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Abstract— In this paper, we present the trajectory and attitude control of a quadrotor UAV (Unmanned Aerial Vehicle), using
a PD controller for the path control, and a PID for the attitude control. With our tuning method, we were able to achieve a
performance similar to those of more complex controllers. We compared our results with those of traditional tuning techniques,
through graphical analysis and MSE (Mean-Squared Error) calculation of two different generated trajectories. Although here we
used classical PD and PID, the proposed algorithm can easily be applied to any other type of controller.
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Resumo— Neste trabalho, apresentamos o controle de trajetória e de postura de um VANT (Veículo Aéreo Não Tripulado) do
tipo quadcóptero, usando um controlador PD para o controle de trajetória, e um PID para o controle de equilíbrio, ou postura. Com
o método de sintonia proposto, foi possível obter um desempenho similar àqueles de controladores mais complexos. Os resultados
foram comparados com técnicas de sintonia tradicionais, por meio de análise gráfica e cálculo do MSE (Mean-Squared Error -
Erro Médio Quadrático) em duas trajetórias diferentes. Ainda que aqui tenham sido usados controladores PD e PID, o algoritmo
proposto também pode ser utilizado para sintonizar outros tipos de controladores.
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1 Introduction

In the last decade, unmanned aerial vehicles (UAV)
have been widely used to facilitate human life, ei-
ther by doing dangerous or difficult tasks, or by mak-
ing civilian chores more efficient. In this context, the
quadrotor configuration is interesting, because it en-
ables a vertical take-off and landing and hovering in
small areas, which is impossible for a fixed-wing craft.
The quadcopter is also more efficient than the tradi-
tional single propeller helicopter, since the small pro-
pellers reduce the torque on the system (Hussein and
Nemah, 2015). Figure 1 shows a traditional quad-
copter.

In spite of its simple mechanical design, its dy-
namics behavior makes the aircraft control substan-
tially difficult, seeing that it is in fact an underactu-
ated nonlinear system (Bouktir et al., 2008). That is,
there are only four rotors that generate for input trusts
to control six degrees of freedom.

It follows that quadcopters are generally known
to be dynamically unstable systems (Hussein and
Nemah, 2015), so a proper control method is neces-
sary to achieve stability. Such methods are usually
very complex (Liu et al., 2015), (Khan et al., 2011),
(Cao et al., 2016) and may prove themselves a chal-
lenge when it comes to embedded systems, even
though the technological advancement in the last few
years has made UAVs development possible (Paiva
et al., 2016).

As a result, we can find a lot of research on quad-
copter modeling (Bouabdallah, 2007), (Bresciani,
2008), (Mahony et al., 2012), many of which try
to simplify the system dynamics (Liu et al., 2013),

(González-Sánchez et al., 2013), (Gan et al., 2013).
Nonetheless, the community still lacks a standard
model for this type of system (González-Sánchez
et al., 2013). When it comes to controllers, there is
a lot of research focusing only on attitude and altitude
control, (Gan et al., 2013), (Khan and Kadri, 2015),
even those which use classical controllers like PID
(Paiva et al., 2016), (R.A. García, 2012), (Lukmana
and Nurhadi, 2015).

In this paper, we propose a PSO (Particle Swarm
Optimization)-based tuning technique for trajectory
and attitude/altitude control using classical PD and
PID controllers, for trajectory and attitude/altitude re-
spectively. This approach allowed us to achieve an im-
pressive performance without the need to rely on com-
plex control algorithms that are not always suitable
for embedded systems (R.A. García, 2012), (Paiva
et al., 2016), (Zheng et al., 2016). Based on a graphi-
cal analysis and MSE (Mean-Squared Error) compar-
ison, we concluded that our technique obtained better
results than traditional tuning methods, and it can be
an alternative for stable controllers on embedded sys-
tems.

This paper is organized as follows: in Section
II, we will make a brief mathematical study of the
quadcopter model and the PD and PID controllers em-
ployed; in Section III, the tuning method approach will
be explained; in Section IV, we will make an analysis
of the results; and Section V shows our conclusions
and suggestions for future work.



Figure 1: A generic quadrotor UAV.

2 Modeling and Control of the Quadrotor

2.1 Quadrotor Model

Figure 2: Axis labels and conventions. Yaw (ψ),
pitch(θ ), roll(φ ).

In this Section, we present a synthesis of the
quadrotor modeling used for the simulation. The
reader can find more details in (Hartman et al., 2016)
and (Mahony et al., 2012). Figure 2 shows our axis
and angles convention.

We will start our modeling by presenting the in-
ertia matrix for the quadrotor in Equation 1. This ma-
trix describes the quadcopter mass moment of inertia
across the axes and is very important to the flight dy-
namics of the system.

Jb =

Jxx 0 0
0 Jyy 0
0 0 Jzz

 (1)

Jb is the inertia of the quadcopter relative to the
body frame, and Jxx, Jyy and Jzz are the inertia of the
quadcopter across each body frame axis.

