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Abstract The screwing of fasteners in the aeronautical industry has strict specifications and quality control requirements. The 
feasibility of automating these processes represents a major challenge for aircraft manufacturing and contributes to a competitive 
market. In this work, we present a solution based on the KUKA collaborative robot, LBR IIWA 14 R820, which is current under 
development at the Aeronautics Institute of Technology (ITA) within the Center for Manufacturing Competence (CCM). The focus 
of this paper is on the integration and coordination of the equipment that compose the manufacturing cell. A computer vision 
system is attached to the end-effector to identify the position of the holes to be screwed. A perpendicularity system, composed of 
a laser sensor, is used to ensure that the perpendicularity error of the robot is within the accepted margin during the application. 
The algorithm for localizing holes, correcting the position and orientation of the robot, and performing the screwing operation 
emerges from the integration of all the components. It is first verified in a simulation environment based on the system modelling 
as a network of timed automata. We then implement and test it in a demonstrator that emulates the process to be performed in an 
aircraft wing. This work is related to the AME-ASA Project, under development at ITA, in partnership with Embraer and supported 
by FINEP.  
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Resumo O parafusamento e fixação de prendedores na indústria aeronáutica possui especificações e requisitos de controle de 
qualidade rigorosos. A viabilidade de automatizar esses processos representa um grande desafio para a fabricação de aeronaves e 
contribui para um mercado competitivo. Neste trabalho, apresenta-se uma solução baseada no robô colaborativo KUKA, LBR 
IIWA 14 R820, que está em desenvolvimento no Instituto Tecnológico de Aeronáutica (ITA) dentro do Centro de Competência de 
Manufatura (CCM). O foco deste trabalho é a integração e coordenação dos equipamentos que compõem a célula de manufatura. 
Um sistema de visão computacional é acoplado ao efetuador para identificar a posição dos furos a serem aparafusados. Um sistema 
de perpendicularidade, composto de um sensor a laser, é usado para garantir que o erro de perpendicularidade do robô esteja dentro 
da margem aceita durante a aplicação. O algoritmo para localizar furos, corrigir a posição e orientação do robô e realizar o 
parafusamento é primeiro verificado em um ambiente de simulação baseado na modelagem do sistema como uma rede de autômatos 
temporizados. Em seguida, implementou-se e testou-se em um demonstrador que emula o processo a ser executado em uma asa de 
aeronave. Este trabalho está relacionado ao Projeto AME-ASA, em desenvolvimento no ITA, em parceria com a Embraer e apoiado 
pela FINEP. 

Palavras-chave Autômatos, parafusamento, robô Iiwa, sistema de visão, automação. 

1    Introduction 

The demand for automation in aviation industry 
has increased considerably in recent years, 
encompassing from in-flight applications to 
manufacturing processes (Kihlman, 2005). 

Often, automation arises due to issues related to 
quality of manual processes and working conditions 
of human operators. In many cases, automation is also 
capable of ensuring a more efficient process and 
promoting a much more productive solution than the 
ones performed by the human operators. 

In order to tackle the challenges of aircraft 
manufacturing automation, the Centre of Competence 
in Manufacturing (CCM) proposed first the AME 
Project, for the automation of the fuselage assembly 
processes, and now the AME-ASA Project, for the 
automation of the structural assembly of wings. The 
AME acronym comes from the name of the project in 
Portuguese: Automação da Montagem Estrutural, or 
automation of structural assembly, while ASA 
translates to wing. Both projects were proposed in 
partnership with EMBRAER and with financial 
support from FINEP. Both projects focus on the so-
called one-up-assembly, where the product must be 
assembled in a single step, without removal of 

components for deburring, cleaning, sealing, in order 
to maximize efficiency and justify the high cost of 
automation (DeVlieg & Feikert, 2008). 

Considering the context of these projects, this 
paper presents an automated solution for inserting 
screws in aircraft wings, considering a flexible 
programming strategy, in line with Industry 4.0 
concepts. The solution considers a scenario where the 
position of the holes is not previously programmed as 
part of the robot path. The robot has to scan a certain 
surface, automatically identify the position and angle 
of the holes and proposes a sequence of movements 
for performing the screwing operation. It must also 
correct its position, as it usually does not provide the 
necessary accuracy requested by aircraft industry 
(Cibil, 2006). 

