
VORONOI MULTI-ROBOT COVERAGE CONTROL IN NON-CONVEX
ENVIRONMENTS WITH HUMAN INTERACTION IN VIRTUAL REALITY

Lucas Coelho Figueiredo∗, Ítalo Lelis de Carvalho∗, Luciano Cunha de Araújo Pimenta∗

∗Graduate Program in Electrical Engineering - Federal University of Minas Gerais
Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brasil

Emails: lucascoelho91@ufmg.br, italolelis@ufmg.br, lucpim@cpdee.ufmg.br

Abstract— This work presents the implementation of a robot coverage algorithm in non-convex environments
with the interaction of the robot group with a human agent in a virtual reality (VR) environment. On the virtual
reality application, the control of the group of robots is abstracted to simple commands, allowing the users to
interact with the swarm by creating and removing obstacles, creating density distribution functions and altering
the speed of robots. Simulations were implemented using ROS and Unity and demonstrate that robots could
react to the changes of the simulation environment imposed by the human agent.

Keywords— Human swarm interaction, multi-robot coverage, multi-robot systems, virtual reality, teleopera-
tion

Resumo— Este trabalho apresenta a implementação de um algoritmo de cobertura por múltiplos robôs em
ambientes não convexos com a interação de um agente humano em ambiente de realidade virtual (VR). Na
aplicação VR, o controle dos múltiplos robôs é abstráıdo para simples ações, permitindo com que o usuário
interaja com o grupo de robôs criando e removendo obstáculos, criando funções de distribuição de densidade e
alterando a velocidade dos robôs. Simulações foram implementadas usando ROS e Unity e demonstram que os
robôs reagem a mudanças no ambiente de simulação impostas pelo agente humano.

Palavras-chave— Interação humano enxame, cobertura por múltiplos robôs, sistemas de múltiplos robôs,
realidade virtual, teleoperação

1 INTRODUCTION

When dealing with robots, humans are very much
concerned how could they interact with them
and operate, in applications varying from mili-
tary to entertainment, medicine to transportation
and many other fields. Because of the decreasing
costs of robots and introduction of simpler and
more robust communication methods, one of the
hottest topics in this field of robot teleoperation
is human-swarm interaction (HSI) (Kolling et al.
2016). Some works in HSI, for example, allowed
humans influencing the actions of groups of robots
by using tablets (Diaz-Mercado et al. 2015) and
webpages (Becker et al. 2014). In this work, we are
interested in methods of robot coverage and con-
trol, to be used as an abstraction to allow smooth
human swarm interaction using a virtual reality
headset. Multi-robot coverage has also been a
largely studied problem in robotics (Cortes et al.
2004, Lloyd 1982, Pimenta et al. 2008, Pierson
et al. 2015, 2017, Bhattacharya et al. 2013, Bre-
itenmoser et al. 2010), in which we are concerned
in finding an optimal displacement of a group of
robots which minimizes a specific criteria. Typ-
ical applications to multi-robot coverage are, for
example surveillance and rescue, sensing and mili-
tary. In this work, we are combining the weighted
coverage present in Pimenta et al. (2008), using
adaptive weightings as in (Pierson et al. 2015,
2017), but in non-convex environments, like in
(Pimenta et al. 2008, Bhattacharya et al. 2013,
Breitenmoser et al. 2010). When involving HSI
with robot coverage, previous works are for ex-

ample, concerned in enabling humans to alter the
density probability functions (Diaz-Mercado et al.
2015), which can increase the presence of robots
in some specific areas, using a tablet. However,
in this work, we are investigating the interaction
between humans and robots using a virtual reality
headset.

Due to the availability of virtual reality con-
sumer electronics nowadays, there is a strong
trend in applying virtual reality in the context
of robot control and teleoperation. In El-Shawa
et al. (2017), authors investigated VR as a HRI for
simulation in training, considering environments
which robots and humans work together and col-
laborate. In Nigolian et al. (2017), they have im-
plemented an interface that allowed a group of
self-reconfigurable modular robots (SRMR) to be
controlled by an operator. They have used Room-
bots modules (Spröwitz et al. 2014), which have
SRMR capabilities and in their experiment, they
have used a group of them to form structures.

