REQUIREMENTS ENGINEERING AT A GLANCE: COMPARING GORE AND UML

METHODS IN THE DESIGN OF AUTOMATED SYSTEMS

JAVIER M. SILVA*, ARIANNA Z. O. SALMON', PEDRO M. G. DEL Fovof, JOSE REINALDO SILVA*

*D-Lab, Escola Politécnica
Universidade de Sao Paulo
Sao Paulo, SP, Brazil

tDepto. de Eng. Mecénica
Universidade Federal de Pernambuco
Recife, PE, Brazil

jsilva@silva.com, azolivera@gmail.com, pedro.foyo@ufpe.br, reinaldo®@usp.br

Abstract— The early phase of Requirements Engineering is crucial to design intelligent automated systems,
especially if an analytic formal solutions are not achieved. In such cases Requirement analysis is not feasible
and the design process will be more suitable do re-work. Planning and scheduling problems can be approached
with Artificial Intelligence (AI) and constitute an important area of machine intelligence - together with machine
learning. Therefore, it will be an important result to propose good design practices to solve planning problems,
also giving special attention to the early requirements phase. Specifically, it would look for a method that lead
to formal methods of requirements analysis using Petri Nets (which is also used to direct solutions that do not
use AI). In this work it is compared two direct approaches to requirements engineering: A semi-formal modeling
using Unified Modeling Language (UML) that transform the diagrams to Petri Nets to perform analysis, and
another approach that uses Goal-Oriented Requirement Engineering (GORE) method, represented by KAOS
diagrams that could also be converted to Petri Nets. The possibility to use a unified Petri Net environment and
introduce some extensions such as hierarchy is also envisaged.

Keywords— Petri Net, Requirements Engineering, Intelligent Automated Planning, GORE, KAOS, UML

Resumo— A fase de Engenharia de Requisitos é crucial no Design de Sistemas automatizados inteligentes,
especialmente quando nao é possivel formular solugoes formais analaticamente. Nesses casos, a andlise de re-
quisitos nao é vidvel e o processo de design serd o mais adequado para o re-uso no processo. Os problemas
de planning e scheduling podem ser abordados com técnicas de Inteligéncia Artificial (IA) e constituem uma
area importante da machine intelligence -conjuntamente com o machine learning. Portanto, serd um resultado
importante na proposta de boas préticas no design para a solucdo de problemas de planejamento, oferecendo
também especial atencao & fase inicial de requisitos. Escificamente, procurariamos um método que conduzesse
até técnicas formais de andlise de requisitos usando redes de Petri (que é usado também para direcionar solugoes
que ndo usam técnicas de TA). Neste trabalho, comparamos duas abordagens relacionadas com a Engenharia de
Requisitos: uma modelagem semi-formal usando Linguagem de Modelagem Unificada (UML) que transforma os
diagramas para redes de Petri para realizar analises, com uma outra abordagem que usa método de Engenharia
de Requisitos Orientado a Objetivos (GORE) representados por diagramas KAOS que também podem ser con-
vertidos em redes de Petri. A possibilidade de usar um ambiente de Petri Net unificado e introduzir algumas

extensoes como hierarquia também estd prevista.

Palavras-chave— Redes de Petri, Engenharia de Requisitos, Planejamento Automatico Inteligente, GORE,

KAOS, UML

1 Introduction

Extracting knowledge related to planning domain
may become a difficult task, specially in what con-
cerns the solution of real problems. Analyzing re-
quirements is a good challenge to any target for
Engineer since it normally deals with the lack of
knowledge about the artifact (be it a a product,
process or service). In the case of automated pro-
cess and/or service requirement analysis becomes
really hard, which is just the focus of the present
work. Besides, there is an obstacle to determine
consistency at this stage, and it is needed to use
different representations (and to change from one
to another) without losing the focus of the pro-
blem *.

IMost of the software tools that support the early de-
sign phase are based on "requirements management” which
cover the elicitation support, documentation, some link be-

Thus, it is attractive to research in Enginee-
ring Design to focus on the early phase of design
where - specially to innovation process - very few
is known about the problem until its complete so-
lution. The target is to seek for a formal represen-
tation, which eventually allows a transference to
other formal representations in the process that
follows requirement analysis. This is the main
goal of the Knowledge Engineering tool applied
to Automatic Planning called itSIMPLE, now in
its version 4.0 (Vaquero et al., 2013).

