
UAV MISSION PLANNING AND EXECUTION VIA NON-DETERMINISTIC AI
PLANNING ON ROS

Vińıcius Veloso Eleuterio Nogueira∗, Luiz Edival de Souza†

∗Universidade Federal de Itajubá, av. B P S, 1303 - Pinheirinho, Itajubá- MG, Brazil

Emails: nogueira.vinicius@hotmail.com, edival@unifei.edu.br

Abstract— Unmanned aerial vehicles (UAVs) have been attracting civilian attention by its increasing number
of applications and decreasing cost. The vast majority of current UAV tasks still have a low degree of autonomy,
which can lead to lack of efficiency, safety, practicality and viability. This paper proposes using Probabilistic
AI Planning to improve autonomy and robustness in UAV applications. Our main contribution is a framework
that integrates Prob-PRP planner on ROS systems and enables the visualization, execution and monitoring of its
plans using Finite State Machine (FSM). On this article, we describe our framework and apply it for high-level
mission control on a simulated autonomous UAV.

Keywords— Automated Planning, Artificial Intelligence, Robotics Sytems, Unmanned Aerial Vehicles.

Resumo— Os véıculos aéreos não tripulados (UAV) têm atráıdo a atenção das pessoas civis pelo seu crescente
número de aplicações e pela redução de custos. A grande maioria das tarefas atuais do UAV ainda possui um
baixo grau de autonomia, o que pode levar à falta de eficiência, segurança, viabilidade e praticidade. Este
artigo propõe o uso de planejamento de AI probabiĺıstico para melhorar a autonomia e robustez nas aplicações
de UAV. Nossa principal contribuição é uma estrutura que integra o planejador Prob-PRP em sistemas ROS e
permite a visualização, execução e monitoramento de seus planos usando a Máquina de Estados Finitos (FSM).
Neste artigo, descrevemos o nosso quadro e aplicamos o controle de missão de alto ńıvel em um UAV autônomo
simulado.

Palavras-chave— Planejamento Automático, Inteligência Artificial, Sistemas Robóticos, Véıculos Aéreos Não
Tripulados

1 INTRODUCTION

The development of unmanned aerial vehicles
(UAVs) began in applications involving military
operations (Turner et al., 2012) during the Viet-
nam War or Cold War (Watts et al., 2012) and be-
came popular for civilian use with the rise of mul-
ticopters. These vehicles gained relevance mainly
due to their mechanical simplicity, low cost, user-
friendliness, and safety (Cutler, 2012).

Nowadays, UAVs can be found in a wide num-
ber of civil applications. These applications in-
clude: aerial photography; agriculture; mapping;
search and rescue; disaster management; moni-
toring; border patrol; inspection; environmental
control; remote sensing and wireless relay. On
top of that, there are still a large of number of
studies that aims to increase its capabilities. Fu-
ture applications may require higher level of in-
telligence from the system as they tend to become
more complex. Most of the studies involving these
types of vehicles still focus on perception and con-
trol strategies(Bernardini et al., 2014). Moreover,
high levels of autonomy will require the system to
act deliberately.

A promising field within Artificial Inteligence
that could provide intelligence to the system is
Automated Planning, also called AI Planning. Au-
tomated Planning is the reasoning side of acting
(Ghallab et al., 2004) that relies on a model of
the agent and its environment to produce a plan
that should guide an agent to reach its objec-
tives. This model can be domain specific plan-

ning (Mersheeva and Friedrich, 2015)(Ghamry
et al., 2016)(Lee and Morrison, 2015) (Albore
et al., 2015) or domain-independent (Bernardini
et al., 2014) (Munoz-Morera et al., 2015). Nowa-
days, domain specific solutions outperform do-
main independent plans, but they need much
modeling effort which requires much specialized
knowledge and limits deliberative capabilities to
specific areas. On the other hand, domain inde-
pendent strategies attract more research interest,
and had received much contribution in the past
few years. These contributions envolve algorithms
that either increase expressivity or decrease the
complexity of domain independent approach.

