
USING AN ABSTRACTION OF THE SUPERVISOR TO SOLVE A PLANNING
PROBLEM IN MANUFACTURING SYSTEMS

Gustavo Caetano Rafael∗, Patricia N. Pena†

∗Graduate Program in Electrical Engineering - Universidade Federal de Minas Gerais - Av. Antônio
Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil

†Department of Electronics Engineering , Universidade Federal de Minas Gerais -
Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil

Abstract— This paper deals with a production-planning problem in the industrial environment from the
perspective of Discrete Event Systems. The use of the solution obtained by applying the Supervisory Control
Theory (SCT) as a search space for the optimization problem, using evolutionary algorithms, has been described
in the literature as the SCO - Supervisory Control and Optimization approach. In the SCO, a string of the
closed-loop behavior that minimizes the makespan for the production of a batch of products is sought. In the
present work, a heuristic that guarantees the generation of feasible individuals is proposed, aside with the use
of an abstraction of the closed-loop behavior as the search universe for the optimization. Lastly, a case study is
presented, for which the optimal solution in all instances in which it is known was found.

Keywords— Discrete Event Systems, Supervisory Control Theory, Optimization, Evolutionary Algorithms,
Production Planning.

Resumo— Este trabalho aborda o problema de planejamento de produção no ambiente industrial sob a pers-
pectiva de Sistemas a Eventos Discretos. O uso da solução obtida pela aplicação da Teoria de Controle Super-
visório como espaço de busca para um problema de otimização, usando algoritmos evolucionários, foi descrito
da literatura como a abordagem CSO - Controle Supervisório e Otimização. Na CSO busca-se uma cadeia do
comportamento em malha fechada que minimiza o makespan para produção de um lote de produtos. No presente
trabalho, propõe-se uma heuŕıstica para geração de indiv́ıduos garantidamente fact́ıveis, além do uso de uma abs-
tração do comportamento em malha fechada como o universo de busca para a otimização. Por fim, apresenta-se
um estudo de caso para o qual foi posśıvel encontrar a solução ótima para todas as instâncias em que a mesma
é conhecida.

Palavras-chave— Sistemas a Eventos Discretos, Teoria de Controle Supervisório, Otimização, Algoritmos
Evolucionários, Planejamento de Produção.

1 Introduction

In times of constant change in the economic sce-
nario, organizations not only should reduce their
losses, but also carefully invest their most impor-
tant asset, time. With that in mind, a well de-
signed production planning technique can be the
difference between succeeding or not.

As a way to respond to this ever increasing de-
mand for efficiency, many researchers have applied
scheduling and production planning techniques do
deal with a wide range of problems in industry,
(Wang et al., 2008).

Task scheduling is an optimization problem,
where a new solution arises every time resources
are allocated. Usually, a finite number of assets
is assigned accordingly to a set of tasks, this is
made throughout a permutation on this elements
(Pinedo, 2016).

Once a new solution is found, it is necessary
to classify it as feasible, when it respects all the
system’s constraints, or as unfeasible, if the so-
lution violates any of the requirements. Usually,
in this type of problems, the set of all possible
solutions is given by (N !)M , where N represents
the number of tasks and M the number of ma-
chines (Arisha et al., 2001). Along with the Job
Shop Scheduling (JSS), problems that experience
an exponential growth are classified as NP-hard.

This class does not have known methods to find
exact solutions in polynomial time (Garey & John-
son, 1980). One way to solve them is to apply dy-
namic programming techniques to find exactly op-
timal solutions for this problem (Bellman & Drey-
fus, 2015). However, the complexity may be pro-
hibitive for medium size problems.

Due to the highly demanding processing
power needed, many researchers take approaches
that differ from the traditional analytical and
heuristic techniques found in (Arisha et al., 2001).

Within the Discrete Event Systems (DES)
literature, many formalisms are used to solve
the problem of minimizing the production time
(makespan). Among them, there are Petri Nets
(López-Mellado et al., 2005), timed automata
(Abdeddäım et al., 2006) and formal verification
(Herzig et al., 2014).