Recent research show the relevance of initial
stages in the design of almost any application
(Knauss et al., 2018) (Alreshidi et al., 2018)(Liebel
et al., 2018)(Silva et al., 2018). Requirements mo-
deling and analysis is a key phase whose influence
on the success of the remaining phases is sufficient

tween requirements, and, more recently, traceability tools,
but do not include consistency analysis

to lead to a good progress or to the failing of the
project, that is, a good requirement specification
is necessary (but not sufficient) condition to ob-
tain a good design process.

The main discussion is about improvements
in the design of automated systems that could en-
hance the modeling and analysis of requirements,
and can still lead to good results. However, when
are treat problems with high complexity or ex-
tensions of real problems, it is necessary to know
better the characteristics of the problem and the
context in which it is inserted.

Consequently, the representation of the initial
phase, and the possibility to evolve from a semi-
formal version requirements to a formal one is a
very important issue. Initial elicited requirements
are normally developed in UML, which could take
advantage of the recent SysML representation to
convert visual diagrams into formal representation
(or to Petri Nets) (Salmon et al., 2011). An alter-
native approach is to use goal oriented require-
ments engineering and use LTL (or Petri Nets)
(Martinez and Silva, 2015). In this article it is
considered advantages and disadvantages of each
one.

Section 2 focus on the use of formal methods
to requirement analysis using GORE approach
and KAOS diagrams. Section 3 will show some
aspects about Petri Nets as a formalism for an-
alyzing requirements of automated systems. In
the next sections, is introduced a case study for
a realistic problem concerning the logistic of gas
station which is modeled with both KAOS-Petri
Nets and UML-Petri Nets approaches, including
invariants calculus in both cases. Finally, is an-
alyzed both process comparing and adding some
concluding remarks and contributions to further
work.

2 GORE: Goal Oriented Requirements
Methods

For a comprehensive understanding of how a sys-
tem fits requirements, let us first consider that
eliciting requirements lead to address both to
functional and non-functional requirements. The
first is more intuitive and is generally associated
with services to be provided to clients while the
second is related to the quality, sometimes perfor-
mance or resources needed by the service and also
related to external demands, such as safety re-
quirements, performance, security, legal aspects,
etc. Here, a requirement is a necessary condition
to achieve a certain goal in a specific application
domain (Horkoff et al., 2017).

Therefore, since in the direct approach non-
functional requirements are in general neglected
or fail to compose a complete set, Goal-Oriented
methods are becoming an interesting alternative
up to large systems. We will shortly describe the

essential notion to this approach and its diagram-
matic representation, called KAOS (from Know-
ledge Engineering Object System, or, more infor-
mally, “Keep All Objectives Satisfied”) (Dardenne
et al., 1993).

2.1 The KAOS Method

The method involves four semantic networks ex-
pressing conceptual models linked to objectives,
agents, objects, and operations covering expected
and target results (objectives), the responsibil-
ity to achieve such goals (from agents that could
be machines or humans), an static object repre-
sentation and a dynamic set of operations that
change system state. Initial representation is
semi-formal as any visual diagram, but it could
converge rapidly to a disciplined and finally to
a formal representation in linear temporal logic
(LTL).

Therefore the modeling process is divided in
two steps: 1) composing a graphical representa-
tion and then synthesizing an internal representa-
tion to requirements using LTL(Cailliau and van
Lamsweerde, 2015).

However, this approach is suitable only to
small or even medium size projects where it is
affordable to represent each process as unique se-
quence disregarding concurrent events. In prac-
tice, even to a small system as we will introduce
in the example, concurrence is a key issue to au-
tomation and all change of state are associated
to a combination of events with different pre and
post conditions. That is the motivation to look for
an alternative representation such as Petri Nets.
Before that we will show the basis for KAOS dia-
grammatic and formal representation.

