
ROBOTIC CELL INTEGRATION FOR SCREWING OF AIRCRAFT WING PANELS

GUSTAVO M. CARVALHO , KLEBER R. S. SANTOS, EMILIA V ILLANI

CENTRO DE COMPETÊNCIA EM MANUFATURA (CCM), INSTITUTO TECNOLÓGICO DE AERONÁUTICA (ITA)
PÇ. MARECHAL EDUARDO GOMES, 50, 12228-900, SÃO JOSÉ DOS CAMPOS (SP)

E-MAILS : GUSTAVO_CARVALHO@CCM-ITA.ORG.BR, KLEBERSSANTOS@GMAIL.COM, EVILLANI@ITA.BR

Abstract The screwing of fasteners in the aeronautical industry has strict specifications and quality control requirements. The
feasibility of automating these processes represents a major challenge for aircraft manufacturing and contributes to a competitive
market. In this work, we present a solution based on the KUKA collaborative robot, LBR IIWA 14 R820, which is current under
development at the Aeronautics Institute of Technology (ITA) within the Center for Manufacturing Competence (CCM). The focus
of this paper is on the integration and coordination of the equipment that compose the manufacturing cell. A computer vision
system is attached to the end-effector to identify the position of the holes to be screwed. A perpendicularity system, composed of
a laser sensor, is used to ensure that the perpendicularity error of the robot is within the accepted margin during the application.
The algorithm for localizing holes, correcting the position and orientation of the robot, and performing the screwing operation
emerges from the integration of all the components. It is first verified in a simulation environment based on the system modelling
as a network of timed automata. We then implement and test it in a demonstrator that emulates the process to be performed in an
aircraft wing. This work is related to the AME-ASA Project, under development at ITA, in partnership with Embraer and supported
by FINEP.

Keywords Automata, screwing, Iiwa robot, vision system, automation.

Resumo O parafusamento e fixação de prendedores na indústria aeronáutica possui especificações e requisitos de controle de
qualidade rigorosos. A viabilidade de automatizar esses processos representa um grande desafio para a fabricação de aeronaves e
contribui para um mercado competitivo. Neste trabalho, apresenta-se uma solução baseada no robô colaborativo KUKA, LBR
IIWA 14 R820, que está em desenvolvimento no Instituto Tecnológico de Aeronáutica (ITA) dentro do Centro de Competência de
Manufatura (CCM). O foco deste trabalho é a integração e coordenação dos equipamentos que compõem a célula de manufatura.
Um sistema de visão computacional é acoplado ao efetuador para identificar a posição dos furos a serem aparafusados. Um sistema
de perpendicularidade, composto de um sensor a laser, é usado para garantir que o erro de perpendicularidade do robô esteja dentro
da margem aceita durante a aplicação. O algoritmo para localizar furos, corrigir a posição e orientação do robô e realizar o
parafusamento é primeiro verificado em um ambiente de simulação baseado na modelagem do sistema como uma rede de autômatos
temporizados. Em seguida, implementou-se e testou-se em um demonstrador que emula o processo a ser executado em uma asa de
aeronave. Este trabalho está relacionado ao Projeto AME-ASA, em desenvolvimento no ITA, em parceria com a Embraer e apoiado
pela FINEP.

Palavras-chave Autômatos, parafusamento, robô Iiwa, sistema de visão, automação.

1 Introduction

The demand for automation in aviation industry
has increased considerably in recent years,
encompassing from in-flight applications to
manufacturing processes (Kihlman, 2005).

Often, automation arises due to issues related to
quality of manual processes and working conditions
of human operators. In many cases, automation is also
capable of ensuring a more efficient process and
promoting a much more productive solution than the
ones performed by the human operators.

In order to tackle the challenges of aircraft
manufacturing automation, the Centre of Competence
in Manufacturing (CCM) proposed first the AME
Project, for the automation of the fuselage assembly
processes, and now the AME-ASA Project, for the
automation of the structural assembly of wings. The
AME acronym comes from the name of the project in
Portuguese: Automação da Montagem Estrutural, or
automation of structural assembly, while ASA
translates to wing. Both projects were proposed in
partnership with EMBRAER and with financial
support from FINEP. Both projects focus on the so-
called one-up-assembly, where the product must be
assembled in a single step, without removal of

components for deburring, cleaning, sealing, in order
to maximize efficiency and justify the high cost of
automation (DeVlieg & Feikert, 2008).