UAVs are naturally unstable systems that
have high sensitivity to disturbances, such as wind
and rain. In addition, the limitation of power
sources makes the energy consumption of these
vehicles crucial to meet their objectives (Sydney
et al., 2013). Therefore, considering the environ-
mental uncertainty during task planning show to
be necessary in this type of vehicles, once that
deterministic approaches do not avoid dead-ends.
We selected Prob-PRP(Camacho et al., 2015)
non-deterministic solver that aims to increase the
plan probability of success. It is a goal-oriented
and domain-independent solver that uses PPDDL
model as input.

The combination of Automated Planning and
aerial vehicles was already proposed in (Cantoni
et al., 2011), where it was studied classical plan-
ning on a fire fighter scenario and simulated it
on X-PlaneR©. Another similar research was made

by (Bernardini et al., 2014) in aerial surveillance
planning for searching-and-tracking operations.
Automated Planning is also applied commonly
to other types of robotic applications (Quintero
et al., 2011) (Crosby et al., 2017). As automated
planning became the standard tool for domain-
independent problem solving and Robotic Operat-
ing System (ROS) for robotics applications they
were first merged in (Cashmore et al., 2015) re-
sulting in ROSPlan. In its first version, this pack-
age implemented a classical planner and was used
in an application using autonomous underwater
vehicles. Later, it has been extended to support
contingency plans, using Contingent-FF (Sanelli
et al., 2017). While contingency plans are able to
handle eventualities, monotonicity of knowledge
prevents construction of cycles which can be re-
quired in some domains.

ROS (Quigley et al., 2009) is popular modular
framework that allows the integration of libraries
intended for robotic systems. It provides hard-
ware abstraction and communication to interface
different robotic application. The implementation
in this platform is convenient once it already pos-
sess many state-of-the-art algorithm from scien-
tific collaborative work.

Our approach was implemented in ROS using
both Python and C++. Our presented library is
based on ROSPlan (Cashmore et al., 2015) and
conditional planning in (Sanelli et al., 2017). Our
framework contributes to the community by in-
corporating PRP and allowing its plan execution,
visualization and supervision on ROS systems. Its
purpose is to designate high-level tasks that guides
an UAV to its goal according to the outcomes of
its actions using a FSM controller. We call this
framework DOTPlan.

This paper first provides some preliminaries
on Finite State Machines and their relation to our
work in section 2. On section 3, we do a overview
on the system, describing its architecture, features
and purpose. Following, we apply Prob-PRP on
UAV delivery domain using our framework and
discuss the results.Following, we present the inte-
gration with simulated application and compare
our work with others in section 5. Future work
and conclusion are discussed in section 6.

2 Preliminaries

Finite State Machines (FSMs) are a computa-
tion model represented by finite number of states
and transitions. A deterministic finite automaton
(DFA) is defined in (Hopcroft et al., 2006) as a tu-
ple (Q,Σ, δ, q0, F), where Q is a finite set of states;
Σ is a finite set of symbols, called alphabet; δ : Q
x Σ → Q is a deterministic transition function;
q0 ∈ Q is the initial state; F ⊆ Q is a set of goal
states. It is a abstract machine that receives a
set of inputs alphabet symbols, called string, and

q0start q1 q2 q3

q4

b

a

c

b

a

c

b

a

c c

a, b

Figure 1: Deterministic Finite Automata(DFA)

process them sequentially according to the tran-
sition functions. After processing all inputs, if it
ends on one of the goal states, the machine ac-
cepts the string, if not it rejects it. A FSM can
be graphically represented as graph in which the
nodes are equivalent to the states and the transi-
tion to the edges. Figure 1 shows a DFA with
({q0, q1, q2, q3, q4} , {a, b, c} , δ, q0, {q3}), with δ
being described by the graph edges. This automa-
ton will accept any string that have three as and
no cs.