In the context of Supervisory Control The-
ory (SCT) (Ramadge & Wonham, 1989) exten-
sions have been proposed to solve the optimiza-
tion problem, like in (Su et al., 2012), (Pinha
et al., 2011) among others. There are also ap-
proaches that use the structure provided by SCT,
that implements the restrictions to the safe oper-
ation of the system, and run optimization on top
of such structure. Among them, we cite (Alves
et al., 2016a) that uses a heuristic that favors the

total accumulated parallelism of equipment during
production, which leads to a sub-optimal solution
for the makespan problem. This approach is used
to compare with our results.

This paper presents a new heuristic for se-
quence generation combined with a technique to
reduce the search space. Then, they were com-
bined in an evolutionary algorithm, the Clonal
Selection Algorithm (CSA), to minimize the
makespan in a flexible manufacturing system.

In the following, in Section II, the preliminar-
ies concepts and main definitions are presented.
Then, in Section III, the main results are pre-
sented. In Section IV, there is a brief introduc-
tion to the optimization technique applied in this
paper. Section V contains one example of the ap-
plication, the conclusions is in Section VI.

2 Preliminaries

In this section, some basic ideas that are impor-
tant for this work are summarized and the prob-
lem will be stated. The reader should refer to
(Cassandras & Lafortune, 2009) for a detailed ex-
planation.

Let Σ be a finite and nonempty set of events,
referred to as an alphabet. Σ∗ is the set of all
strings on Σ, including the empty string ε. A sub-
set L ⊆ Σ∗ is called a language. The concatena-
tion of strings s, u ∈ Σ∗ is written as su. A string
s ∈ Σ∗ is called a prefix of t ∈ Σ∗, written s ≤ t, if
there exists u ∈ Σ∗ such that su = t. The prefix-
closure L of a language L ⊆ Σ∗ is the set of all
prefixes of strings in L, i.e., L = {s ∈ Σ∗|s ≤ t for
some t ∈ L}.

A finite automaton is a 5-tuple G = (Q,Σ,
δ, q0, Qm) where Q is a finite set of states, Σ is
an alphabet, δ : Q × Σ → Q is the transition
function, q0 ∈ Q is the initial state and Qm ⊆ Q is
the set of marked states. The transition function
can be extended to recognize words over Σ∗ as
δ(q, σs) = q′ if δ(q, σ) = x and δ(x, s) = q′. The
generated and marked language are, respectively,
L(G) = {s ∈ Σ∗|δ(q0, s) = q′∧q′ ∈ Q} e Lm(G) =
{s ∈ Σ∗|δ(q0, s) = q′∧q′ ∈ Qm}. The active event
function, Γ : Q → 2Σ, is a function that, given a
state q, outputs the set of events σ ∈ Σ for which
δ(q, σ) is defined.

The natural projection Pi : Σ∗ → Σ∗i is an
operation that maps the strings of Σ∗ into strings
of Σ∗i , Σ∗i ⊆ Σ∗, by erasing all the events that
are not contained in Σi. The inverse projection
P−1
i : Σ∗i → Σ∗ is defined as P−1

i (L) = {s ∈
Σ∗|Pi(s) ∈ L} and is composed of all traces that,
when projected, recovers traces from L.

The natural projection can have a known
property called Observer Property (OP) presented
in Definition 1.

Definition 1 (Wong, 1998) Let L ⊆ Σ∗ be a lan-
guage, Σi ⊆ Σ an alphabet and P : Σ∗ → Σ∗i
a natural projection. If (∀a ∈ L)(∀b ∈ Σ∗i),
P (a)b ∈ P (L) ⇒ (∃c ∈ Σ∗)P (ac) = P (a)b and
ac ∈ L, then P (L) has the observer property.

2.1 Supervisory Control Theory

The Supervisory Control Theory is a formal
method, based on language and automata theory,
to the systematic calculus of supervisors. The sys-
tem to be controlled is called plant and is repre-
sented by an automaton G = (Q,Σ, δ, q0, Qm) and
Σ = Σc ∪ Σu where Σc is the set of controllable
events, which can be disabled by an external agent
and Σu is the set of uncontrollable events, which
cannot be disabled by an external agent. There is
also the supervisor that has to regulate the plant
behavior to meet a desired behavior K disabling
only controllable events, in a minimally restrictive
way.