Considering the context of these projects, this
paper presents an automated solution for inserting
screws in aircraft wings, considering a flexible
programming strategy, in line with Industry 4.0
concepts. The solution considers a scenario where the
position of the holes is not previously programmed as
part of the robot path. The robot has to scan a certain
surface, automatically identify the position and angle
of the holes and proposes a sequence of movements
for performing the screwing operation. It must also
correct its position, as it usually does not provide the
necessary accuracy requested by aircraft industry
(Cibil, 2006).

Particularly, this paper focuses on the challenges
of integrating and coordinating the cell equipment.
For this purpose, we modelled the system using
automata and verified the behaviour that arose from
the equipment integration in the UPPAAL model
checking tool.

The main advantage of the proposed solution is
the automatic adaptation of the robot to different
geometries, without the need of reprogramming. This
is a desirable feature, given the low production
volume, wide variety and low repeatability that are
typical of aircraft industry (Furtado, 2011).

Automation of aircraft assembly processes, such
as the one proposed in this paper, reduces recurring
costs due to the lack of standardization, and leads to
better process quality and traceability. Manual
processes are usually strongly dependent on the
operators’ skills. Furthermore, automation is
particularly attractive in the case of regions of difficult
access, which exposes the human operator to position
considered not ergometric.

The organization of this paper is as follows.
Chapter 2 presents the main components of the
proposed automation solution, including robot and
measurement sensors. Chapter 3 presents and details
the software solution, including logical
communication among cell components and
functionalities provided by each one. Chapter 4
presents the automata model developed to verify the
process integration. Finally, in Chapter 5, we discuss
the conclusions obtained so far and address future
work.

2 The Hardware Solution

The hardware solution is illustrated in Figure 1. Its
main components are robot, camera, and laser sensor.

Figure 1- Hardware solution.

2.1 Robot

The robot chosen to be used in the automated
solution is the KUKA LBR IIWA 14, a collaborative
robot able to perform several movements keeping the
end-effector in the same position, due to a redundant
joint present in its kinematic chain. The presence of
this redundant joint, a seventh degree of freedom,
allows the robot to perform complex movements and
reach areas of difficult access. This robot is also
equipped with sensors in each joint that enable it to
feel the force applied on the joints (KUKA Roboter,
2015).

Another interesting feature of IIWA is the
availability of a programming mode, known as
Impedance Mode, in which the robot behaves as a
mass-spring-damper system, allowing its end-effector
to perform movements that are typical of a human
being, such as when inserting a screw.

2.1 End-effector

One of the requirements of the proposed solution
is that it must be capable of automatically determining
the position and orientation of holes for screwing.

For this purpose, the robotic end-effector must be
equipped with measurement systems. In our solution,
it integrates the following modules:
• A vision module that uses a Cognex camera

(Cognex, 2018), which generates the X and Y
coordinates of each target;

• A laser sensor from Wenglor (Wenglor, 2018)
used to guarantee the perpendicularity of the
robot, as well as ensure the reading of the Z
coordinate when localizing a point of operation;

• A module with mandrel for screwing, with no
embedded intelligence.

The Cognex camera has its own programming
environment. It provides data to a supervisory system
using a set of communication protocols that can be
configured in the programming environment (Figure
2). The camera interface is discussed further in
Chapter 3.

The Wenglor sensor is provided with Ethernet/IP
communication and can be integrated directly with the
cell equipment. Additionally, a web server is used for
configuration and visualization of the readings in real
time, using a web page (Figure 3).

Figure 2 - Cognex in-sight software for identifying fasteners and

holes on the wing surface.

Figure 3 - Wenglor sensor web server.

The end-effector was first designed in a CAD
environment. A prototype was then built using a 3D
printer. Its current version integrates the camera and
the sensors, and the screw module.

ROBOT

CAMERA

MANDREL

LASER SENSOR

3 The Software Solution

The behaviour of the proposed manufacturing cell
arises from the integration of all components. They
are: 1) the supervisory system, implemented in a
common PC, 2) the Iiwa robot, 3) the camera, 4) the
laser sensor, and 5) the screw module.