2.1 From Non-Deterministic Problem to FSM

A non-deterministic planning problem is de-
scribed as P = (S, I, A, T,G) in (Kissmann and
Edelkamp, 2009), where S is a set of states; I is
the initial state; A(s) is a set of applicable actions;
G is the goal state; T is a non-deterministic tran-
sition relation T (s, a, s) that represents the prob-
ability of occurring the outcome, o, when apply-
ing action a in the state s. The non-deterministic
planning problem is determined when the prob-
abilistic planner parses I,G and other domain
knowledge provided in PPDDL format and infers
A, T , S. The planner task is to calculate a policy
Π(s) → a that maps a state s into an action a
that will guide s to G.

A FSM (Q,Σ, δ, q0, F) can be produced from
the policy, if we let Q be a set of states, where
a state s is characterized by a set of facts; Σ be
a set of all possible determinized actions, ao; δ
the transition function that relates s x ao → s;
q0 the initial state, F the state that contains all
goal facts. FSM can be created by simulating the
policy execution from the initial state to the goal
state for every possible outcome. The PRP plan-
ner authors (Sardina and D’Ippolito, 2015) made
their source code available in which contained a
script used for their validation. This script gener-
ates a FSM from policies in FOND domains and
outputs it in a DOT format. The FSM genera-
tion method used by this script is very similar to
the algorithm described in (Iocchi et al., 2016) to
convert polices into conditional plans.

3 System Overview

The aim of the proposed paper is to introduce a
new framework which aims to allow execution of
probabilistic plans with ROS and to apply it to
a common UAV delivery domain problem, repre-
sented in figure 2. This figure shows that the sys-
tem is composed by modules: planning, supervi-
sion, execution and visualization. In this section
we describe the framework for executing proba-
bilistic plans via Finite State Machine representa-
tion.

3.1 AI Planning

The execution of the planning module is funda-
mental once it gives the information that the other
modules needs to operate. The Planning System
is off-line and should output a FSM in Graphviz’s
Dot format. In our application, the Prob-PRP
was applied as the third-party planner resulting
in a policy that was converted using algorithm
1. Additional information is also collected during
FSM generation, this data should help the system
operator during system supervision. FSMs are of-
ten cited in literature as a simple and compact
controller. This controller is often used for se-
quential action coordination. While (Sardina and
D’Ippolito, 2015) use a FSM as validation tool, we
apply it as a plan controller.

3.2 DotViz

DotViz is the visualization module of DOTPlan,
it displays the conditional plan graph, highlights
and centers the execution’s current state. It fa-
cilitates the analysis and comprehension of the
current plan. This module auto arranges of the
graph’s nodes and edge in a way which is both
compact and clear.

DOT format is a widely used output format
for graph representation. While it supports some
fancy tools, the basic usage requires only minimal
data overhead. Figure 3a shows the DOT of the
graph displayed in figure 3b. In figure 3a, it can
be noted that the nodes position can be left un-
specified. It happens because softwares that reads
this format, uses Graphviz library. Graphviz’s co-
ordinates assignments enables a clean auto gener-
ated graph visualization, what justify its usage in
a wide number of application. In this library the
problem of arranging is solved as a cost minimiza-
tion task. It is already present in core ROS pack-
age as rqt graph and rq tf tree, wrapped by Py-
dot. Also, there is a wide variety of libraries avali-
able in many different programming languages to
automatic create a graph in DOT format, which
its increases flexibility, convenience and support.
In fact, all diagrams in this paper (except figure
1) were designed in DOT.