Particularly, this paper focuses on the challenges 
of integrating and coordinating the cell equipment. 
For this purpose, we modelled the system using 
automata and verified the behaviour that arose from 
the equipment integration in the UPPAAL model 
checking tool.  

The main advantage of the proposed solution is 
the automatic adaptation of the robot to different 
geometries, without the need of reprogramming. This 
is a desirable feature, given the low production 
volume, wide variety and low repeatability that are 
typical of aircraft industry (Furtado, 2011). 



Automation of aircraft assembly processes, such 
as the one proposed in this paper, reduces recurring 
costs due to the lack of standardization, and leads to 
better process quality and traceability. Manual 
processes are usually strongly dependent on the 
operators’ skills. Furthermore, automation is 
particularly attractive in the case of regions of difficult 
access, which exposes the human operator to position 
considered not ergometric.  

The organization of this paper is as follows. 
Chapter 2 presents the main components of the 
proposed automation solution, including robot and 
measurement sensors. Chapter 3 presents and details 
the software solution, including logical 
communication among cell components and 
functionalities provided by each one. Chapter 4 
presents the automata model developed to verify the 
process integration. Finally, in Chapter 5, we discuss 
the conclusions obtained so far and address future 
work.  

2   The Hardware Solution 

The hardware solution is illustrated in Figure 1. Its 
main components are robot, camera, and laser sensor. 

 

Figure 1- Hardware solution. 

2.1 Robot 

The robot chosen to be used in the automated 
solution is the KUKA LBR IIWA 14, a collaborative 
robot able to perform several movements keeping the 
end-effector in the same position, due to a redundant 
joint present in its kinematic chain. The presence of 
this redundant joint, a seventh degree of freedom, 
allows the robot to perform complex movements and 
reach areas of difficult access. This robot is also 
equipped with sensors in each joint that enable it to 
feel the force applied on the joints (KUKA Roboter, 
2015). 

Another interesting feature of IIWA is the 
availability of a programming mode, known as 
Impedance Mode, in which the robot behaves as a 
mass-spring-damper system, allowing its end-effector 
to perform movements that are typical of a human 
being, such as when inserting a screw.  

2.1 End-effector 

One of the requirements of the proposed solution 
is that it must be capable of automatically determining 
the position and orientation of holes for screwing.  

For this purpose, the robotic end-effector must be 
equipped with measurement systems. In our solution, 
it integrates the following modules: 
• A vision module that uses a Cognex camera 

(Cognex, 2018), which generates the X and Y 
coordinates of each target; 

• A laser sensor from Wenglor (Wenglor, 2018) 
used to guarantee the perpendicularity of the 
robot, as well as ensure the reading of the Z 
coordinate when localizing a point of operation; 

• A module with mandrel for screwing, with no 
embedded intelligence. 

The Cognex camera has its own programming 
environment. It provides data to a supervisory system 
using a set of communication protocols that can be 
configured in the programming environment (Figure 
2). The camera interface is discussed further in 
Chapter 3.  

The Wenglor sensor is provided with Ethernet/IP 
communication and can be integrated directly with the 
cell equipment. Additionally, a web server is used for 
configuration and visualization of the readings in real 
time, using a web page (Figure 3).  
 

 
Figure 2 - Cognex in-sight software for identifying fasteners and 

holes on the wing surface. 

 

Figure 3 - Wenglor sensor web server. 

The end-effector was first designed in a CAD 
environment. A prototype was then built using a 3D 
printer. Its current version integrates the camera and 
the sensors, and the screw module. 

ROBOT 

CAMERA 

MANDREL 

LASER SENSOR 



3 The Software Solution 

The behaviour of the proposed manufacturing cell 
arises from the integration of all components. They 
are: 1) the supervisory system, implemented in a 
common PC, 2) the Iiwa robot, 3) the camera, 4) the 
laser sensor, and 5) the screw module.  

The logical integration of the cell is performed via 
a TCP/IP switch, which connects and allows the 
exchange of data among any of the following 
components: supervisory system, robot, camera, and 
laser sensor. The communication with the screw 
module is performed via camera, once that it is 
connected to the I/O module of the Cognex camera. 
This architecture is illustrated in Figure 4. 

 

 
Figure 4 – Communication architecture. 

This section describes the functionalities 
provided by each component and how they interact 
with the other cell components. 