Let E be an automaton that represents the
specification imposed over G. Language K =
Lm(G||E) ⊆ Lm(G) is controllable w.r.t G if
KΣu ∩ L(G) ⊆ K. A non-blocking supervisor
V for G such that Lm(V/G) = K exists if, and
only if, K is controllable with respect to G. If
K does not satisfy the condition, then the supre-
mal controllable and non-blocking sub-language
S = sup C(K,G) can be synthesized. S is also
used to represent the automaton that implements
the supervisor.

2.2 Supervisor Abstraction

In (Vilela & Pena, 2016) a supervisor abstraction,
the natural projection of the supervisor to the con-
trollable events, PS : Σ∗ → Σ∗c , is shown to keep
a good property of the original supervisor. This
is a theoretical result that allows to search for op-
timal solutions on a smaller universe, PS(S) in-
stead or S. The above mentioned “good property”
is that, once a trace sopt ∈ PS(S) is picked, that
trace, when lifted to the original alphabet, can be
executed to the end. This result is presented in
Theorem 1.

Theorem 1 (Vilela & Pena, 2016) Let G be a
plant, S = sup C(K,G) the supervisor and PS :
Σ∗ → Σ∗c a natural projection. For all sequences
sopt ∈ PS(S) and A = P−1

S (sopt)∩S, if PS(S) has
the observer property, then A is controllable with
respect to L(G).

Theorem 1 establishes that, under certain
conditions over the projection, the lifted language
A (composed of all traces of S that project to
sopt) is controllable. The verification of control-
lability guarantees that all the interleavings that
may arise in the lifted trace, if possible in the
plant, are possible when implementing the plan

in the system. In other words, to implement the
controllable trace it is not necessary to disable un-
controllable events.

2.3 SCO-Supervisory Control and Optimization

This methodology was proposed to address
scheduling problems in a manufacturing cell (Silva
et al., 2011). In this approach, the Supervisory
Control Theory encoded the problem constraints
and an evolutionary algorithm performed the opti-
mization. Different optimization techniques were
used (Silva et al., 2011; Oliveira et al., 2013; Pena
et al., 2016). Among them, we mention the
Clonal Selection Algorithm (CSA) (De Castro &
Von Zuben, 2002), that is also used in this work.
SCO could only find solutions for small batches of
products and it was extended to deal with large
batches (Costa et al., 2018). The SCO-CONCAT
works by concatenating optimized solutions, ob-
tained with the SCO, to compose a larger batch of
products. Despite the improvements made along
each iteration, this methodology has a low time
efficiency. The main reason for that is the high
number of unfeasible solutions generated during
the optimization process.

2.4 Problem Definition

In this paper, the optimization problem is to min-
imize the total production time (makespan) re-
quired for a batch of products in a manufacturing
system. Here, the problem is formally presented
as stated in (Pena et al., 2016):

• Let Σ be the set of events associated to a
plant (commands and responses), which is di-
vided into controllable events Σc and uncon-
trollable events Σu;

• Let A be the set of instances of events from Σ
which are associated to the production of the
complete batch, and let Ac = A ∩ Σc be the
subset of controllable events of A which are
associated to the production of the complete
batch;

• Let Ak be an ordered set of the events of
A, representing a production schedule can-
didate, |A| = |Ak|, and let Ac

k denote the
ordered subset of controllable events in Ak;

• Let N = {Ac
1, A

c
2, ..., A

c
|N |} be the set of all

permutations of the elements of Ac, which re-
sult in feasible sequences, i.e., all ordered sets
composed with the elements of Ac;

• Let Tk denote the time elapsed while the
plant processes the sequence Ak. If the se-
quence is unfeasible, Tk =∞.

The scheduling optimization problem can be
stated as:

A∗ = argmin
k∈{1,...,|N |}

Tk

3 Main Results

This section is organized in three parts. Initially,
some definitions will be introduced, then an ex-
ample will be used to illustrate its application and
finally the proposed solution will be shown.