Xdot (Fonseca, 2017) is an open source soft-
ware written in Python that displays DOT files
using Graphviz library on a GTK3 user interface.
The appliance of Xdot becomes convenient, since
it uses Graphviz in a lower level and has some in-
teresting built-in functions like: node search and
animate to position. This software was modi-
fied to be incorporated on ROS using gobject
thread synchronization and called XDotViz. This
software is able to show the FSM, auto high-
light states and animate through the graph based
on information exchange in either topics or ser-
vices. Figure 4 represents the XDotViz interac-
tion within the framework. Xdot natively does not
save any information, therefore it has to arrange
the whole graph every time the dot file is opened.
In that matter, a new function was implemented
to save and load nodes positions in a intermedi-
ate file to speed up the program start-up of pre
opened files. This feature is useful once that a
complex plan can result in a large graph, it could
take sometime to auto arrange nodes. XDotViz
main purpose is to monitoring the execution of
the FSM. The system was implemented in a way
that it works independently from XDotViz.

3.3 DotActionServer

DotActionServer is the core module for execution
the computed plan. It coordinates the agent high-
level actions to the desired goal. It works by pass-
ing action information to low-level control and re-
ceives its feedback to compute the next action.
This information includes possible outcomes, ac-
tion name, action parameters. The application
system should then execute the action and return
which was the resulting outcome.

By looking at figure 3a, it can be observed
that a DOT form has a simple and efficient struc-
tured format. Based on this, the DOT form was
defined as the standard input format, not only for
monitoring but also for execution. In order to ob-
tain its DOT file the system calls the planner and
the converter, which is responsible to transform
the plan/policy into a FSM in DOT. This DOT
file is referenced to XDotViz and parsed into the
plan executor. In this framework, we adopt the
following convention to express a FSM in DOT:
the node id must be a unique integer; the node
name can be arbitrary, with exception to brackets
and dashes; action[outcomes effects] must be the
format of the edge name; # is a reserved character
to represents either blank or none.

The action dispatching algorithm parses the
DOT file, and extract the following relations:
(s → (state name)), (s → a), (s → O(s)), and
(s x o → s). The action outcomes may contain
many shared effects, the solution was to express
it to its exclusive effects that differs it from the
other outcomes. This operation makes the graph

Figure 2: DotPlan System Overview

(a) DOT (b) Graph

Figure 3: DOT and its corresponding graph

Figure 4: XDotViz interaction with the frame-
work

visualization clearer and eases the outcome veri-
fication. The execution of this controller is very
straightforward, the controller should keep track
of the FSM current state and dispatch the action
specified in its transitions. When the action server
is activated, it dispatches the initial action and
dispatches the consecutive action based on their
feedback.

Algorithm ?? shows the procedure to dispatch
actions based on their feedback. A plan fails
if: the action did not succeed; the action server
goes out of synchrony with the action executor;
the outcome is not present in the FSM. If a plan
doesn’t fail it will be able to retrieve the necessary
information from the relations until it achieves the
goal state.

3.4 DotSupervisor

This framework also includes an interactive graph-
ical user interface, that is used for information
output and plan interaction. Some of the informa-
tion displayed is gathered during the FSM gener-
ation. This data includes the active state, action
server status, current action, facts s and key facts

procedure ActionFB
Require: actState, curOut, curAct, Succeed

if Succeed = false then
planStat←failed
return

if checkFB(actState,Out,Act)=false then
planStat←failed
return

actState ← progress(curOut)
if stateIsGoal(actState) = true then

planStat←concluded
return

curAct ← getStateAction(actState)
stateOuts ← getStateOutcomes(actState)
publishAction(actState, curAct, stateOuts)
publishActiveState(getStateName(s))

s′ of the active state. This interface also enables
the user to: (re)plan from PPDDL files, to reload
the action server DOT file, send action feedback.

4 Prob-PRP in UAV domain

Planner for Relevant Policies (PRP) is the state-
of-the-art FOND planner. Prob-PRP is an ex-
tended version of PRP to solve probabilistic prob-
lems. An interesting characteristic of Prob-PRP
is that it guarantees to avoid avoidable dead-end
state. This solver relays on finding strong cyclic
solution for the problem. A strong cyclic solution
is defined as a solution that reaches the goal after
an infinite number of actions. One issue is that
this planner does not guarantee a solution in the
presence of unavoidable dead ends.