3.1 The supervisory system 

The supervisory system coordinates all cell 
equipment. It integrates information from the Iiwa 
controller and the camera controller. It also interacts 
directly with the Wenglor sensor.  

The supervisory system is also in charge of 
establishing and monitoring communication with all 
equipment. In case of failure, it is responsible to abort 
the process. 

The supervisory system was developed in 
LabVIEW, an engineering software designed for 
applications that require testing, measurement, and 
control, with easy access to hardware from different 
manufacturers (Bell et al, 2004). It provides a 
graphical programming interface, including the design 
of friendly Graphical User Interface (GUI) (Whitley, 
& Blackwell, 2001). 

The process executed by the supervisory system 
is illustrated in Figure 5.  

First, the program initializes all global system 
variables and then open the communication with each 
component. Once the communications are validated, 
an internal state machine is initialized. In its initial 
state, it performs the perpendicularity routine, which 
aims at maintaining the end-effector of the robot 
perpendicular to the work surface, where the holes to 

be screwed are located. For this purpose, the 
supervisory system must interact with both the robot 
and the Wenglor sensor.  

After validating the perpendicularity between the 
end-effector and the surface, the state machine goes to 
the next state: pattern recognition by the computer 
vision system. For this purpose, it first position the 
robot and then communicates with the camera, which 
is responsible for image acquisition and processing. 
The supervisory system waits until the camera returns 
the X and Y coordinates of the all holes found in the 
work surface. 

Once the holes positions are determined, the 
supervisory system runs an internal routine that aims 
at organizing the data obtained by the camera software 
and defining the processing sequence of the holes. It 
then requests to the robot to move to next hole and 
performs the screwing operation. This sequence is 
repeated until there are no more points to process. 
Then, the supervisory system is responsible for 
closing the communication with all components. 

 

Figure 5 - Process of the supervisory system. 

3.2 The camera software 

Cognex camera has a proprietary in-sight 
programming interface. It allows the entire computer 
vision algorithm to be processed within the camera, 
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reducing computational time, as it provides dedicated 
and optimized routines.  

The programming environment, called 
EasyBuilder, has an intuitive interface, allowing users 
to configure vision applications quickly and easily 
(Figure 6). All the program parameters and routines 
are stored in a spreadsheet, which could also be 
directly edited, as illustrated in Figure 7 (Cognex, 
2018). 

In this work, the camera provides routines with 
the following objectives: 
• A routine to capture an image and determine the 

position of all the holes in the image; 
• A routine to capture an image and determine the 

position error, i.e., the distance between the 
centre of the hole and the centre of the image; 

• A routine to start the screwing operation, once 
that, for convenience, the screw module is 
connected to the I/O module of the camera (CIO-
MICRO). 
 

 

Figure 6 - In-sight programming interface of EasyBuilder. 

 

Figure 7 - In-sight programming spreadsheet. 

3.3 LBR IIWA 14 Collaborative Robot 

The KUKA Iiwa robot programming 
environment is the Sunrise Workbench (KUKA 
Roboter, 2015). This software is based on the 
programming environment Eclipse (Eclipse, 2018). 
Just like in Eclipse, the Sunrise Workbench is based 
on the Java programming language, allowing the robot 
a much higher implementation capacity when 
compared to other lower-level programming 
languages used in other KUKA robots. Among the 
advantages of the Java environment that is important 
to our application is the extensive library of 
communication routines, including support to TCP/IP 
protocols such as HTTP and FTP.  

In this project, the robot provides the following 
functionalities: 

• It receives and executes a command to move to a 
given position; 

• It coordinates the perpendicularity routine, which 
consists of moving the robot to different positions 
and orientations and acquiring the measurement 
from the laser sensor (which is done via the 
supervisory system, for convenience), in order to 
determine the perpendicularity error. If 
necessary, the process can be repeated until the 
error is lower than the tolerance; 

• It coordinates the process of correcting the robot 
position in front of a screwing point and, when the 
error is under the allowed tolerance, requesting 
the screwing operation (which is done via 
camera). 

3.2 The laser sensor and the screwing module 

Both the laser sensor and the screwing module 
does not have a significant degree of autonomy or 
embedded intelligence. They are responsive 
components that performs operations based on the 
requests from other components. The laser provides 
the measured data, while the screw module performs 
the screwing operation when requested. 

4   Verification of system integration in UPPAAL 

In order to verify the proposed solution to 
integrate the cell equipment, this chapter presents its 
modelling and simulation using synchronous 
composition of automata and the verification tool 
UPPAAL. 