Other recent works in VR applications involv-
ing robotics allows users, for example, to inter-
act with manipulators using VR and a joystick
(Guerin et al. 2014), groups of robots and other
humans in mixed reality (Hönig et al. 2015), or
teleoperating mobile robots with a headset and a
joystick (Du et al. 2016). However, in this work
we focus on head mounted VR, with motion track-
ing of the user and handheld wireless controllers,
which allow a deeper level of immersiveness and
control of the group of robots.

This work is divided as the following: Section
2 describes the multi-robot coverage problem, Sec-

tion 3 describes the implementation of the appli-
cation, Section 4 shows the simulation results.

2 Multi-robot coverage in non-convex
environments

Let Ω ⊂ R2 be a given representation of the en-
vironment, P = {p1, . . . , pn} be the configuration
pi = [xi, yi] of n robots, where pi ⊂ Ω and q a
point in Ω. Like in (Pimenta et al. 2008, Pierson
et al. 2015, 2017), we deploy heterogeneous robots,
which have different weights w = {w1, . . . , wn}.
Let {V1, . . . , Vn} be the Voronoi partition of Ω,
with each cell defined as

Vi = {q ∈ Ω | d(q, pi) ≤ d(q, pj), ∀j 6= i}.

where d is a function that measures distances be-
tween points in Ω and agents. Ω is such that it can
be non-convex, like in (Pimenta et al. 2008, Bhat-
tacharya et al. 2013). Also, for our work, we use
the weighted Voronoi partition, also known as the
Power Diagram (Pimenta et al. 2008), with each
weighting wi serving as the performance weighting
for robot i, similar to (Pierson et al. 2015, Pimenta
et al. 2008, Pierson et al. 2017). To couple with
such considerations, we define the d function as
the geodesic power distance:

d(q, pi) = g(q, pi)
2 − w2

i . (1)

Let {W1, . . . ,Wn} be the geodesic weighted
Voronoi partition of Ω, with each cell defined as

Wi = {q ∈ Ω | g(q, pi)
2 − w2

i ≤ g(q, pj)
2 − w2

j ,

∀j 6= i}.
(2)

As a measure of the system performance we
define the deployment functional:

H(P,W) =

n∑
i=1

∫
Wi

[g(q, pi)
2 − w2

i]φ(q)dq , (3)

where the function φ : Ω → R+ is a density dis-
tribution function which defines a weight for each
point in Ω. Therefore, points with greater weight
values should be better covered by the networked
robots than points with smaller values.

With our deployment functional defined, the
objective of the coverage algorithm is to find an
optimal robot configuration P such that it min-
imizes H(P,W). In Cortes et al. (2004), it was
proven that the critical values of the functional
are such that all robots are in the centroid of their
Voronoi cells. One way to drive the robots to their
centroids is to use the Lloyd’s algorithm (Lloyd
1982), in such way that we could reach the opti-
mal robot configuration by: 1) constructing the
Voronoi diagram, 2) computing the centroids of

the Voronoi regions, 3) setting the agents position
to the centroid positions, and repeat from 1).