A fragment of our domain is displayed in fig-
ure 5. The UAV domain is a discrete probabilistic
problem that models the task of using a single
aerial vehicle for package delivery. This domain
considers that routes between locations of interest
are discretized with equidistant waypoints. It con-
tains uncertainty in fuel consumption while mov-
ing between waypoints. This uncertainty could be
related either to weather conditions, necessaries
maneuvers or discretization error. The actions
land and take− off also consumes fuel but does
considers uncertainty on its usage. In this model,
the fuel resource is discretized into fuel levels. For

(: domain (quadde l ive ry)
(: types pack way f u e l l v l − ob j e c t)
(: p r e d i c a t e s

(d e l i v e r a t ?pkg − pack ?wp − way)
(s t a t i o n a t ?wp −way)
(pkgat ?pkg − pack ?wp − way)
(quadat ?wp − way)
(inquad ?pkg − pack)
(d e l i v e r e d ?pkg − pack)
(connected ?wp1 ?wp2 − way)
(quadfue l ? f u e l − f u e l l v l)
(fuelmap ? l o w l v l ? h i g h l v l f u e l l v l)
(maximumfuel ? maxfuel − f u e l l v l)
(ona i r)

(grounded))
(: a c t i on move−to

: parameters (?wp1 ?wp2 − way
? f1 ? f2 ? f3 − f u e l l v l)

: p r e cond i t i on (and (quadat ?wp1)
(connected ?wp1 ?wp2)
(quadfue l ? f 3)
(fuelmap ? f1 ? f2)
(fuelmap ? f2 ? f3)
(ona i r))

: e f f e c t (and (not (quadat ?wp1))
(quadat ?wp2)
(not (quadfue l ? f 3))
(p r o b a b i l i s t i c

0 . 6 (quadfue l ? f 2)
0 . 4 (quadfue l ? f 1))))

(: a c t i on land (? f1 ? f2 − f u e l l v l)
(: a c t i on t a k e o f f (? f 1 ? f2 − f u e l l v l))
(: a c t i on load (? pkg − pack

?wp − way))
(: a c t i on d e l i v e r (? pkg − pack

?wp ?wp2 − way))
(: a c t i on r e f u e l (?wp − way

? f1 ? f2− f u e l l v l))

Figure 5: Fragment of the UAV Delivery Domain
in PPDDL

this problem we suppose that the system holds full
observability.

After experimenting with multiple different
problem file and domain variations, we could an-
alyze the behavior of Prob-PRP in our domain.
When we let the UAV refuel infinite number of
times some aspects can be observed: the plan-
ner always avoided dead ends when possible; the
most probable outcome tends to have the shortest
path; when the action results in a least probable
outcome; it forces a cycle; it cycles the plan even
when the worst set of outcomes would lead to the
goal. Bringing these characteristics to the ana-
lyzed domain several points can be remarked. For
the sake of state reduction and problem simplifi-
cation, it forces cycles in its plan, in its plan, when

is possible to make the choice infinite times, called
strong cycles. Another problem is when it refuels
and takes actions to waste its fuel and return to a
state which it visited earlier. In other words, the
execution leads back to a state that it previously
visited to try to get another outcome. This cy-
cle may increase the plan length and may not be
needed to avoid dead ends.

In this planner, the length of the plan is
shorten for UAV domain by limiting its number
of refuels. By doing that, we take of the guar-
antee of reaching the goal and permit an increase
in the number of states for the FSM. We implic-
itly impose a heuristic, limiting the mission length
by giving it limited fuel. Table 1 shows how the
number of allowed refuels affects a domain with
12 waypoints, 10 fuel levels, 2 stations and 3 pack-
ages. In this table we can extract the relation be-
tween the number of allowed refuel and the prob-
ability of success. In that relation the planner
percentage of success increases and converges to
a value, while the planning time tend to increase
in a exponentially. In non-deterministic planning
the trade off between success rate and plan length
is inevitable, once conservative behavior do not
take unnecessary risks. In the experiments, even
when the 10% longest plan lengths of the infinite
refuels scenario are discarded, the average still 112
actions. This shows that the plan is taking unnec-
essary actions.