The logical integration of the cell is performed via
a TCP/IP switch, which connects and allows the
exchange of data among any of the following
components: supervisory system, robot, camera, and
laser sensor. The communication with the screw
module is performed via camera, once that it is
connected to the I/O module of the Cognex camera.
This architecture is illustrated in Figure 4.

Figure 4 – Communication architecture.

This section describes the functionalities
provided by each component and how they interact
with the other cell components.

3.1 The supervisory system

The supervisory system coordinates all cell
equipment. It integrates information from the Iiwa
controller and the camera controller. It also interacts
directly with the Wenglor sensor.

The supervisory system is also in charge of
establishing and monitoring communication with all
equipment. In case of failure, it is responsible to abort
the process.

The supervisory system was developed in
LabVIEW, an engineering software designed for
applications that require testing, measurement, and
control, with easy access to hardware from different
manufacturers (Bell et al, 2004). It provides a
graphical programming interface, including the design
of friendly Graphical User Interface (GUI) (Whitley,
& Blackwell, 2001).

The process executed by the supervisory system
is illustrated in Figure 5.

First, the program initializes all global system
variables and then open the communication with each
component. Once the communications are validated,
an internal state machine is initialized. In its initial
state, it performs the perpendicularity routine, which
aims at maintaining the end-effector of the robot
perpendicular to the work surface, where the holes to

be screwed are located. For this purpose, the
supervisory system must interact with both the robot
and the Wenglor sensor.

After validating the perpendicularity between the
end-effector and the surface, the state machine goes to
the next state: pattern recognition by the computer
vision system. For this purpose, it first position the
robot and then communicates with the camera, which
is responsible for image acquisition and processing.
The supervisory system waits until the camera returns
the X and Y coordinates of the all holes found in the
work surface.

Once the holes positions are determined, the
supervisory system runs an internal routine that aims
at organizing the data obtained by the camera software
and defining the processing sequence of the holes. It
then requests to the robot to move to next hole and
performs the screwing operation. This sequence is
repeated until there are no more points to process.
Then, the supervisory system is responsible for
closing the communication with all components.

Figure 5 - Process of the supervisory system.

3.2 The camera software

Cognex camera has a proprietary in-sight
programming interface. It allows the entire computer
vision algorithm to be processed within the camera,

Camera

Screw

module

Laser

sensor

Robot

Switch
Supervisory

system

reducing computational time, as it provides dedicated
and optimized routines.

The programming environment, called
EasyBuilder, has an intuitive interface, allowing users
to configure vision applications quickly and easily
(Figure 6). All the program parameters and routines
are stored in a spreadsheet, which could also be
directly edited, as illustrated in Figure 7 (Cognex,
2018).

In this work, the camera provides routines with
the following objectives:
• A routine to capture an image and determine the

position of all the holes in the image;
• A routine to capture an image and determine the

position error, i.e., the distance between the
centre of the hole and the centre of the image;

• A routine to start the screwing operation, once
that, for convenience, the screw module is
connected to the I/O module of the camera (CIO-
MICRO).

Figure 6 - In-sight programming interface of EasyBuilder.

Figure 7 - In-sight programming spreadsheet.

3.3 LBR IIWA 14 Collaborative Robot

The KUKA Iiwa robot programming
environment is the Sunrise Workbench (KUKA
Roboter, 2015). This software is based on the
programming environment Eclipse (Eclipse, 2018).
Just like in Eclipse, the Sunrise Workbench is based
on the Java programming language, allowing the robot
a much higher implementation capacity when
compared to other lower-level programming
languages used in other KUKA robots. Among the
advantages of the Java environment that is important
to our application is the extensive library of
communication routines, including support to TCP/IP
protocols such as HTTP and FTP.

In this project, the robot provides the following
functionalities:

• It receives and executes a command to move to a
given position;

• It coordinates the perpendicularity routine, which
consists of moving the robot to different positions
and orientations and acquiring the measurement
from the laser sensor (which is done via the
supervisory system, for convenience), in order to
determine the perpendicularity error. If
necessary, the process can be repeated until the
error is lower than the tolerance;

• It coordinates the process of correcting the robot
position in front of a screwing point and, when the
error is under the allowed tolerance, requesting
the screwing operation (which is done via
camera).