3.1 Definitions

Two new properties regarding the transitions in
and out of a given state are presented.

Definition 2 Let G = (Q,Σ, δ, q0, Qm) be a de-
terministic automaton. A state q is called a diver-
gent state (DS) if |Γ(q)| > 1. The set QD = {q ∈
Q | Γ(q) > 1} is the set of all DS states.

A state is called divergent if the number of
active events is greater than one.

The relationship between a string of events
and the DS states along its path is established in
Definition 3.

Definition 3 Let s ∈ Lm(G), then QDS(s) =
{q ∈ QD | δ(q0, s

′) = q ∀s′ ∈ s} is the set of
divergent states in relation to s.

QDS is the set of divergent states visited by a
string s.

3.2 Proposed solution

To find a sequence of events that minimizes the
makespan, the supervisor abstraction PS(S), Def-
initions 2 and 3 are used. The goal is to start from
an initial sequence of controllable events and make
small changes in the sequence, then evaluate the
impact of such change in the overall makespan.

Example 1 In Figure 1, the acyclic graph
PSprod represents all the sequences of con-
trollable events that creates two products in
a given manufacturing system. Lets consider

0 1 2

3

4

5

6 7

8

9 10 11
a1a1 a2

a1

a3

a2

a4a4

a2

a1

a3

a4 a1

a4

a3

Figure 1: Acyclic graph (PSprod) the QDS states
are filled in gray.

an initial string of controllable events s =
a1a2a3a4a1a2a3a4Lm(PSprod), QD = {2, 4, 5}

(filled gray). In this scenario, QDS(s) = {2, 4},
Figure 1.

The idea is to find a slightly different se-
quence. We do so by picking, from a divergent
state, a different continuation. For instance, we
can pick state 4 ∈ QDS(s) and pick a1 and com-
plete the sequence until the marked state. For each
state in QDS(s) a decision has to be made.

Since Lm(PSProd) ⊆ PS(S) and PS(S) has
the observer property, then any trace from
Lm(PSProd) can be executed in the complete sys-
tem (Theorem 1). This idea is formalized in an
algorithm in the following section.

3.3 Sequence Generation

The main idea is to take a string s ∈ Lm(PSprod)
and perform a series of modifications on it to gen-
erate a new string snew to be evaluated.

Initially, an individual (Ind) is represented by
a 2-tuple (Ind = (QDS , s)), where QDS is the set
of divergent states in relation to s and s is the
sequence of events.

With the purpose of generating a new indi-
vidual from Ind one parameter should be defined.
This parameter is related to the idea of how much
of the sequence is going to be modified. Its imple-
mentation in the algorithm is given by the percent-
age of preserved divergent states (λ) of QDS(s).

The other inputs are: the active event func-
tion (Γ), the set of all states Q and the set of
marked states (Qm). The output solution is a 2-
tuple (QDSnew, snew), where QDS ⊆ Q is the set
of divergent states and snew is the new complete
sequence of controllable events.

Algorithm 1: Sequence Generator
Input : Q,Qm, QDS , s, λ,Γ
Output: QDSnew, snew

1 QDSnew ← SelectDS(QDS , λ)
2 q ← Last(QDSnew)
3 snew ← NewSequence(s, q)
4 while q /∈ Qm do
5 if |Γ(q)| > 1 then
6 if q /∈ QDSnew then QDSnew ∪ {q}
7 σ ← Random(Γ(q))

8 else
9 σ ← Γ(q)

10 end
11 snew ← snewσ
12 q ← δ(q, σ)

13 end

In lines 1 to 3, the initial round(λ · |QDS(s)|)
states are kept and included in QDSnew (line 1)
and the current state q becomes the last state in
QDSnew(line 2). Also, the prefix of the new se-
quence is obtained (line 3), by running the au-
tomaton from the initial state to state q passing
through states of QDSnew. The sequence snew is
then iteratively generated based on the possible
continuations from the states reached (lines 4 to

13) until the marked state is reached. If another
divergent state is reached in the path (line 5 to 8),
the continuation from there is picked randomly
(and stored in snew) and the state is added to
QDSnew(snew).