R PT (s) S P L
2 0.44 0 0 0
3 9.84 80 0.448 18.42
4 35.34 163 0.911 34.25
5 53.26 256 0.966 38.98
6 59.9 258 0.968 43.85
7 102.7 388 0.973 45.02
∞ 0.82 150 1 123.04

Table 1: Policy caracteristics by number of al-
lowed refuels in Prob-PRP. R represents the max-
imum refuels allowed; PT is the planning time,
S is the number of the states in the FSM, P is
the probability of reaching the goal state; L is the
average number of actions to achieve the objective

This approach breaks the cycles and makes a
tree that is more likely to converge in the sub-goals
and refueling. Even without strong cycles, Prob-
PRP avoided avoidable dead-ends. Despite that
this works and give good solutions, this method
breaks Prob-PRP proposed method of assuring
plan maximum probabilities using strong cycles.
This leads to no guarantees in terms of perfor-
mance. It is also evident that any other approach
than the strong cyclic takes much more planning
time. This solver seems very practical in problems
where the most problem outcome is very likely,
in fault recovery and in assuring action desired

Figure 6: Interfacing DOTPlan’s execution with
UAV application.

effect(e.g. fire fighting, search and monitoring).
Like other model based approaches, the effective-
ness of executing this plan will depend on how
accurate is the model domain. This planner is a
promissing algorithm that is still under develop-
ment, it is capable of avoiding avoidable dead-ends
while being a fast algorithm that gives compact
representations.

5 RESULTS

To validate our approach, the proposed framework
was implemented in a simulated UAV system us-
ing the architecture represented in figure 6. This
figures shows how the application interfaces the
execution module inside ROS using topics. In this
simulation the agent, environment and problem
was described in PDDL file format and the actions
of the quadrotor are deliberated by the planner
and dispatched by the FSM executor. The simu-
lator used for this application was Gazebo, which
is the default 3D simulator in ROS. Our platform
was the hector quadrotor which is natively com-
patible with Gazebo, which is equipped by a laser
scan, sonar altitude sensor and a RGB camera.
In order to keep the rest of the system as simple
as possible a 2D navigation stack was applied for
moving and other actions interact directly inside
gazebo. The resulting system is displayed in figure
7, it exposes the aerial vehicle executing a plan to
achieve its objectives.

We compared our framework to the main
ROS package for planning and execution, ROS-
Plan, in its two main variants using POPF and
Contingent-FF. This comparison is represented
in table 2. All of them use domain-independent
planners that accept PDDL structure and present
some sort recovery behavior to deal with uncer-
tainty. While ROSPlan-POPF uses online replan-
ning when it encounters uncertainty, ROSPlan-
Cont.FF and DOTPlan rely on following a con-
ditional plan. Both replanning and conditional
plan need estimation of the current state to guide
its plan. But while non-deterministic planners
do offline reasoning for different probable sce-

Figure 7: Plan execution in a simulated environ-
ment using Gazebo.

narios to avoid dead-ends, replanning does not,
which may lead the agent into a dead-end state
or repeated interaction in presence of uncertainty
(Little et al., 2007). ROSPlan-POPF represents
its plan in a list format, which is enough to repre-
sent a classical plan since there is only one possible
sequence of actions. It is useful to keep track of the
agent progress. A problem of visualizing classi-
cal plans is that its behavior can be unpredictable
if the replanning is triggered. ROSPlan-Cont.FF
uses Petri Net Plans (PNP) by interfacing a PNP
tool outside ROS called PNPJarp. Petri Net Plans
is the application of Petri Nets to represent and
execute plans. Its theory also supports concurrent
actions and multi-agent systems. We tried to im-
plement our policy in their visualization program,
but we had some difficulties with the automatic
layout of the states. Also, their PNP generation
library doesn’t seem to support loops in their pol-
icy to PNP translation.