2.2 KAOS Graphic Representation

The goal diagram is represented by a tree in which
all nodes represent goals and the edges represent
relations (such as composition, refinement, depen-
dency, restriction, etc.). The main goal (the tree’s
root), is an abstraction of the system - graphi-
cally represented by a parallelogram - related to
the main goal. Fig. 1 show the basic elements for
KAOS diagrams.

Parallelograms are used for goals, require-
ments (necessary conditions to achieve a goal),
and also expectations (very important to trace-
ability). To stress the difference expectations are
always filled with yellow color.

The main difference between a KAOS dia-
gram and UML is just the fact that while one
should integrate four diagrams (always) in this re-
presentation. The same representation in UML
would require a previous of one among thirteen
structural diagrams and more twelve behavior dia-
gram to come up with the proper set (maybe re-

Element Description

General goal

. Sub-goal assigned to a single
Requirement agent
Potential result related to a goal

Expectation or agent action

Source of possible interaction

Domain . .
with external environment

Properties

Individual, group of machines
Agent responsible for the achievement
of a goal

Function, routines or set of

Operation actions used to achieve goals

Figure 1: Main elements of Goal Diagram

dundant) to show a diagram with the same se-
mantic.

Concerning the formal approach UML can be
converted into SysML which also has a non-empty
intersection with the visual diagrams (Freeden-
thal). In the case of Goal Oriented approach a
more straightforward conversion could be applied
to KAOS diagrams to convert it to LTL.

2.8 Formal Representation

A goal may be described as a valid final state,
derived from the general behavior of the system.
Separately each sub-goals can emerge from diffe-
rent course of actions but converge to the main
goal. Such behaviors can be represented as paths
in a graph or by as a combination of different au-
tomata. The formal representation prescribed by
KAOS method is based in LTL, but it could also
be represented by an state-transition formal re-
presentation.

A transition could be represented formally in
terms of LTL sentences such as:

C =0T

where C is a current condition, T is a target condi-
tion and O is one of the LTL operators represented
in Tablel.

Table 1: Temporal Logic Operators

Operator Description
O In the next state
& Eventually in the future
m| Always in the future
U4 < Hold until d is true

Requirement Engineering tools such as Objec-
tiver can help to formalize requirement specifica-
tions that come from KAOS diagrams into LTL
formulas. However, such formulas specify each

process and it is not so easy to express distributed
dynamics. In order to face that several works
propose the translation of LTL representation to
Petri Nets (Lacerda and Lima, 2011)(Fahland,
2007)(Martinez and Silva, 2015).

3 Using Petri Nets to Analyze
Requirements

There are different proposals to use of Petri
Nets in requirements analysis, since using direct
Place/Transition (P/T) Nets (Fahland, 2007), to
the use of extended nets (DeVries, 2013)(Martinez
and Silva, 2015), up to coloured nets.

In this work we will use a direct approach
based on P/T nets to fit the comparison with
a similar approach using UML (Salmon et al.,
2011)(Salmon et al., 2014).

To save some space we will refrained from go-
ing into basic details of Petri Nets theory, which
could be found in known references (Murata,
1989). The use of Petri Nets to formal verification
and model checking is also a known topic (Silva
and del Foyo, 2012)(Salmon, 2017).

It is worth to mention that in this work it will
used an unified Petri Net environment that could
synthesize both P/T and High Level Nets, as well
as extensions such as hierarchical nets, tagged
nets, inhibitor gates and so on. That was encap-
sulated in an environment called GHENeSys (del
Foyo, 2001)(Silva and del Foyo, 2012). However,
any other Petri Net environment could be used.

In the following it will presented the target
problem under which both methods UML-Petri
Nets and KAOS-Petri Nets would be analyzed and
compared.

4 The gas station problem

The gas station is a simple problem concerning
service and workflow, where the target system is
a gas station with two pumps. The furnishing of
gas is coordinated by a cabin with an operator
(initially supposed a human for simplicity).