3.2 The laser sensor and the screwing module

Both the laser sensor and the screwing module
does not have a significant degree of autonomy or
embedded intelligence. They are responsive
components that performs operations based on the
requests from other components. The laser provides
the measured data, while the screw module performs
the screwing operation when requested.

4 Verification of system integration in UPPAAL

In order to verify the proposed solution to
integrate the cell equipment, this chapter presents its
modelling and simulation using synchronous
composition of automata and the verification tool
UPPAAL.

4.1 Time Automata

Informally, a finite automaton is formed by a set
of states and by rules that determine the transitions by
states based on the input symbol (Ginfri, 2013).
Formally a finite deterministic automaton is a
quintuple ��, Σ, δ, ��, ��	 , where:
• �: is finite set of states;
• Σ: is an alphabet with a finite set of events;
• δ: � � Σ → Q is a (potentially partial) transition

function that indicates the next state after the
occurrence of an event;

• ��: is the initial state, �� ∈ �;
• ��: is a set of final (or marked) states, �� ⊑ �.

In order to model time intervals, timed automata
extend this definition and includes the following items
(Alur & Dill, 1994):

• Clocks, which are variables that model time
evolution;

• Guards, conditions upon the value of clocks that
are associate to transitions and must be true for
the transition to occur;

• Updates, actions performed by transitions when
they fire that can modify the value of clocks;

• Place invariants, conditions upon the value of
clocks that are associated to states and must be
true in order to the automata remain in the state.

In this work, we decided to model the automated

solution as a network of automata, which can be
submitted to synchronous composition. When
modelling the system in a single automaton, problems
may arise due to the explosion of the number of states
and transitions, especially when each component has
some embedded intelligence and can evolves
autonomous from the other components. Any changes
in the model would require the creation of a new
model from scratch.

In order to tackle this issue, synchronous
composition was proposed, so that when adding,
modifying or removing components only the
corresponding model is affected. In synchronous
composition, different automata communicate
through shared transitions. When a shared transition
fires, it happens in both automata.

The UPPAAL tool uses an approach similar to
synchronous composition. It provides binary
synchronisation channels. In a channel, a transition
labelled with c! synchronises with another labelled c?.
When two automata synchronize on channel c, this
means that a c! transition of one automaton occurs
simultaneously with a c? transition of another
automaton. A c! or c? transition can never occur on its
own. Only one pair of transition can synchronize at a
time. If more than one transition is labelled with c?
and are enabled, it is a non-deterministic choice.

4.3 Modelling of the automaton of the screwing
process

The software chosen to model our robotic cell is
UPPAAL. The tool is designed to verify systems that
can be modelled as networks of timed automata
extended with integer variables, structured data types,
and channel synchronisation. UPPAAL was
developed in collaboration between the Real-Time
Systems Analysis and Design group at the University
of Uppsala, Sweden, and the Basic Computer Science
Research at the University of Aalborg, Denmark
(Behrmann, 2005).

An automaton model was built for each
component of the cell that receives or exchange data
with other components. They are:
• Supervisory system (SS);
• Robot (RB);
• Camera (CM);
• Laser sensor (LS);
• Screwing module (SC).

An additional automaton is added to model the
user interaction with the system.

Following we detail the module of each
component.

The automaton referring to supervisory system is
called SS and is presented in Figure 8. It can be
organized in four main blocks.

From the stand-by state (SSoff), when the user
requests the start of a new process (channel start), the
first block, highlighted with an orange dashed line, is
responsible for starting and ending communication
with other components. For this purpose, it uses a set
of channels (or shared transitions): open_RB/close_RB,
open_CM/close_CM, open_LS/close_LS. It also uses one
clock variable (timer) and associate guards
(timer>=time_out) and invariants (timer<=time_out) in
order to assure that when at least one component is not
available, the process does not continue.

Figure 8 – Supervisory system automaton.

Then, the supervisory system request the robot to
execute the perpendicularity routine (channels
init_perp and end_perp). Although the routine is
coordinated by the robot, for convenience of
implementation, the laser sensor is read by the
supervisory system (channel read_LS), on the robot
request (channels req_LS and send_LS). This block is
highlighted with a green dashed line.