ROSPlan-Cont.FF has a limited perception
exogenous events on the environment after it does
its observation. This happens because contingent
planning assumes that once a fact is unknown it
can only changed by an agent action. This is the
principle of contingent planning which allows the
uncertainty to be compiled in the initial state and
provide monotonicity of knowledge. In this way,
this system does not support repeated sensing on

ROSPlan
(Popf)

ROSPlan
(Cont)

DOTPlan
(Prob)

PDDL
Support

X X X

Recovery
Behavior

X X X

Off-line
Recovery

X X

Visual
Represen-

tation
X X X

Plan Su-
pervision

X X

Knowledge
Manage-

ment
X

Repeated
Sensing

X X

Partial
Observ-
ability

X

Table 2: Comparison between ROSPlan using
POPF, ROSPlan using Contingent-FF with PNP
and DOTPlan using Prob-PRP

the same fact. This doesn’t make these technique
worst, just not adequate for this kind of prob-
lem. In fact, it is able to solve partial observ-
ability problems which Prob-PRP and POPF are
not. ROSPlan-POPF keeps track of all knowledge
using its knowledge base. In this package, sensing
actions can occurs infinitely often and influences
on how the system estimates its state and up-
date its known facts. Once that the system facts
changes, replanning should be triggered. DOT-
Plan must observe the effects of its actions af-
ter every non-deterministic action to choose which
branch of its plan that it will dispatch.

6 Conclusion and Future Work

In this paper we presented a framework for exe-
cuting probabilistic plans with ROS Systems and
applied it into the UAV delivery domain. The
proposed package is based in the representation
of plans with finite state machines (FSM) in DOT
format. This system utilizes Prob-PRP as its
default probabilist planner but it also supports
PRP and PO-PRP, once that they all have the
same output format. We applied this solver into
the UAV domain and made several considerations
about its applicability in UAV systems. Finally,
it was compared to other standard planning tools
inside ROS, highlighting the possibility of solving
probabilistic problems by strong cycles.

While simulated domain might presented only
the modeled outcomes, this might not happen in

a real-world application. Thereat, it is relevant to
incorporate replanning into the framework. This
would require a tool for problem generation. Since
we already keep track of the state facts, defining
the initial state of the new plan shouldn’t be a big
issue. In the present time, this framework doesn’t
support concurrent actions. This is a known lim-
itation of doing execution using FSMs. We be-
lieve that this could be overcome with an action
feedback buffer, similar to Determinist Pushdown
Automaton. In the future, this framework could
also be merged into other planning frameworks.

References

Albore, A., Peyrard, N., Sabbadin, R. and
Teichteil-Königsbuch, F. (2015). An online
replanning approach for crop fields mapping
with autonomous uavs., ICAPS, pp. 259–267.

Bernardini, S., Fox, M. and Long, D. (2014).
Planning the behaviour of low-cost quad-
copters for surveillance missions., ICAPS,
Portsmouth, NH, pp. 445–453.

Camacho, A., Muise, C., Ganeshen, A. and McIl-
raith, S. A. (2015). From fond to probabilistic
planning: Guiding search for quality policies,
Workshop on Heuristic Search and Domain
Independent Planning, ICAPS.

Cantoni, L. F., Campos, M. F. and Chaimowicz,
L. (2011). Investigacao da linguagem pddl no
planejamento de missoes para robËos aéreos,
X SBAI.

Cashmore, M., Fox, M., Long, D., Magazzeni,
D., Ridder, B., Carrera, A., Palomeras, N.,
Hurtós, N. and Carreras, M. (2015). Ros-
plan: Planning in the robot operating sys-
tem., ICAPS, pp. 333–341.

Crosby, M., Petrick, R. P., Toscano, C., Dias,
R. C., Rovida, F. and Krüger, V. (2017).
Integrating mission, logistics, and task plan-
ning for skills-based robot control in indus-
trial kitting applications, Ceur Workshop
Proceedings, Vol. 1782.