In order to minimize the value of H(P,W), a
control law to drive the robots needs to be chosen.
Considering a holonomic robot, such that ṗi = ui,
and as proven in Pimenta et al. (2008), in convex
environments and continuous time, a control law
for a holonomic robot that can minimizeH(P,W),
is:

ui = −Ki
∂H
∂pi

, (4)

which Ki is a 2 × 2 positive definite gain matrix.
The previous Equation can be expanded as:

∂H
∂pi

= 2(pi − p∗i)

∫
Wi

φ(q)dq , (5)

where p∗i is the centroid of Wi:

p∗i =

∫
Wi
qφ(q)dq∫

Wi
φ(q)dq

. (6)

However, in non-convex environments, the
centroid p∗i might be outside Wi. To address for
such problems, we use a control law adapted from
Pimenta et al. (2008). This control law allows the
agents to go towards the direction which will re-
duce the value of the deployment functional, but
not taking into account the position of the cen-
troid. Such control law is given by:

ui = −Ki
∂H
∂pi

= 2Ki

∫
Wi

g(q, pi)φ(q)zpi,qdq, (7)

where zpi,q is a unit vector tangent at pi to the
minimal path connecting pi and q.

In regards to the gain Ki used, it is a ma-
trix with a gain kpi > 0. Note that every robot
can have a different gain. The Ki matrix is repre-
sented as:

Ki =

[
kpi 0
0 kpi

]
(8)

Also, as in Pierson et al. (2015), the weights
of our agents are performance-based. This means
that the value of w = {w1, . . . , wn} is not fixed,
but rather adjusted depending on the value of Ki

present in Equation (7) and Equation (8).
A controller that can adjust the weights of the

robots based on their Ki gains could be:

ẇi =
−kw
MWi

∑
j∈Ni

((wi − f(Ki))− (wj − f(Kj)))

(9)

where kw is a positive proportional gain con-
stant, f(Ki) is some function of the properties of
Ki, Ni is a list of Voronoi cell neighbors of robot i

and MWi is the mass of the Voronoi partition Wi,
which can be calculated as:

MWi
=

∫
Wi

φ(q)dq. (10)

Proofs in Pierson et al. (2015) show that the
weightings using the controller in Equation (9) are
bounded and that weightings converge when (wi−
f(Ki))− (wj − f(Kj)) is equal for all i and j.

3 Implementation

3.1 Voronoi coverage control algorithm design

In order to implement the control algorithm, we
need a way to calculate the Voronoi tessellations.
In this work, we use a discrete graph search based
in Bhattacharya et al. (2013). The environment
Ω is discretized in uniform tiling, creating a graph
G with vertexes V(G) and edges E(G) and a
discretized density distribution φ. The idea be-
hind the algorithm present in Bhattacharya et al.
(2013) is to use a modified version of Dijkstra’s
algorithm (Dijkstra 1959), in which each robot
would be a different starting Voronoi sites of the
algorithm. The places where the wavefronts from
different robots collide form the boundaries of the
Voronoi tessellation. For this work, we modified
the algorithm from Bhattacharya et al. (2013) in
order to obtain the Voronoi partitions that are
neighbors of one another, which is necessary for
adjusting the weights as in Equation (9). The al-
gorithm was implemented using Python and ROS.
The source code is also available at GitHub. 1.

The complete pseudo-code for comput-
ing tessellations and control commands is
the Adapted Tessellation and Control algo-
rithm, where η is a list of neighbors of a specific
vertex and P (u) is a function that returns the
position of the center of the node that the two-
dimensional array u belongs to. Lines 33, 34 and
35 were added to the original algorithm described
in Bhattacharya et al. (2013) to add the determi-
nation of the Voronoi cell neighbors Ni.

1Source code available at https://github.com/

lucascoelhof/voronoi_hsi

{τ, {p′i},Ni,MWi} = Adapted Tessellation and Control

(G, {pi}, {wi}, φ)
Modified from Bhattacharya et al. (2013)
Inputs: a. Graph G

b. Agent locations pi ∈ Ω, i = 1, 2, · · · , N
c. Agent weight wi ∈ R, i = 1, 2, · · · , N
d. Discretized density distribution function φ