Following, the next block is responsible for the
identification of the target points. The supervisory
system move the robot to the appropriate position
(channels move_RB and end_move_RB) and request the

Communication

Perpendicularity

Points

identification

Points

 processing

identification of points to the camera (channels
read_table_CM and send_table_CM). This block is
highlighted with a blue dashed line.

Finally, the supervisory system define the order
that the points will be processed and request each
operation to the robot (channels send_point_RB and
end_pt_RB). This block is highlighted with a purple
dashed line.

The robot automaton (RB) is presented in Figure
9. It is composed of four main blocks. The first one
(orange dashed line) is the communication with the
supervisory system, as presented before. The second
one is the perpendicularity routine (green dashed line),
which consists of moving the robot to a set of
predefined positions and measure the distance to the
demonstrator using the laser sensor. At the end of the
process, the robot corrects its orientation in order to be
perpendicular to the demonstrator.

The purple dashed line identifies the points
processing routine, which, under the request of the
supervisory system, interacts with the camera
(channels calc_error_CM and error_CM) in order to
correct the position of the robot. When the positioning
error (variable error) is within the tolerance (constant
tol), it requires the camera to activate the screwing
module (screw_CM and end_screw_CM).

Finally, it provides also a moving routine (blue
dashed line) to perform movements under the request
of the other components.

Figure 9 - Robot automaton.

The camera automaton (CM) is presented in
Figure 10. It is also composed of four main blocks.
The first one is the communication routine (orange
dashed line). The blue dashed line marks the camera
routine that identifies the set of holes to be processed.
The purple dashed line marks the interaction with the
screw module (channels ini_SC and end_SC). Finally,
the green dashed line marks the camera routine to
acquire an image and calculate the centralizing error.

Figure 10 - Camera automaton.

Laser sensor automaton (LS) is presented in Figure
11. It is composed of two blocks: it answers to
communication request (orange dashed line) and the
provides the sensor data when requested (purple
dashed line).

Figure 11 – Laser sensor automaton.

The screw module automaton (SC) is presented in
Figure 12. Basically, it responds to the camera com-
mands.

Figure 12 – Screw module automaton.

Finally, an automaton is added to the system to
model the interaction with the human operator (Figure
13). It is a simple automaton the starts the process
(channel start).

Figure 13 – User automaton.

4.4 Verification

The verification of the automata model is
performed using simulation and model checking.

Simulation explores the following ways:
• Random simulation, which explores aleatory

sequences of events.
• Simulation of specific scenarios, which

corresponds, including the normal sequence of
events and scenarios with failures in the
communication.
An example of simulation of specific scenarios is

presented in Figure 14. It illustrates the
communication among the automata until the
screwing of the first point, with no communication
failure.

Once the model has been debugged using
simulation, formal verification is carried out using
model checking. In UPPAAL, model checking is
performed by specifying the desired properties of the
system in CTL (Computational Tree Logic) and then
submitting them to the model checker.

Properties can be defined using state formulas
and CTL operators. The following operators are
available:
• E<> p – there exists a path, where the p will hold

sometime in the future.
• E[] p – there exists a path where in every state, p

holds.

Communication

Perpendicularity

Points processing

Moving

Points identification

Communication

Screwing activation

Error calculattion

Communication Sensor reading

Figure 14 - Simulation of specific scenario.

• A<> p – for all possible paths, p will hold
sometime in the future.

• A[] p – for all possible paths, in every state, p
holds.

In the case of the integration of the screwing

manufacturing cells, example of verified properties:
• Absence of deadlock:

 A[] not deadlock

• Reachability of the automata states, such as the
possibility of reaching the state where the points
are processed:
 E<> SS.SS_proc_points

• Consistence among the system states. An
example is to assure that when the Screw module
is performing the screwing operation, all the other
modules the robot and the camera are in the
appropriate state:
 A[] SC.SC_on imply (CM.CM_waiting_SC and

 RB.RB_waiting_screw)

The CTL properties are used to specify that
whatever happens in the system, the combined
evolution of the components preserve consistency.

4.5 Implementation

This section illustrates the implementation of the
modules integration in the corresponding
programming language of each module. This
implementation is performed manually, as each
automaton is converted to a different programming
language. The consistence between the automaton and
its implementation is verified by manual inspection of
the code.