Cutler, M. J. (2012). Design and control of an au-
tonomous variable-pitch quadrotor helicopter,
PhD thesis, Massachusetts Institute of Tech-
nology, Department of Aeronautics and As-
tronautics.

Fonseca, J. (2017). Xdot.py: An in-
teractive viewer for graphs writ-
ten in graphviz’s dot language.,
https://github.com/jrfonseca/xdot.py.

Ghallab, M., Nau, D. and Traverso, P. (2004). Au-
tomated Planning: theory and practice, Else-
vier.

Ghamry, K. A., Kamel, M. A. and Zhang, Y.
(2016). Cooperative forest monitoring and
fire detection using a team of uavs-ugvs, Un-
manned Aircraft Systems (ICUAS), 2016 In-
ternational Conference on, IEEE, pp. 1206–
1211.

Hopcroft, J. E., Motwani, R. and Ullman, J. D.
(2006). Automata theory, languages, and
computation, International Edition 24.

Iocchi, L., Jeanpierre, L., Lazaro, M. T. and
Mouaddib, A.-I. (2016). A practical frame-
work for robust decision-theoretic planning
and execution for service robots., ICAPS,
pp. 486–494.

Kissmann, P. and Edelkamp, S. (2009). Solv-
ing fully-observable non-deterministic plan-
ning problems via translation into a general
game, KI 2009: Advances in Artificial Intel-
ligence pp. 1–8.

Lee, S. and Morrison, J. R. (2015). Decision sup-
port scheduling for maritime search and res-
cue planning with a system of uavs and fuel
service stations, Unmanned Aircraft Systems
(ICUAS), 2015 International Conference on,
IEEE, pp. 1168–1177.

Little, I., Thiebaux, S. et al. (2007). Probabilistic
planning vs. replanning, ICAPS Workshop
on IPC: Past, Present and Future.

Mersheeva, V. and Friedrich, G. (2015). Multi-uav
monitoring with priorities and limited energy
resources., ICAPS, pp. 347–356.

Munoz-Morera, J., Maza, I., Fernandez-Aguera,
C. J., Caballero, F. and Ollero, A. (2015).
Assembly planning for the construction of
structures with multiple uas equipped with
robotic arms, Unmanned Aircraft Systems
(ICUAS), 2015 International Conference on,
IEEE, pp. 1049–1058.

Quigley, M., Conley, K., Gerkey, B., Faust, J.,
Foote, T., Leibs, J., Wheeler, R. and Ng,
A. Y. (2009). Ros: an open-source robot
operating system, ICRA workshop on open
source software, Vol. 3, Kobe, p. 5.

Quintero, E., Garćıa-Olaya, Á., Borrajo, D. and
Fernández, F. (2011). Control of autonomous
mobile robots with automated planning,
Journal of Physical Agents, Citeseer.

Sanelli, V., Cashmore, M., Magazzeni, D. and Ioc-
chi, L. (2017). Short-term human-robot in-
teraction through conditional planning and
execution, ICAPS.

Sardina, S. and D’Ippolito, N. (2015). Towards
fully observable non-deterministic planning

as assumption-based automatic synthesis.,
IJCAI, pp. 3200–3206.

Sydney, N., Smyth, B. and Paley, D. A. (2013).
Dynamic control of autonomous quadrotor
flight in an estimated wind field, Decision
and Control (CDC), 2013 IEEE 52nd Annual
Conference on, IEEE, pp. 3609–3616.

Turner, D., Lucieer, A. and Watson, C. (2012). An
automated technique for generating georecti-
fied mosaics from ultra-high resolution un-
manned aerial vehicle (uav) imagery, based
on structure from motion (sfm) point clouds,
Remote Sensing 4(5): 1392–1410.

Watts, A. C., Ambrosia, V. G. and Hinkley, E. A.
(2012). Unmanned aircraft systems in remote
sensing and scientific research: Classification
and considerations of use, Remote Sensing
4(6): 1671–1692.