Outputs: a. The tessellation map τ ∈ I2
b. The next position of each robot,

p′i ∈ Ω, i = 1, 2, · · · , N
c. The list of neighbors of each robot,

Ni i = 1, 2, · · · , N
d. Mass of Voronoi partitions MWi , i = 1, 2, · · · , N

1 Initiate g: Set g(v) :=∞,
for all v ∈ V(G) // Geodesic distances

2 Initiate ρ: Set ρ(v) :=∞, ∀v ∈ V(G) // Power dists.
3 Initiate τ : Set τ(v) := −1, ∀v ∈ V(G) // Tessellation
4 // Pointer to robot neighbor. η : V(G)→ V(G)
5 Initiate η: Set η(v) := ∅, ∀v ∈ V(G)
6 for each (i ∈ {1, 2, · · · , N})
7 Set g(pi) = 0
8 Set ρ(pi) = −w2

i

9 Set τ(pi) = i
10 Set Ii := 0 // The control integral. Ii, 0 ∈ C
11 for each (q ∈ ηG(pi)) // For each neighbor of pi
12 Set η(q) = q
13 Set Q := V(G) // Set of un-expanded vertices
14 while (Q 6= ∅)
15 q := arg minq′∈Q ρ(q′) // Maintained by a heap

data-structure.
16 if (g(q) ==∞)
17 break
18 Set Q = Q− q // Remove q from Q
19 Set j := τ(q)
20 Set s := η(q)
21 if (s != ∅) // Equivalently, q /∈ {pi}
22 Set Ij += φ(q)× g(q)× (P (s)− P (pj))

23 Set MWi+ = φ(q)
24 for each (w ∈ ηG(q)) // For each neighbor of q
25 Set g′ := g(q) + g(q, w)
26 Set ρ′ := d(g′, wj)
27 if (ρ′ < ρ(w))
28 Set g(w) = g′

29 Set ρ(w) = ρ′

30 Set τ(w) = j
31 if (s != ∅) // Equivalently, q /∈ {pi}
32 Set η(w) = s
33 else
34 m = τ(w) // Gets robot id

// Adds robot m to the list of neighbors of j
35 Nj+ = m
36 for each (i ∈ {1, 2, · · · , N})
37 Set p′i := arg maxu∈ηG(pi) (P (u)− P (pi)) · Ii

// Choose action best aligned along Ii.
38 return {τ, {p′i},Ni,MWi}

3.1.1 Graph construction

The graph G is constructed using the occupancy
grid data provided from a ROS topic. The oc-
cupancy grid is a M × N matrix, in which each
element represents a small discretized area from
the map along a probability of that area being an
obstacle, with values varying from 0% to 100%.

https://github.com/lucascoelhof/voronoi_hsi
https://github.com/lucascoelhof/voronoi_hsi

This matrix is used to build a graph that connects
the vertexes with their neighboring vertexes based
on the probability of obstacle. If the neighbor has
over 20% obstacle probability value, it is consid-
ered an obstacle and thus it is not connected to
the graph. The algorithm can also receive at any
time new occupancy grid information from the VR
application, and when it does, a new graph needs
to be created.

3.1.2 Motion Algorithm

To couple with the possibility of dynamically
changing the environment Ω, some small changes
to the Adapted Lloyd’s algorithm present in
Bhattacharya et al. (2013) were implemented.
But the overall algorithm still consists of iterating
over “Adapted Tessellation and Control”
and updating the positions of the robots at each
iteration. The pseudo algorithm follows:{

τf , {pi}f , {wi}f
}

= Motion Algorithm

(G, {pi}, {Wi}, φ)
Inputs: a. Occupancy Grid OG

b. Initial agent locations pi ∈ Ω, i=1,2,··· ,N

c. Discretized density distribution function φ
d. Agent weight wi ∈ R, i=1,2,··· ,N

Outputs: a. Final tessellation map τ ∈ I2
b. Robot final position, p′i ∈ V(G), i=1,2,··· ,N

b. Robot final weightings, w′i ∈ R

1 while (t < n) // not converged
2 G = build graph(OG)
3 Set {τ, {p′i},MWi} :=

Adapted Tessellation and Control

(G, {pi}, {wi}, φ)
4 for each (i ∈ {1, 2, · · · , N})
5 Move ith robot from P (pi) to P (p′i)
6 Set pi = p′i // Update robot positions
7 Adapt Weightings(wi, MWi)
8 return {τ, {pi}} // Latest tessellation & positions

where Adapt Weightings is an implementation
of the Equation (9) and build graph is a function
that builds the graph as described in subsection
3.1.1 when there are changes on occupancy grid
OG. t is the current elapsed time and n is a time
set for convergence.