A driver who arrives at the station should re-
quest and pay for the gas and will have the re-
quested service assigned to a pump with a QR
code. The model could be extended to more
services (such as oil exchange, washing, chang-
ing filters, etc., configuring an automatic or semi-
automatic service). If some intelligence planning
is inserted, the human operator could also be re-
placed by an automatic system using a cell phone
application and a credit card. For the time be-
ing let us deal with the simple system operated
by humans.

4.1 Modeling Requirements with KAOS

For this case study the primary objective is: A
customer should be served as soon as possible.
This primary goal depends on subgoals such as:
operator process driver request and payment and
control admits a new driver, where this last goal
launches the service process. The first objective
relies on the expectation - from the stakeholder -
that the customer external queue is kept with a
minimal number of markings. Of course that de-
pends on the number of pumps and space available
to receive drivers.

The assignment of a pump (to an specific
driver) is based on the expectation that the cus-
tomer will run the service of fueling the car for
his/her own, using a card with a QR code identi-
fying the driver and the service already paid. The
pump can recognize the service and provide the
proper amount of oil. Another automatic opera-
tion will control customer external queue and will
admit a new driver as soon as a "space” is available
(by opening a cancel, for instance).

The Goal Diagram for the Gas Station Pro-
blem is shown in Figure 2.

A customer should be served
as soon as possible

Operator process drives
request and payment

Control admits a new
driver

Drives access // Pump Driver
available provide /' aknowledge th
pump servic service done,

A driver A driver is

Figure 2: Goal Diagram of Gas Station Problem

Table 2 shows LTL sentences associated with
each goal.

Figure 3 shows the P/T net that results from
the application of a translation algorithm pro-
posed in (Martinez and Silva, 2015) which syn-
thesizes a Petri Net from the KAOS Diagram.

Normally, for analyses purposes, a place
should be added between transitions leave_GS
and drv_arrives making the net cyclic, but this
is not necessary in the current model and it has
a regular open system where the service itself is
already a closed sub-net. Transitions invariants
can obtained using conventional algorithms which
reveals that once a diver is admitted he/she could
be served by one of the available "places” (waiting
for the operator, requesting and paying or using
one of the pumps). This loop denotes the service
provided by the Gas Station.

Place invariants are shown in Table 3. In-
variants equation 1 and 3 show that pumps can

Table 2: LTL sentences associated to each goal of

(Goal Model
Goal

LTL Sentences

3(d :Driver, gs :GasStation);
arrives(d) A IdleVacancy—
¢ insert(d, q);

A driver is
admited by
the control
system.

3(d :Driver, op :Operator, ¢ : card,
s : gasService); request(d,s)
A pay(d,op) — O ready(d,s,c);

Operator pro-
cess driver re-
quest and pay-

ment.

3 (d: Driver, p : Pump, c: card,
Driver ac- | s: GasService); ready(d, s, ¢) A
cess available | PX_free(p) — ¢ assigned(d,p);
pump.

3 (d : Driver, p : Pump, c: card,
Driver and | s: GasService); assigned(d, p) —
service are | ¢ identify(p,c,s);
received by
the pump.

3(d : Driver, p:Pump, s : GasService)
identified(p,c,s) —

¢ [provided(s) A acknowledged(d)
A IdleVacancy A PX_free(p)];

3(d : Driver, gs:GasStation);
acknowledged(d) — O leave(d, gs);

Pump provide
the service

Driver leaves
Gas Station.

drv_arrives

idleVacan

driver_accepted reques{and_pd

P1_free P2_free

Aswg ned_P2|

P2_ident_drv

Asigned_P1

P1_ident_drv

1

P1_ldentified P2_ldentified.

P1_provide_fuel F2_provide_fue

P2_Provided

leave_GS
Aknowledged

Figure 3: Petri Net of Station Gas Problem from
KAOS Method.

be either free or serving an assigned driver. The
second equation stands for the Gas station maxi-
mum number of accepted drivers from the exter-
nal queue (M(IdleVacancy)=4) to maximize the
number of drivers attended simultaneously.