Example 2 Algorithm 1 is applied to Example 1.
Let s = a1a2a3a1a2a4a3a4 and λ = 0.7. The set
QDS(s) = {2, 4, 5} is the set of divergent states
that are in the path o string s. With λ = 0.7,
70% of the DS states in QDS(s) are added to
QDS(snew) = {2, 4}. The string snew is initial-
ized as snew = a1a2a3, in line 3. At this point, we
enter the while loop. Once state 4 ∈ QDS, we run
lines 5 to 8, and pick a continuation randomly.
Suppose that event a4 is picked in line 7. Then,
snew = a1a2a3a4 and q ← 6. From state 6 on, no
divergent states are reached, so the complete se-
quence is going to be snew = a1a2a3a4a1a2a3a4, it
was obtained by the execution of the “else” in lines
8 and 9 until state 11 ∈ Qm is reached.

The greatest achievement in this work, in re-
lation to SCO related approaches, relies on the
string generation process that reduces the unfea-
sibility to zero.

4 Optimization Method

The optimization algorithm is presented and inte-
grated with the ideas presented in Section 3.3.

4.1 Clonal Selection Algorithm

The optimization method used was the Clonal Se-
lection Algorithm (CSA)(De Castro & Von Zuben,
2002), inspired in the principles of the immuno-
logical system of mammals. As presented by
(Oliveira et al., 2013) the improvement of the solu-
tions works as a metaphor for the immune system
of the living organisms. First, several replicas of
the current antibodies are made, with the most
useful antibodies receiving more replicas. Then,
these replicas are randomly mutated, this process
generates solutions that are similar to the original,
but they differ to some extent.

The pseudo-code for the CSA can be seen in
Algorithm 2. There, the inputs for this algorithm
are the number of individuals (N), the number
of generations (nGen), the percentage preserved
DS states from the original sequence (λ) and the
number of products (nP). In the end, the best
solutions (individuals) are returned.

In Algorithm 2 the initial population has 2N
random individuals (uniform distribution), this is
made to allow the exploration of the search space.
Then, this population is time evaluated and the
N best individuals (the ones with the smaller
makespan) are selected for the cloning process.

The number of clones (nClones) produced
for each individual (Ind) is calculated in terms

Algorithm 2: Clonal Selection Algorithm
Input : N,nGen, λ, nP
Output: Solution

1 Initial population of 2N individuals (nP)
2 N Best individuals are selected
3 for j ← 0 to N do
4 SelectedInd.add(BestIndividuala[j])
5 end
6 while Stop criterion not achieved do
7 for each Ind ← in Population do
8 TestedIndividual.add(Ind)
9 for k ← 0 to Eval(Ind, noClones) do

10 (QDSnew, Snew)← Seq.Gen(Ind, λ)
11 newInd← T ime.Ev(Snew, QDSnew)
12 TestedIndividual.Add(newInd)

13 end
14 NextGen.add(TestedIndividual.Min())
15 TestedIndividual.Clear()

16 end
17 Population← NextGen
18 CheckMakespan(Population, nGen)

19 end

of a function called Eval(Ind, noClones), that
guarantees that the best individual generates
(β)nClones clones while the worst one generates
(1− β)nClones clones, line 10. The parameter β
may assume values between 0 and 1, and the pa-
rameter nClones represents the maximum num-
ber of clones. The fitness function used is based
on the ranking of the solutions. The best solution,
the ones with the smallest makespan, are selected
for the next generation.

Regarding the mutation aspect, it is per-
formed only on the clones (lines 10 to 14) and
the parents are kept untouched, which can be
seen in line 9. Besides, its intensity varies with
a fitness function such that an individual with
higher fitness (smaller makespan), suffers muta-
tions that are less intense, while individuals with
lower fitness (meaning higher production time)
have a more aggressive mutation. The intensity
of the mutation is implemented by the parameter
λ. The mutation operation used was described in
Section 3.3 and implemented in Algorithm 1 and it
is presented in line 11 function Seq.Gen (Sequence
Generation).