3.2 Virtual reality application

Virtual reality can bring some benefits to human
swarm interaction. Some of the main advantages
of VR robot teleoperation are:

3.2.1 Physical Isolation

On virtual reality, the user does not need to be
close to the agents to control them, as long the
agents still have communication with the human
who is controlling the swarm. This greatly ex-
pands the operational flexibility because it re-
moves the distance constraints, allowing the hu-

man to control the swarm even when the robots
are in dangerous or inhospitable locations.

3.2.2 Robot and environment additions

Since the world is a computer graphics world, we
are free to modify it and add any features that
are impossible in real world. For example, for this
work we implemented a flyover and teleporting
feature, which is totally feasible in virtual world,
but not yet fully replicable in real world for regular
humans.

3.2.3 Intuitivity and immersion

A virtual reality headset with motion tracking
and handheld wireless controllers feels very in-
tuitive to humans. It gives them the freedom
to look and walk around and interact with the
world with common gestures, like grabbing, pinch-
ing and pressing. Also, because of the high field
of view and resolution, the users feel totally im-
mersed on the virtual world.

On the implementation of the virtual reality
application, we used Oculus Rift. Since Oculus is
only officially supported in Windows and ROS in
Ubuntu, we used ROS in an Ubuntu virtual ma-
chine hosted by a Windows computer, which is
running Unity to create the virtual reality appli-
cation, with the help of VRTK. VRTK provides
tools and libraries that help on the development
of VR applications in Unity. To communicate be-
tween Unity and ROS, we used ROS# (Bischoff
(2018)), which is a set of libraries and tools in C#
for communication between ROS and C# applica-
tions. We used Stage simulator 2 for robot simu-
lation, map server3 for reading maps from image
files, and rosbridge 4 to communicate with ROS#.
Figure 1 shows the setup used for the simulations.
The Linux VM was used only for simplification,
as we could have two separate computers using
exactly the same implemented software.

Oculus Rift is a virtual reality headset devel-
oped by Oculus VR. It has a 1080x1200 resolution
OLED display per eye, with a 110◦ field of view.
Oculus has also a set of two controllers, called
Oculus Touch, and a positional tracking system,
Constellation. It uses two infrared cameras to get
the position of the headset and the two controllers
in three dimensions. Figure 2 shows an user wear-
ing the Oculus Rift. For this work, a VR applica-
tion was developed using Unity, ROS# and Ocu-
lus Rift, and this application is available as open
source5.

2Stage simulator http://wiki.ros.org/stage
3ROS map server package. http://wiki.ros.org/map_

server
4Rosbridge package.http://wiki.ros.org/rosbridge_

suite
5Source code available at https://github.com/

lucascoelhof/VoronoiUnityTeleoperation

http://wiki.ros.org/stage
http://wiki.ros.org/map_server
http://wiki.ros.org/map_server
http://wiki.ros.org/rosbridge_suite
http://wiki.ros.org/rosbridge_suite
https://github.com/lucascoelhof/VoronoiUnityTeleoperation
https://github.com/lucascoelhof/VoronoiUnityTeleoperation

Figure 1: Setup for interfacing ROS and Oculus
Rift.

Figure 2: User wearing the virtual reality headset.