It is possible to see that each invariant equa-
tion is related to some goal (directly or indirectly),
which turns the workflow analysis easier. It should
also be pointed that in many cases the Petri net
representation is derived from LTL equations. In

cases like that, the number of objects (pumps for
instance) would not appear easily and conflicts
such as the one showed in the net in Fig 3 do
not appear explicitly. In this work the Petri net
is synthesized from the KAOS diagram (Martinez
and Silva, 2015) instead of the LTL (Lacerda and
Lima, 2011)(Fahland, 2007), and the object dia-
gram is used to provide the number of objects.
In the following a UML-Petri Net approach is
introduced to analyze the same problem.

4.2 Modeling Requirements using UML-Petri
Nets

The first step would be to elicit and represent sys-
tem requirements using UML class and state di-
agrams. UML has a high power graphic expres-
sion, but despite this, restrictions for the systems
behavior (specially when related to the domain en-
vironment) are not adequately expressed in UML
diagrams.Extension mechanisms such as stereo-
types, tagged values and predefined constraints
are not enough to express such constraints.

For this reason, it will used OCL to formulate
system constraints, which would be primarily rep-
resented by invariants(Salmon et al., 2014). After
the UML modeling the result will be transformed
into a classic Petri net. Transformation algorithm
(Salmon, 2017) will be an enhancement of the the
one proposed by Baresi(Baresi and Pezze, 2001).

Figure 4 shows the class diagrams for the Gas
Station Problem.

Gas Station

winvariants

{Context GasStation inv |__ |- IdI= . = !
ion.ldle implies - ving 1

GasStation serving=false} + gethMoney() : 3

+ selecFump()

«invariants
{Context Pump inv
Pump.ldle implies
{Pump.ready = false and
Pump.pumping.false);

-
-
o
:

- driving: boclean = true
lean = false
olean = false

«invariants

{Context Driver inv
Driver.driving implies
{Driver.ready =false and

Driver.tanking=falsej}

+ pumping()

Figure 4: Class diagram of the Gas Station Pro-
blem

Table 3: Place invariants derived from the KAOS
approach.

Id | Invariants equations

1 M(P2_free) + M(Asigned_P2)+
M(P2_Identified) + M(P2_Provided) = 1
M (Asigned_P1) + M (P1_Identified)+

M (idleVacancy) + M (P1_Provided)+

2 | M(driver_accepted) + M (Ready)+

M (Asigned_P2) + M (P2_Identified)+
M(P2_Provided) = 4

M (Asigned_P1) + M (P1_Identified)+
M(P1_Provided) + M(P1_free) =1

Initial

«Post-conditions «Post-condition
{gethMoney_App} IgetMoney}

«Pre-conditions
{payFail}
.

N «Pre-conditions
- ,l Servive_O|
«Pre-condition P i S
{PumpRelass} el
- ., | «Post-conditions
tanki 1~
= J fear_In_Faosition]

Figure 5: State diagram of the class Driver

Based on the class diagram shown in Figure
4, an state diagrams is constructed. Figures 5, 6
and 7 show the state diagrams for the class Driver,
Gas Station and Pump respectively.

«Post-condition
[Service 0K}

«Pre-condition»
- -| {getMoneyApp}
|
«Post-conditions
{pump_enable}
|

|
«Pre-conditions [|
{Pumpldie} " 1|
|
|

Initial

«Pre-conditiona [
Igethioneyl T

«Post-conditions
{serve Fail}

T

Figure 6: State diagram of the class Gas Station

State diagrams are transformed into a classic
Petri net (Salmon, 2017). Figure 8 shows the Petri
net for the Gas Station Problem.

In the following invariants are used in the ver-
ification of the model obtained. Place and transi-
tion invariants represent the conservative compo-
nents of the net. Transition invariants will denote
which transitions must fire and how many times
each one should fire, so that the initial marking is
reproduced. These invariants represent the repet-
itive components of the net.

Place invariants are used both in the
representation and verification of system
requirements(Salmon et al., 2014). To do
so, the information presented in the class dia-
gram shown in Figure 4 is also considered,
besides the specifications described in Ontology
Constraint Language - OCL (Kalibatiene and

Pumpldle Lr_,.
|
e
«Pre-conditicns

-=mmm {serveCar}

«Post-conditions
IpumpEnabled}

«Post-conditions
IpumpRelase}

?
4

Figure 7: State diagram of the class Pump

Vasilecas, 2012). All system requirements can
be written as a sum of elements of the marking
vector.