We provide here an example of the supervisory
system, which is implemented in LabView. In this
case, a set of subVIs were developed to communicate
and to exchange data with each component. These
subVIs are illustrated in Figure 15.

Figure 15 – Communication subVIs in LabView.

Following, Figure 16 illustrates the initialization
of the state machine in the LabView and the opening
of the communication with the components. In a
similar way, communicating routines are introduced
in robot and camera programming environment. In the
case of the laser sensor, communication is configured
through the sensor web server.

Figure 16 - Startup in LabView.

After implementation, the components have been
submitted to tests, both isolated and integrated into the
demonstrator. We observe that so far, the tests have
been performed without the screwing module, which
is under acquisition process.

5 Conclusion

This paper presents the design of a cell to
automate the screwing process in aircraft wings. In
order to assure the flexibility of the cell to adapt to
different products without the need of reprogramming,
a measurement system, composed of a camera and a
laser sensor, is added to the robotic end-effector.

The integration of the cell equipment is modelled
as a network of automata and verified in the UPPAAL
tool. The simulation of different scenarios in
UPPAAL confirm that the proposed solution is
consistent from an integration perspective. All the
components of the cell are capable of executing their
process cyclically and the coordination of shared data
coming from the different components of the cell is
working as expected.

Once the cell integration has been verified, we
carried out the implementation of the communication
among equipment and perform the necessary tests.
The use of modelling and simulation as a preliminary
step to analyse the cell integration resulted in a limited
number of errors and reduced the development time.

The next steps of the project are toward
collaborative robotics. In order that the human
operator can share the workspace with the Iiwa robot,
we must assure the safeness of the cell. Although the
robot itself has already been certified for collaborative
operation, its integration with other cell equipment

must also be verified. For this purpose, we plan to
include into the UPPAAL model and software
implementations the treatment of the most relevant
types of failures that can occur in the cell. Then, we
can verify the robustness and safeness of the cell using
both simulation and model checking.

Acknowledgements

The authors acknowledge the financial support from
Brazilian funding agencies CAPES, CNPq and
FINEP.

References

Alur, R; Dill, D.A. (1994). Theory of Timed
Automata. Theoretical Computer Science, v.126,
pp. 183-235.

Behrmann, G. et al., 2005. A Tutorial on UPPAAL.
Proceedings of the 4th International School on
Formal Methods for the Design of Computer,
Communication, and Software Systems (SFM-
RT‟04). LNCS v. 3185.

Bell, I. et al. (2004). Integration of hardware into the
LabVIEW environment for rapid prototyping and
the developmento of control design applications.
Proceedings of UKACC Control 2004 Mini
Symposia, Bath, pp. 79-81.

Cibiel, C. and Prat, P. (2006), “Automation for the
Assembly of the Bottom Wing Panels on
Stringers for the A320”, In: SAE World Congress.
Detroit, USA.

Cognex (2018). COGNEX Corporation. [Online]
Available at: https://www.cognex.com/ [Acesso
em 20 02 2018].

DeVlieg, R. & Feikert, E. (2008). One-Up Assembly
with Robots. SAE International, p. 4.

Eclipse (2018). Eclipse. [Online] Available at:
https://www.eclipse.org/ [Acesso em 20 2 2018].

Furtado, L. F. F. et al (2011). Comparative study
between two methods for perpendicularity
corrections in robotic manipulators. In: 21th
International Congress of Mechanical
Engineering (COBEM), Natal.

Ginfri, L. (2013). Autômatos sincronizados e a
Conjectura de Cerny. IME-USP, ed. São Paulo.

Kihlman, H. (2005), Affordable Automation for
Airframe Assembly: Development of Key
Enabling Technologies”, Thesis (Phd) -
Linköpings Universitet, Linköping, Sweden.

KUKA Roboter (2015). Programming and
Configuration of LBR iiwa. KUKA Roboter
GmbH ed. Augstburg: Pub COLLEGE Workshop
LBR iiwa.

Wenglor (2018). Wenglor the Innovative family.
[Online] Available at: https://www.wenglor.com/
[Acesso em 20 2 2018].

Whitley, K.N.; Blackwell, A.F. (2001) Visual
programming in the wild: a survey of LabVIEW
programmers. Journal of Visual Languages and
Computing, vol. 12, pp. 435-472.