4.1 Time Automata 

Informally, a finite automaton is formed by a set 
of states and by rules that determine the transitions by 
states based on the input symbol (Ginfri, 2013). 
Formally a finite deterministic automaton is a 
quintuple ��, Σ, δ, ��, ��	 , where: 
• �: is finite set of states; 
• Σ: is an alphabet with a finite set of events; 
• δ: � � Σ → Q is a (potentially partial) transition 

function that indicates the next state after the 
occurrence of an event; 

• ��: is the initial state, ��  ∈  �; 
• ��: is a set of final (or marked) states, �� ⊑ �. 

In order to model time intervals, timed automata 
extend this definition and includes the following items 
(Alur & Dill, 1994): 

• Clocks, which are variables that model time 
evolution; 

• Guards, conditions upon the value of clocks that 
are associate to transitions and must be true for 
the transition to occur; 



• Updates, actions performed by transitions when 
they fire that can modify the value of clocks; 

• Place invariants, conditions upon the value of 
clocks that are associated to states and must be 
true in order to the automata remain in the state. 

 
In this work, we decided to model the automated 

solution as a network of automata, which can be 
submitted to synchronous composition. When 
modelling the system in a single automaton, problems 
may arise due to the explosion of the number of states 
and transitions, especially when each component has 
some embedded intelligence and can evolves 
autonomous from the other components. Any changes 
in the model would require the creation of a new 
model from scratch.  

In order to tackle this issue, synchronous 
composition was proposed, so that when adding, 
modifying or removing components only the 
corresponding model is affected. In synchronous 
composition, different automata communicate 
through shared transitions. When a shared transition 
fires, it happens in both automata. 

The UPPAAL tool uses an approach similar to 
synchronous composition. It provides binary 
synchronisation channels. In a channel, a transition 
labelled with c! synchronises with another labelled c?. 
When two automata synchronize on channel c, this 
means that a c! transition of one automaton occurs 
simultaneously with a c? transition of another 
automaton. A c! or c? transition can never occur on its 
own. Only one pair of transition can synchronize at a 
time. If more than one transition is labelled with c? 
and are enabled, it is a non-deterministic choice. 

4.3 Modelling of the automaton of the screwing 
process 

The software chosen to model our robotic cell is 
UPPAAL. The tool is designed to verify systems that 
can be modelled as networks of timed automata 
extended with integer variables, structured data types, 
and channel synchronisation. UPPAAL was 
developed in collaboration between the Real-Time 
Systems Analysis and Design group at the University 
of Uppsala, Sweden, and the Basic Computer Science 
Research at the University of Aalborg, Denmark 
(Behrmann, 2005). 

An automaton model was built for each 
component of the cell that receives or exchange data 
with other components. They are:  
• Supervisory system (SS); 
• Robot (RB); 
• Camera (CM); 
• Laser sensor (LS); 
• Screwing module (SC). 

An additional automaton is added to model the 
user interaction with the system. 

Following we detail the module of each 
component. 

The automaton referring to supervisory system is 
called SS and is presented in Figure 8. It can be 
organized in four main blocks.  

From the stand-by state (SSoff), when the user 
requests the start of a new process (channel start), the 
first block, highlighted with an orange dashed line, is 
responsible for starting and ending communication 
with other components. For this purpose, it uses a set 
of channels (or shared transitions): open_RB/close_RB, 
open_CM/close_CM, open_LS/close_LS. It also uses one 
clock variable (timer) and associate guards 
(timer>=time_out) and invariants (timer<=time_out) in 
order to assure that when at least one component is not 
available, the process does not continue. 

 

Figure 8 – Supervisory system automaton. 

Then, the supervisory system request the robot to 
execute the perpendicularity routine (channels 
init_perp and end_perp). Although the routine is 
coordinated by the robot, for convenience of 
implementation, the laser sensor is read by the 
supervisory system (channel read_LS), on the robot 
request (channels req_LS and send_LS). This block is 
highlighted with a green dashed line. 

Following, the next block is responsible for the 
identification of the target points. The supervisory 
system move the robot to the appropriate position 
(channels move_RB and end_move_RB) and request the 
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identification of points to the camera (channels 
read_table_CM and send_table_CM). This block is 
highlighted with a blue dashed line. 