Table 4 shows constraints in OCL for the Gas
Station Problem, whereas in tables 5 respective
invariants are defined.

The accuracy of equations in Table 5 can be
verified by first computing the invariants and ver-
ifying thereafter whether the set of places of each
inequality belongs to some vector in the solution
set of Petri net place invariants. Using the gen-
erator set obtained it is possible to calculate the
invariants shown in Figure 9. This set of inva-
riants coincide with the equations defined in Table
5. This demonstrates that all equations described
in these tables are true and therefore the system
should meet the desired requirements.

Notice that equation 1 of table 5 is a subset
of equations that form the invariant 1 of Figure
9 , and so the rest of the invariants respectively.
The invariants places we want to verify are painted
yellow in Figure 9.

Figure 10 shows the transition invariants for

driving

getMoneyApp

getMoney

serveFail

pumpldle

pumpEnabled

payFail payoOK serveCar

leaveFail

pumpReady

serviceOK

-

/

tanking carinPosition

tank pumpRelase open

01 close D

Figure 8: Petri net model of the Gas Station Pro-
blem from UML-Petri Nets method

Table 4: OCL specification corresponding to the
Gas Station Problem Gas Station Problem

context invariants

Id OCL specification

1 (Driver.driving) or (Driver.ready)
or (Driver.tanking)

2 (GasStation.Idle) or (GasStation.serving)

3 (Driver.payApp) or (Driver.payMoney)

4 (GasStation.serveOk) or (GasSta-
tion.serveFail)

5 (Pump.Idle) or (Pump.ready) or
(Pump.pumping)

6 (Driver.driving) or (Driver.ready) or
(Driver.carInPosition) or
(Pump.pumping)or (Pump.release)

Table 5: Place invariants for the Gas Station Pro-
blem from UML-Petri Nets
Id Invariants equations
1 M (driving) + M (ready) + M (tanking) = 3
M(Idle) + M(serving) <1
M (getMoneyApp) + M(getMoney)) < 1
M (serveOk) + M (serveFail) <1
M (pumpldle) + M (pumpReady)+
M (pumping) = 2
6 M (driving) + M (ready) + (carInPosition)+
M (pumping) + M (pumpRelease) < 1

Y | W N

Results

driving 10{00]10(1.0(00]1.0

getMonevApp | 0.0) 0.0{ 1.0] 1.0 0.0|0.0

getMoney 00(00]10]1.0]|00]|0.0

Idle 00]110{00(00]|10]0.0
serving 00]10]1.0{10{1.0/0.0
ready 1.0{00]00(00(00]1.0
tanking 10(00]10(1.0(00]0.0
serveFail 00)00]1.0{1.0]|00]0.0

pumpldle 0.0| 0.0| 0.0| 1.0| 1.0]0.0

pumpEnabled | 0.0 1.0 1.0| 1.0 | 1.0|0.0

carInPosition | 0.0{ 0.0 00| 0.0 0.0|1.0

pumpReady | 0.0 0.0) 0.0] 1.0 { 1.0 (0.0

serveCar 0.0{1.0/1.0(1.0|10(00

serveQOK 0.0]100|1.0{1.0]{00]|0.0

pumping 0.0/ 0.0] 00| 1.0]1.0[1.0

pumpRelease | 0.0 0.0) 0.0| 0.0 {0.0(1.0

Figure 9: Place Invariants of Petri net correspond-
ing in Figure 8.

the Gas Station Problem which Petri Net model
was depicted in Figure 8. The transitions in-
variant vector solution indicates which transitions
must be executed in order to complete a cycle.
Transition invariant 1, shown in Figure 10,

fTransition rPIace |

Results

pavApp |1.0|00|1.0[00

pay 0.0(1.0{0.0] 1.0

servedpp| 1.0 0.0 1.0 0.0

serve 00| 1.070.0]1.0

tank 1.0(1.0(0.0)0.0

leave 1.0(1.0100)0.0

payFail |0.0[0.0]1.0]1.0

payOk [1.0]1.0[0.0]00

pump | 1.0[1.0[0.0]0.0

served 1.0(1.0(0.0]00

open 1.01.0]00)0.0

close 1.0 1.0]0.0(0.0

leaveFail (0.0 0.0 (1.0(1.0

Figure 10: Transition Invariants of Petri net cor-
responding to the Gas Station Problem: figure 8.