On the VR application, users can see the
robots, obstacles, the Voronoi tessellation and the
density distribution function. In order to interact
with the robots, users can teleport, fly over, create
and remove obstacles, set robot weights and cre-
ate density distribution functions. These are the
implemented interactions between the users and
the group of robots:

3.2.4 Obstacle creation and removal

When users press the A button, an obstacle is cre-
ated in the location of their right arm. When cre-
ating this obstacle, ROS# publishes on ROS the
new occupancy grid, and the Voronoi application
reads it and updates the graph and the tessella-
tion. Likewise, they can also remove obstacles
using B button. Since the graphs are updated
and the tessellation algorithm runs regularly, the
robots can react to the new obstacles.

3.2.5 Density function interaction

The Voronoi algorithm implemented allows the
use of density distribution functions, which can at-
tract the robots. For simplicity, we modeled these

density distributions as a 2 dimensional Gaussian
function. When the user presses the right trig-
ger button, a Gaussian is created. The function is
modeled using the following equation,

f(x, y) = B +Ae
−
(
(x−xcσ)

2
+(y−ycσ)

2
)

(11)

where A is the height where the arm of the user is,
B is a constant, xc and yc are the position of the
right arm in relation to the tessellation plane in
each respective coordinate and σ can be controlled
by moving the left arm in relation to the right arm.
Approaching the arms reduces the value of σ while
moving them away increases σ. When the user
sets the new density function, ROS# sends the
Gaussian parameters to the Voronoi application,
which regenerates the density distribution and up-
dates the Voronoi diagram.

3.2.6 Robot gains and weight

To allow humans to manually set the speed gain
of the robots, they can select a speed gain kpi
and then hold the right trigger button to create a
radius that is used to select a group of robots and
increase their kpi gains, as in Figure 3. As shown
on Equation (2) and (9), this will have impact on
the weight values of the robots and thus, their
Voronoi partition Wi. When a value is set, we use
ROS# to publish to our Voronoi application the
new values of kpi .

Figure 3: User selecting a robot.

3.2.7 Teleporting

Although using the Oculus Constellation the users
can walk freely on the virtual world, it can be tir-
ing or limiting to walk around always. To solve
this problem, we implemented a teleporting fea-
ture using VRTK. When users press the right
thumb button in Oculus Touch, a laser pointer
shows up, and when the button is released, the
user is teleported to the pointer location.

3.2.8 Aerial view

To better see the world and the robots and get
a panoramic view of the simulation, we imple-

mented a feature that allows users to have an
aerial view of the simulated area. When users
press the left right thumb button, they are tele-
ported to a place above, with a better view. Also,
using the aerial view they can produce density dis-
tributions with values much higher than standing
on ground.

4 Simulations

To demonstrate the VR application and the
Voronoi controller, we conducted simulations 6.
For a better understanding of the simulation and
results, we suggest to watch the video available
in the footnote. Using a rectangular environment
with three obstacles in the middle, the results
demonstrate the interaction between the user and
eight robots and the convergence of the algorithm
even after modifications made by the human op-
erator. This simulation could also work with a
bigger number of robots, but we have chosen eight
for arbitrary reasons.

All agents start with kpi = 1. The white ra-
dius around the robots show their current weight.
On simulation, we have used differential drive
robots, so we have used a point-offset controller
(Michael & Kumar 2009) to address the nonholo-
nomic constraints. To show the convergence of
the algorithm, the human agent didn’t interact
with the group of robots until around t = 150.
Then, the human agent selects robot 1 (green)
to increase its kpi value to 3.2. Because of the
adaptive weightings controller on Equation (9),
increasing the kpi value increases the weight of
robot 1, while decreasing the weightings of other
robots, as shown on Figure 10. Since we use a
geodesic power distance as in Equation (2), in-
creasing the weight of the robot will increase its
Voronoi partition V1. At t = 200, the human
agent created a Gaussian shaped density distribu-
tion function centered on the intersection of the
Voronoi partitions of robots 7 (orange), 2 (blue)
and 5 (purple). This changed the convergence and
attracted more robots to that area. Figure 7 shows
the convergence of robots and the increased num-
ber of robots on that area, differently from Fig-
ure 6, which the robots are more spread around.
Then, the human agent creates a flat density func-
tion, which removes the importance of the previ-
ously set area. Around t = 300, the human agent
changed the occupancy grid of the area, connect-
ing some of the obstacles in the area. On Figure 8,
we can see that because of the dynamic graph gen-
eration present on the Motion Algorithm, the
robots could react to the changes of the obstacles
and reached another optimal distribution. Fig-
ure 9 show the deployment functional over time.