Finally, the supervisory system define the order 
that the points will be processed and request each 
operation to the robot (channels send_point_RB and 
end_pt_RB). This block is highlighted with a purple 
dashed line. 

The robot automaton (RB) is presented in Figure 
9. It is composed of four main blocks. The first one 
(orange dashed line) is the communication with the 
supervisory system, as presented before. The second 
one is the perpendicularity routine (green dashed line), 
which consists of moving the robot to a set of 
predefined positions and measure the distance to the 
demonstrator using the laser sensor. At the end of the 
process, the robot corrects its orientation in order to be 
perpendicular to the demonstrator.  

The purple dashed line identifies the points 
processing routine, which, under the request of the 
supervisory system, interacts with the camera 
(channels calc_error_CM and error_CM) in order to 
correct the position of the robot. When the positioning 
error (variable error) is within the tolerance (constant 
tol), it requires the camera to activate the screwing 
module (screw_CM and end_screw_CM). 

Finally, it provides also a moving routine (blue 
dashed line) to perform movements under the request 
of the other components. 
 

 

Figure 9 - Robot automaton. 

The camera automaton (CM) is presented in 
Figure 10. It is also composed of four main blocks. 
The first one is the communication routine (orange 
dashed line). The blue dashed line marks the camera 
routine that identifies the set of holes to be processed. 
The purple dashed line marks the interaction with the 
screw module (channels ini_SC and end_SC). Finally, 
the green dashed line marks the camera routine to 
acquire an image and calculate the centralizing error.  
 

 

Figure 10 - Camera automaton. 

Laser sensor automaton (LS) is presented in Figure 
11. It is composed of two blocks: it answers to 
communication request (orange dashed line) and the 
provides the sensor data when requested (purple 
dashed line). 

 

 

Figure 11 – Laser sensor automaton. 

The screw module automaton (SC) is presented in 
Figure 12. Basically, it responds to the camera com-
mands. 

 

Figure 12 – Screw module automaton. 

Finally, an automaton is added to the system to 
model the interaction with the human operator (Figure 
13). It is a simple automaton the starts the process 
(channel start). 

 

Figure 13 – User automaton. 

4.4 Verification 

The verification of the automata model is 
performed using simulation and model checking. 

Simulation explores the following ways: 
• Random simulation, which explores aleatory 

sequences of events. 
• Simulation of specific scenarios, which 

corresponds, including the normal sequence of 
events and scenarios with failures in the 
communication. 
An example of simulation of specific scenarios is 

presented in Figure 14. It illustrates the 
communication among the automata until the 
screwing of the first point, with no communication 
failure.  

Once the model has been debugged using 
simulation, formal verification is carried out using 
model checking. In UPPAAL, model checking is 
performed by specifying the desired properties of the 
system in CTL (Computational Tree Logic) and then 
submitting them to the model checker. 

Properties can be defined using state formulas 
and CTL operators. The following operators are 
available: 
• E<> p – there exists a path, where the p will hold 

sometime in the future. 
• E[] p – there exists a path where in every state, p 

holds. 
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Figure 14 - Simulation of specific scenario. 

 

• A<> p – for all possible paths, p will hold 
sometime in the future.  

• A[] p – for all possible paths, in every state, p 
holds. 
 
In the case of the integration of the screwing 

manufacturing cells, example of verified properties: 
• Absence of deadlock:  

 A[] not deadlock 

• Reachability of the automata states, such as the 
possibility of reaching the state where the points 
are processed: 
 E<> SS.SS_proc_points 

• Consistence among the system states. An 
example is to assure that when the Screw module 
is performing the screwing operation, all the other 
modules the robot and the camera are in the 
appropriate state: 
 A[] SC.SC_on imply (CM.CM_waiting_SC and  

 RB.RB_waiting_screw) 

The CTL properties are used to specify that 
whatever happens in the system, the combined 
evolution of the components preserve consistency. 

4.5 Implementation 

This section illustrates the implementation of the 
modules integration in the corresponding 
programming language of each module. This 
implementation is performed manually, as each 
automaton is converted to a different programming 
language. The consistence between the automaton and 
its implementation is verified by manual inspection of 
the code. 

We provide here an example of the supervisory 
system, which is implemented in LabView. In this 
case, a set of subVIs were developed to communicate 
and to exchange data with each component. These 
subVIs are illustrated in Figure 15. 