means that if the driver pays using a mobile appli-
cation and the payment is confirmed, then the ac-
tions corresponding to the pumping service will be
performed, and the driver leaves the Gas station.
Transition invariant 2 has a similar meaning with
a difference that the payment is made using credit
card. Transition invariants 3 and 4 represent the
situation in which the payment (made with a mo-
bile application -invariant 3, or made with credit
card - invariant 4) is not confirmed. In both cases
the pumping service cannot be performed, and the
driver should leave the gas station.

Therefore, this set of transition invariants
allows the verification of four situations that may
arise in the system: (1) the driver pays using a mo-
bile application and the payment is not confirmed,
then the driver leaves without filling the car; (2)
the driver pays using the mobile application and
the payment is confirmed, then the driver can fill-
ing the car; (3) the driver pays using the credit
card and the payment is not confirmed, then the
driver leaves without filling the car; (4) the driver
pays using the credit card and the payment is con-
firmed, then the driver can filling the car.

5 Conclusions

This paper shows a very similar problem treated
with two different approaches: one based on

Goal Oriented Requirements Engineering, where
elicited requirements are represented by KAOS di-
agrams and are translated to classic Petri Nets,
and another, based initially in UML (2.1) dia-
grams and also followed by a translation to classic
Petri Nets. In the second case some attributes
of automation were inserted such as the way of
payment (by a mobile application or by credit
card) while those features were omitted in the first
approach. However the important result do com-
pare is the workflow of the design process its anal-
ysis, as well as possible advantages concerning the
Requirements Engineering of automated systems.

Let us start considering as a criterion the facil-
ity to synthesize the Petri Net, which is practically
the same if class diagrams are considered in the
UML based approach (object diagrams are default
in KAOS modeling). That will assure the cardi-
nality of objects can be considered in both cases.
Second, another important criterion concerning
innovation is requirements traceability, where the
KAOS approach take some advantage since re-
sponsibility diagram explicitly connects goals to
agents. On the other hand, the proposed UML
approach (Salmon et al., 2014)(Salmon, 2017)
takes some advantage by including explicit restric-
tions raised from the interaction between the tar-
get system and its environment. That was not
particularly critical in the case study showed here
but should be important in critical automated sys-
tems. KAOS modeling can also include restric-
tions using the representation of conflicts between
goals or sub-goals, however it is not possible to
configure explicitly in KAOS those points where
system and environment interact.

The Gas Station problem could be incre-
mented with more automated features (without
changing the main goals) and that requirements
evolution seams to be easier in KAOs modeling.
The target example could evolve to a timed pro-
blem taking in count the time a drives waits to be
served, the time spent by the operator to receive
the order and payment (or automating this pro-
cess with mobile applications and credit cards, as
in the UML approach); including the time neces-
sary to provide the service, and for the drive to
leave the Gas Station liberating space. We could
use either fixed time intervals or realistic real in-
tervals (Silva and del Foyo, 2012). Classic Petri
Nets synthesis could lead to model checking veri-
fication in both cases.

Finally, the fact that in KAOS modeling we
cannot be concerned with non-functional require-
ments is again an advantage to KAOS approach.
Of course, the introduction of SysML as a formal-
ization language (similarly to the use of LTL in
KAOS approach) should enhance the appeal to
use the UML approach, since the formalization
process should be smoother than the synthesis of
LTL equations. On the other hand we should start

with a bigger number of UML diagrams (not just
state and class diagrams) and the problem of se-
lecting a proper set should be considered.

Further work points to explore the definition
of a minimal set of UML diagrams or to the en-
hance Petri Nets synthesis from KAOS diagrams,
and include model checking in both approaches.
That would lead to a more detailed comparison
between these two approaches.