6Simulation video available at https://www.youtube.

com/watch?v=cpniwb6UrF8

Spikes present around t = 200 and t = 250 are be-
cause of changes on the density distribution func-
tion.

Figure 4: Distribution of robots and tesselation at
t = 0

Figure 5: Convergence of robots to an optimal
position at t = 150

Figure 6: Robot 1 with increased weight, with a
larger Voronoi partition than on Figure 5

5 CONCLUSION

In this paper, authors have implemented an appli-
cation for coverage control of non-convex environ-

https://www.youtube.com/watch?v=cpniwb6UrF8
https://www.youtube.com/watch?v=cpniwb6UrF8

Figure 7: Convergence showing robots attracted
by a Gaussian density function.

Figure 8: Changes on the obstacles were intro-
duced but robots were able to reach a new con-
vergence.

Figure 9: Deployment functional over the simula-
tion.

ments with the interaction of a human agent using
a virtual reality headset. Users could then inter-
act with the swarm by creating obstacles, chang-
ing the density distribution function (and thus al-
tering the concentration of robots on the area),
selecting robots to increase their speed and their
power on the area and move freely on the area, ei-
ther by walking around, teleporting or flying. We
could show that teleoperating a group of robots in
VR can be beneficial because it gives a very deep

Figure 10: Weightings of the robots. Around
t = 150, the human changed the gain kpi of robot
1 (green), which changed the weightings of all
robots.

level of immersion, but at the same time keep-
ing the human physically isolated, which could
be applied for example for teleoperating swarm
of robots in hazardous environments or simply
too far away from the human operator. Also, it’s
worth mentioning that since we’ve used common
libraries and abstraction layers, like Unity and
VRTK, one could easily adapt the current soft-
ware to work with any other VR headset other
than Oculus Rift. Also, other contributions of this
work are the open software Oculus Rift applica-
tion for multi-robot interaction and the coverage
control algorithm, both available at GitHub.

Future work may implement a mixed reality
concept, in which the view of the human operator
could come from another robot, like for example a
quadcopter flying over the swarm of robots. Other
possibilities may also include ways of treating the
creation of obstacles in such way that when an
obstacle is created, it would create a repulsion on
the robots to avoid robots colliding with the newly
created obstacles.

ACKNOWLEDGMENT

We gratefully acknowledge the support from
the Brazilian institutions FAPEMIG, CNPq and
CAPES for this work.

References

Becker, A., Ertel, C. & McLurkin, J. (2014),
‘Crowdsourcing swarm manipulation experi-
ments: A massive online user study with large
swarms of simple robots’, 2014 IEEE Interna-
tional Conference on Robotics and Automation
(ICRA) pp. 2825–2830.

Bhattacharya, S., Ghrist, R. & Kumar, V. (2013),
‘Multi-robot coverage and exploration on Rie-
mannian manifolds with boundaries’, Int. J.
Rob. Res. 33(1), 113–137.

Bischoff, M. (2018), ‘ROS#’.
URL: https://github.com/siemens/ros-sharp

Breitenmoser, A., Schwager, M., Metzger, J. C.,
Siegwart, R. & Rus, D. (2010), ‘Voronoi cover-
age of non-convex environments with a group
of networked robots’, 2010 IEEE Interna-
tional Conference on Robotics and Automation
pp. 4982–4989.