 

 

 

Figure 15 – Communication subVIs in LabView. 



Following, Figure 16 illustrates the initialization 
of the state machine in the LabView and the opening 
of the communication with the components. In a 
similar way, communicating routines are introduced 
in robot and camera programming environment. In the 
case of the laser sensor, communication is configured 
through the sensor web server.  

 
Figure 16 - Startup in LabView. 

After implementation, the components have been 
submitted to tests, both isolated and integrated into the 
demonstrator. We observe that so far, the tests have 
been performed without the screwing module, which 
is under acquisition process. 

5  Conclusion 

This paper presents the design of a cell to 
automate the screwing process in aircraft wings. In 
order to assure the flexibility of the cell to adapt to 
different products without the need of reprogramming, 
a measurement system, composed of a camera and a 
laser sensor, is added to the robotic end-effector.  

The integration of the cell equipment is modelled 
as a network of automata and verified in the UPPAAL 
tool. The simulation of different scenarios in 
UPPAAL confirm that the proposed solution is 
consistent from an integration perspective. All the 
components of the cell are capable of executing their 
process cyclically and the coordination of shared data 
coming from the different components of the cell is 
working as expected.  

Once the cell integration has been verified, we 
carried out the implementation of the communication 
among equipment and perform the necessary tests. 
The use of modelling and simulation as a preliminary 
step to analyse the cell integration resulted in a limited 
number of errors and reduced the development time. 

The next steps of the project are toward 
collaborative robotics. In order that the human 
operator can share the workspace with the Iiwa robot, 
we must assure the safeness of the cell. Although the 
robot itself has already been certified for collaborative 
operation, its integration with other cell equipment 

must also be verified. For this purpose, we plan to 
include into the UPPAAL model and software 
implementations the treatment of the most relevant 
types of failures that can occur in the cell. Then, we 
can verify the robustness and safeness of the cell using 
both simulation and model checking.  

Acknowledgements 

The authors acknowledge the financial support from 
Brazilian funding agencies CAPES, CNPq and 
FINEP. 

References 

Alur, R; Dill, D.A. (1994). Theory of Timed 
Automata. Theoretical Computer Science, v.126, 
pp. 183-235. 

Behrmann, G. et al., 2005. A Tutorial on UPPAAL. 
Proceedings of the 4th International School on 
Formal Methods for the Design of Computer, 
Communication, and Software Systems (SFM-
RT‟04). LNCS v. 3185. 

Bell, I. et al. (2004). Integration of hardware into the 
LabVIEW environment for rapid prototyping and 
the developmento of control design applications. 
Proceedings of UKACC Control 2004 Mini 
Symposia, Bath, pp. 79-81. 

Cibiel, C. and Prat, P. (2006), “Automation for the 
Assembly of the Bottom Wing Panels on 
Stringers for the A320”, In: SAE World Congress. 
Detroit, USA.  

Cognex (2018). COGNEX Corporation. [Online] 
Available at: https://www.cognex.com/ [Acesso 
em 20 02 2018]. 

DeVlieg, R. & Feikert, E. (2008). One-Up Assembly 
with Robots. SAE International, p. 4. 

Eclipse (2018). Eclipse. [Online] Available at: 
https://www.eclipse.org/ [Acesso em 20 2 2018]. 

Furtado, L. F. F. et al (2011). Comparative study 
between two methods for perpendicularity 
corrections in robotic manipulators. In: 21th 
International Congress of Mechanical 
Engineering (COBEM), Natal. 

Ginfri, L. (2013). Autômatos sincronizados e a 
Conjectura de Cerny. IME-USP, ed. São Paulo. 

Kihlman, H. (2005), Affordable Automation for 
Airframe Assembly: Development of Key 
Enabling Technologies”, Thesis (Phd) - 
Linköpings Universitet, Linköping, Sweden. 

KUKA Roboter (2015). Programming and 
Configuration of LBR iiwa. KUKA Roboter 
GmbH ed. Augstburg: Pub COLLEGE Workshop 
LBR iiwa. 

Wenglor (2018). Wenglor the Innovative family. 
[Online] Available at: https://www.wenglor.com/ 
[Acesso em 20 2 2018]. 

Whitley, K.N.; Blackwell, A.F. (2001) Visual 
programming in the wild: a survey of LabVIEW 
programmers. Journal of Visual Languages and 
Computing, vol. 12, pp. 435-472. 