References

Alreshidi, E., Mourshed, M. and Rezgui, Y.
(2018). Requirements for cloud-based bim
governance solutions to facilitate team col-
laboration in construction projects, Require-
ments Engineering 23.

Baresi, L. and Pezze, M. (2001). Improving uml
with petri nets, Electronic Notes in Theoret-
ical Computer Science 44(4): 107-119.

Cailliau, A. and van Lamsweerde, A. (2015). Han-
dling knowledge uncertainty in risk-based re-
quirements engineering, Requirements Engi-
neering Conference (RE), 2015 IEEE 23rd
International, IEEE, pp. 106-115.

Dardenne, A., van Lamsweerde, A. and Fickas,
S. (1993). Goal-directed requirements ac-
quisition, Science of Computer Programming
20(1): 3 — 50.

del Foyo, P. M. G. (2001). Ghenesys: Uma rede
estendida orientada a objetos para projeto de
sistemas discretos, Master’s thesis, Universi-
dade de Sao Paulo, Sao Paulo.

DeVries, B. (2013). Mapping of uml diagrams
to extended petri nets for formal verification,
Technical Lybrary.Paper 156. pp. —69.

Fahland, D. (2007). Synthesizing petri nets from
Itl specifications - an engineering approach,
Proc. of Algorithmen und Werkzeuge fur
Petrinetze, pp. 69-74.

Horkoff, J., Aydemir, F. B., Cardoso, E., Li,
T., Maté, A., Paja, E., Salnitri, M., Piras,
L., Mylopoulos, J. and Giorgini, P. (2017).
Goal-oriented requirements engineering: an
extended systematic mapping study, Require-
ments Engineering .

Kalibatiene, D. and Vasilecas, O. (2012). Applica-
tion of the ontology axioms for the develop-
ment of ocl constraints from pal constraints,
Informatica 23(3): 369-390.

Knauss, E., Yussuf, A., Blincoe, K. and Damian,
D. (2018). Continuous clarification and emer-
gent requirements flows in open-commercial
software ecosystems, Requirements Enginee-
ring 23.

Lacerda, B. and Lima, P. (2011). Designing petri
net supervisors from 1Itl specifications, Pro-
ceedings of Robotics: Science and Systems.

Liebel, G., Tichy, M., Knauss, E. and
Ljungkrantz, O. (2018). Organization and
communication problems in automotive re-
quiremens engineering, Requirements Engi-
neering 23.

Martinez, J. and Silva, J. (2015). Combining
the use of KAOS and GHENeSys in the Re-
quirement Analysis of service manufacturing,

IFAC-PapersOnLine 48: 1634-1639.

Murata, T. (1989). Petri nets: properties, anal-
ysis and applications, Proceedings of IFEE
77(4): 541-580.

Salmon, A. Z. O. (2017). Modelagem e andlise de
requisitos de sistemas automatizados usando
UML e Redes de Petri., PhD thesis, Univer-
sidade de Sao Paulo.

Salmon, A. Z. O., Gonzélez del Foyo, P. M., Silva,
J. R. et al. (2014). Verification of auto-
mated systems using invariants, Congresso
Brasileiro de Automdtica-CBA. Belo Hori-
zonte, SBA.

Salmon, A. Z. O., Miralles, J. A., del Foyo, P.
M. G. and Silva, J. R. (2011). Towards
a unified view of modeling and design with
ghenesys., Proceedings of the 21st Interna-
tional Congress of Mechanical Engineering .

Silva, J. and del Foyo, P. M. G. (2012).
Timed petri nets, Petri Nets: Manufacturing
and Computer Science, Intech, chapter 16,
pp. 359-372.

Silva, J. R., Martinez, J., Pereira, C., Avram, C.
and Stan, S. (2018). New trends in residential
automation, in E. Ottaviano, A. Pellicio and
V. Gatulli (eds), Mechatronics for Cultural
Heritage and Civil Engineering, Springer,
chapter 5.

Vaquero, T. S., Silva, J. and Beck, J. C. (2013).
Post-design analysis for building and refin-
ing ai planning systems, Engineering Appli-
cations of Artificial Intelligence 26: 1967—
1979.