The stop criterion is accordingly to two con-
ditions: the maximum number of generations
(MaxGen), or the number of generations with-
out improvements (nGen) is reached. In line 19
the function CheckMakespan() takes the current
population makespan and nGen.

5 Experimental Results

As a test for the proposed technique, the
flexible manufacturing system (FMS) problem
(de Queiroz et al., 2005) was used. The repre-
sentation of the FMS can be seen in Figure 2.
This production plant has two types of products,
A and B. Product A is a block with a conical pin

on top and product B is a block with a cylindri-
cal painted pin. There are eight machines in the
FMS, three Conveyors (C1, C2 and C3), a Mill, a
Lathe, a Robot, a Painting Device (PD) and an
Assembly Machine (AM). These devices are con-
nected through unitary buffers (B1 to B8). The
events are represented by arrows, as can be seen
in Figure 2.

Figure 2: Flexible Manufacturing System.

5.1 The Sequencing Codification

The production of each product (A and B) can
be expressed by a sequence of controllable events
that needs to be executed in a specific order. To
manufacture one unit of product A, it is necessary
to combine two parts: one Base and one PinA.
In a similar way, a product B is composed by the
pair Base and PinB . The sequence of controllable
events representing these three elements are:

• Base : 11− 31− 41− 35− 61;

• PinA : 21− 33− 51− 37− 63;

• PinB : 21− 33− 53− 39− 71− 81− 73− 65.

Example 3 Lets start with a sequential produc-
tion of products A and B.

• Product A = Base+PinA = 11−31−41−35−61−
21− 33− 51− 37− 63;

• Product B = Base + PinB = 11 − 31 − 41 − 35 −
61− 21− 33− 53− 39− 71− 81− 73− 65.

Those sequences can be interleaved with each
other in order to generate batches with different
makespans. For each controllable event there is a
correspondent uncontrollable event and the time
between their occurrences (first the controllable
that turns on a machine and then the uncontrol-
lable that turns it off). Each interval represents
the amount of time needed for a machine to finish
its task. The only exception is the controllable
event 61, that belongs to the Assembly Machine

(AM), which does not have a correspondent un-
controllable event. In Table 1, the pairs of events
and their time interval (expressed in time units -
t.u.) are listed according to the machines.

Table 1: Time interval between controllable and
uncontrollable events for the FSM.

Machine
Control.
Events

Uncontrol.
Events

Time
Interval
(t.u.)

C1 11 12 26
C2 21 22 26

Robot

31 32 22
33 34 20
35 36 17
37 38 25
39 30 21

Mill 41 42 31

Lathe
51 52 39
53 54 33

AM
61 - 15
63 64 27
65 66 27

C3
71 72 26
73 74 26

PD 81 82 25

5.2 Optimization Results

In order to solve this problem, a controllable and
non-blocking supervisor was synthesized, that re-
sulted in an automata with 45.504 states and
200.124 transitions, in which the supervisor ab-
straction was applied to be used as the search
space.

For this problem, any sequence representing
the manufacturing of NA products A and NB

products B, results in a string with 10NA + 13NB

controllable events. This happens because there
is a fixed amount of controllable events necessary
to produce products A or B.

The optimization problem consists of produc-
ing batches (products A and B) with the same
amount of products Nprod. In this scenario, Nprod

was varied from Nprod = 1 to Nprod = 10 and for
each pair of products (A and B) the makespan
was evaluated.

With the aim of finding the best optimiza-
tion performance, in different sets of products,
the parameters of the evolutionary algorithm were
tested. The chosen values were: λ = 0.9, nGen =
10, nClones = 15, MaxGen = 60 and the num-
ber of individuals N = 25. Lastly, for each batch
of products 30 runs of the optimization algorithm
were made.

All tests presented in this paper were executed
on a notebook with an Intel Core I7-3537U 2.0
GHz processor and 8.0 GB of RAM. In addition,
the UltraDES library (Martins et al., 2017) was
used to compute the supervisor and its abstrac-
tion.

