.0935
D(m) 5.980 3.003
df (m) 0.014 2.675
MSE(θ) 0.0079 0.0016

Finally, the reading of the laser scanner and
the curves of reference path and real path are
available in Figure 8 to see how well the controller
behaved.
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Figure 8: 2nd Scenario’s Paths

Again the Strategy A path has suffered with
some punctual high variations in θ that made the
controller have some difficult while executing it.

6 Conclusions

Results obtained from experiments in both sce-
narios lead to the conclusion that the proposed
combination of Growing Neural Gas allied with
Ant Algorithm Optimization is a viable strategy
for path planning with a better end positioning
of the robot in comparison with APF in the per-
formed tests (Tables 1 and 2). While the APF
strategy had less time of processing and a very
well performance in the first scenario, the strategy
proposed had satisfactory performance in both
scenarios and delivered the robot to its location
safely, while avoiding obstacle collision even when
navigating in narrower paths and when APF could
not. Such characteristics make adaptation for real
spaces and different kinds of obstacles prospective



and indicate potential for use in industrial appli-
cations.

In addition, further exploration of the pro-
posal is expected in order to improve crucial points
in the path planning algorithm. As an example,
application of a smoothing technique could make
sure that extreme variations on the robot orienta-
tion angle θ are avoided.

A deeper attention on dynamic environments
is an action moving forward with the studies, once
the strategy presented isn’t capable of dealing
with dynamic environments. Therefore, that ap-
proach is a good advance to be treated in future
works.
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