Cortes, J., Martinez, S., Karatas, T. & Bullo,
F. (2004), ‘Coverage control for mobile sensing
networks’, IEEE Transactions on Robotics and
Automation 20(2), 243–255.

Diaz-Mercado, Y., Lee, S. G. & Egerstedt, M.
(2015), ‘Distributed dynamic density coverage
for human-swarm interactions’, 2015 American
Control Conference (ACC) pp. 353–358.

Dijkstra, E. W. (1959), ‘A note on two prob-
lems in connexion with graphs’, Numer. Math.
1(1), 269–271.

Du, J., Sheng, W. & Liu, M. (2016), ‘Human-
guided robot 3D mapping using virtual real-
ity technology’, 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) pp. 4624–4629.

El-Shawa, S., Kraemer, N., Sheikholeslami, S.,
Mead, R. & Croft, E. A. (2017), ‘“Is this the
real life? Is this just fantasy?”: Human prox-
emic preferences for recognizing robot gestures
in physical reality and virtual reality’, 2017
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS) pp. 341–348.

Guerin, K. R., Riedel, S. D., Bohren, J. & Hager,
G. D. (2014), ‘Adjutant: A framework for
flexible human-machine collaborative systems’,
2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems pp. 1392–1399.

Hönig, W., Milanes, C., Scaria, L., Phan, T.,
Bolas, M. & Ayanian, N. (2015), ‘Mixed real-
ity for robotics’, 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) pp. 5382–5387.

Kolling, A., Walker, P., Chakraborty, N., Sycara,
K. & Lewis, M. (2016), ‘Human Interaction
With Robot Swarms: A Survey’, IEEE Trans.
Hum.-Mach. Syst. 46(1), 9–26.

Lloyd, S. (1982), ‘Least squares quantization in
PCM’, IEEE Trans. Inf. Theory 28(2), 129–
137.

Michael, N. & Kumar, V. (2009), ‘Planning
and Control of Ensembles of Robots with
Non-holonomic Constraints’, Int. J. Rob. Res.
28(8), 962–975.

Nigolian, V., Mutlu, M., Hauser, S., Bernardino,
A. & Ijspeert, A. (2017), ‘Self-reconfigurable
modular robot interface using virtual reality:
Arrangement of furniture made out of roombots
modules’, 2017 26th IEEE International Sym-
posium on Robot and Human Interactive Com-
munication (RO-MAN) pp. 772–778.

Pierson, A., Figueiredo, L. C., Pimenta, L. C. A.
& Schwager, M. (2015), ‘Adapting to perfor-
mance variations in multi-robot coverage’, 2015
IEEE International Conference on Robotics and
Automation (ICRA) pp. 415–420.

Pierson, A., Figueiredo, L. C., Pimenta, L. C.
& Schwager, M. (2017), ‘Adapting to sensing
and actuation variations in multi-robot cover-
age’, Int. J. Rob. Res. 36(3), 337–354.

Pimenta, L. C. A., Kumar, V., Mesquita, R. C.
& Pereira, G. A. S. (2008), ‘Sensing and cover-
age for a network of heterogeneous robots’, 2008
47th IEEE Conference on Decision and Control
pp. 3947–3952.

Spröwitz, A., Moeckel, R., Vespignani, M.,
Bonardi, S. & Ijspeert, A. J. (2014), ‘Room-
bots: A hardware perspective on 3D self-
reconfiguration and locomotion with a homo-
geneous modular robot’, Rob. Auton. Syst.
62(7), 1016–1033.

	INTRODUCTION
	Multi-robot coverage in non-convex environments
	Implementation
	Voronoi coverage control algorithm design
	Graph construction
	Motion Algorithm

	Virtual reality application
	Physical Isolation
	Robot and environment additions
	Intuitivity and immersion
	Obstacle creation and removal
	Density function interaction
	Robot gains and weight
	Teleporting
	Aerial view

	Simulations
	CONCLUSION