The optimization results using the DS ap-
proach can be seen in Table 2. To compare the

findings, two other works were used, an imple-
mented version of the Timed Maximum Paral-
lelism (TMP) (Alves et al., 2016b) and the Formal
Verification (FV) approach (Malik & Pena, 2018).
In Table 2 the number of products A and B are
identified as NA and NB . For each method two
columns were created, one for the Runtime (total
simulation time) and another for the Makespan.
Under the DS Supervisor Abstraction, the to-
tal optimization time was considered, but in the
Makespan column, only the best results were pre-
sented.

The only method that yields exact results is
the Formal Verification method, what justifies its
always higher runtime. Although the Timed Max-
imum Parallelism is the fastest method, its solu-
tion is still local optimal. The most surprising
results came from the DS approach, which was a
combination of the new sequence generation tech-
nique and the CSA. This method was not only ca-
pable to reach the optimal solution, but also did
it three times faster than the verification method
in the worst case (NA = 10, NB = 10).

6 Conclusion

The SCT solution is used as the search universe for
the metaheuristics, like in the SCO approach. We
present an approach for sequence generation that
yields only feasible individuals for an optimization
algorithm.

We use a theoretical result that allows to con-
sider, as the search universe, the natural projec-
tion (to the alphabet of controllable events) of the
supervisor reducing in a great extent the complex-
ity of the problem. With this new sequence gen-
eration approach, we reduce the unfeasibility to
zero, making the approach much more efficient.

The approach does not guarantee that the op-
timal solution will always be reached. However,
our findings in the case study show that we were
able to reach the optimal solution (the same solu-
tion obtained by the formal verification method)
in all cases that it is known.

Acknowledgements

The authors acknowledge the support by the
Brazilian agencies CNPq, CAPES and FAPEMIG.

References

Abdeddäım, Y., Asarin, E. & Maler, O. (2006). Scheduling
with Timed Automata, Theoretical Computer Science
354(2): 272 – 300.

Alves, L. V., Bravo, H. J., Pena, P. N. & Takahashi, R. H.
(2016a). Planning on discrete events systems: A log-
ical approach, 2016 IEEE International Conference
on Automation Science and Engineering (CASE),
IEEE, pp. 1055–1060.

Alves, L. V., Pena, P. N. & Takahashi, R. H. (2016b).
Planejamento da produção baseado no critério do

Table 2: FMS Makespan optimization with three different methods
Formal Verification Maximum Parallelism DS Supervisor Abstraction

(NA,NB) Runtime Makespan Runtime Makespan Runtime Makespan
(1, 1) 0.6 min 238 0.0001 min 272 0.5 min 238
(2, 2) 2.7 min 395 0.0002 min 414 1.0 min 395
(3, 3) 5.0 min 552 0.0005 min 571 1.7 min 552
(4, 4) 7.5 min 709 0.0009 min 728 2.3 min 709
(5, 5) 10.2 min 866 0.0014 min 885 3.5 min 866
(6, 6) 14.0 min 1023 0.0021 min 1042 4.2 min 1023
(7, 7) 17.5 min 1180 0.0028 min 1199 5.2 min 1180
(8, 8) 21.5 min 1337 0.0037 min 1356 5.8 min 1337
(9, 9) 24.5 min 1494 0.0048 min 1513 7.4 min 1494

(10, 10) 30.2 min 1651 0.006 min 1670 7.9 min 1651

máximo paralelismo com restrições temporais, Anais
do XXI Congresso Brasileiro de Automática, CBA .

Arisha, A., Young, P. & El Baradie, M. (2001). Job shop
scheduling problem: an overview, International Con-
ference for Flexible Automation and Intelligent Man-
ufacturing, FAIM 01 pp. 682–693.

Bellman, R. E. & Dreyfus, S. E. (2015). Applied dynamic
programming, Princeton university press.

Cassandras, C. G. & Lafortune, S. (2009). Introduction to
discrete event systems, Springer Science & Business
Media.

Costa, T. A., Pena, P. N. & Takahashi, R. H. (2018). Sco-
concat: a solution to a planning problem in flexible
manufacturing systems using supervisory control the-
ory and optimization techniques, Journal of Control,
Automation and Electrical Systems pp. 1–12.

De Castro, L. N. & Von Zuben, F. J. (2002). Learning
and optimization using the clonal selection princi-
ple, IEEE Transactions on Evolutionary Computa-
tion 6(3): 239–251.

de Queiroz, M. H., Cury, J. E. & Wonham, W. M. (2005).
Multitasking supervisory control of discrete-event sys-
tems, Discrete Event Dynamic Systems: Theory and
Applications 15(4): 375–395.

Garey, M. R. & Johnson, D. S. (1980). Computers
and intractability: A guide to the theory of np-
completeness, Bulletin (New Series) of the American
Mathematical Society 3(2): 898–904.

Herzig, A., de Menezes, M. V., de Barros, L. N. & Wasser-
mann, R. (2014). On the revision of planning tasks,
ECAI 2014 - 21st European Conference on Artificial
Intelligence, 18-22 August 2014, Prague, Czech Re-
public - Including Prestigious Applications of Intelli-
gent Systems (PAIS 2014), pp. 435–440.

López-Mellado, E., Villanueva-Paredes, N. & Almeyda-
Canepa, H. (2005). Modelling of batch production
systems using petri nets with dynamic tokens, Mathe-
matics and Computers in Simulation 67(6): 541–558.

Malik, R. & Pena, P. N. (2018). Optimal task scheduling in
a flexible manufacturing system using model checking,
2018 14th International Workshop on Discrete Event
Systems,WODES 2018.

Martins, L. R. R., Alves, L. V. R. & Pena, P. N. (2017).
Ultrades-a library for modeling, analysis and control

of discrete event systems, Proceedings of the 20th
World Congress of the International Federation of
Automatic Control 50(1): 5831–5836.

Oliveira, A. C., Costa, T. A., Pena, P. N. & Takahashi,
R. H. (2013). Clonal selection algorithms for task
scheduling in a flexible manufacturing cell with super-
visory control, 2013 Congress on Evolutionary Com-
putation (CEC), IEEE, pp. 982–988.

Pena, P. N., Costa, T. A., Silva, R. S. & Takahashi, R. H.
(2016). Control of flexible manufacturing systems un-
der model uncertainty using supervisory control the-
ory and evolutionary computation schedule synthesis,
Information Sciences 329: 491–502.

Pinedo, M. L. (2016). Scheduling: theory, algorithms, and
systems, Springer.

Pinha, D. C., de Queiroz, M. H. & Cury, J. E. (2011).
Optimal scheduling of a repair shipyard based on su-
pervisory control theory, 2011 IEEE Conference on
Automation Science and Engineering (CASE), IEEE,
pp. 39–44.

Ramadge, P. J. & Wonham, W. M. (1989). The control
of discrete event systems, Proceedings of the IEEE
77(1): 81–98.

Silva, R. S., Oliveira, A. C., Pena, P. N. & Takahashi, R. H.
(2011). Algoritmo clonal para job shop scheduling
com controle supervisório, X Simpósio Brasileiro de
Automação Inteligente pp. 1376–1381.

Su, R., Van Schuppen, J. H. & Rooda, J. E. (2012). The
synthesis of time optimal supervisors by using heaps-
of-pieces, IEEE Transactions on Automatic Control
57(1): 105–118.

Vilela, J. N. & Pena, P. N. (2016). Supervisor abstraction
to deal with planning problems in manufacturing sys-
tems, 2016 13th International Workshop on Discrete
Event Systems, WODES 2016, pp. 117–122.

Wang, W., Yuan, C. & Xiaobing, L. (2008). A fuzzy ap-
proach to multi-product mixed production job shop
scheduling algorithm, Proceedings - 5th International
Conference on Fuzzy Systems and Knowledge Discov-
ery, FSKD 2008, Vol. 1, IEEE, pp. 95–99.

Wong, K. (1998). On the complexity of projections
of discrete-event systems, Proceedings- 1998 In-
ternational Workshop on Discrete Event Systems,
WODES 1998, pp. 201–206.