Next, come the thrust and torque coefficient re-
lations. The thrust T of a single motor/propeller sys-
tem can be calculated by Equation 2, where cT is the
lumped parameter thrust coefficient dependent on the
rotor specifications, the air density, the radius of the
rotor; and ω is the angular velocity of the rotor.

T = cT ×ω
2 (2)

Similarly, it is possible to demonstrate Equation
3, for the torque coefficient. In this case, cQ reffers to

the lumped parameter torque coefficient, and and ω is
still the angular velocity of the rotor.

Q = cQ ×ω
2 (3)

With this information, Equation 4 shows a matrix
that describes the thrusts and torques on the system,
where d is the distance between the motors and their
respective axes of rotation.


ΣT
τφ

τθ

τψ

=


cT cT cT cT
0 d.cT 0 −d.cT

−d.cT 0 d.cT 0
−cQ cQ −cQ cQ




ω2
1

ω2
2

ω2
3

ω2
4

 (4)

Following, it is important to highight the Throt-
tle Command Relation, presented in Equation 5.
Here, ωss is the expected steady-state motor RPM,
(T hrottle%) is the throttle percentage command, cR
is the throttle % to RPM conversion coefficient, and b
is the y-intercept of the linear regression relationship
(Hartman et al., 2016).

ωss = (T hrottle%)cR +b (5)

For the final matrix, we also need to take into
account the gyroscopic forces resulting on the body,
which are governed by the inertia of each motor ro-
tating components (Jm), the rolling and pitching rates
(P and Q) and the speed of each motor/prop system
(ωi). Hence, Equations 6 and 7 present the gyroscopic
torques created by the motors for pitch and roll action.

τφgyro = JmQ
(

π

30

)
(ω1 −ω2 +ω3 −ω4) (6)

τθgyro = JmP
(

π

30

)
(−ω1 +ω2 −ω3 +ω4) (7)

Finally, we can construct the final matrix, which
refers to the moments present in the body frame result-
ing from the aerodynamics, thrusts, and torques on the
system. See Equation 8.

M =

 d.cT .ω
2
2 −d.cT .ω

2
4 + JmQ

(
π

30
)
(ω1 −ω2 +ω3 −ω4)

−d.cT .ω
2
1 +d.cT .ω

2
3 + JmP

(
π

30
)
(−ω1 +ω2 −ω3 +ω4)

−cQ.ω
2
1 + cQ.ω

2
2 − cQ.ω

2
3 + cQ.ω

2
4


(8)

2.2 Quadrotor Control Strategy

As mentioned above, in this paper we use classical PD
and PID approaches for trajectory, attitude and altitude
control of the quadrotor. These controllers will be im-
proved using a precise tuning algorithm. In Figure 3,
a detailed block diagram explains the control strategy
here employed.

First, a Trajectory Generator sends the (x,y) Path
Commands to the PD Trajectory Controller. This con-
troller then calculates the Attitude Commands, accord-
ing to Equation 9, which can be easily recognized as
the classic PD controller equation.



Attcmd = K p×Error−Kd × dV x
dt

(9)

Here, Attcmd can be either the θ or φ commands,
for the X position controller and Y position controller,
respectively. The Error variable corresponds to the
velocity error. K p and Kd are the controller gains to
be tuned (Hartman et al., 2016).

These Attitude Commands will then be sent to the
PID Attitude Controller, where φ , θ , ψ and z correc-
tions will be calculated by Equation 10 and received
by the Quadcopter Dynamics block. The State Input
is then sent to the controller blocks for feedback.

Corr = K p×Error+Ki×
∫

Error×dt −Kd × dz
dt

(10)

K p, Ki and Kd are the gains to be tuned; the vari-
able Error represents the error in altitude or attitude,
that is, the errors in φ , θ , ψ or z. Also, the variable z
in Equation 10 can be either φ , θ , ψ or z, depending
on the one we want to control at the time (Hartman
et al., 2016).

Figure 3: Block diagram of the control strategy.

3 PSO-Based Tuning Algorithm

Our tuning method consists of 3 steps. First, we exe-
cute a particle swarm search for the best values for the
controller gains, by simulating the drone flight. We
save each attempted combination of parameters and
the resulting trajectory error, in order to map the pa-
rameter combinations into the error. Then, we use
this saved data to model the Trajectory Error (TE) as a
function of the parameters, that is, we model the Error
as a high dimension function of the controller parame-
ters. Finally, with this model, we search the parameter
space for the smallest Error using again a PSO. With
this, we avoid the excessive computational cost of the
flight simulation, running the search in a mathematical
construct of the simulation itself.

For clarity, the step-by-step goes as follows:

• Particle Swarm Optimization (PSO):

We used the PSO proposed in (Wang and Liu,
2016) and tested in (Basso et al., 2017). Unlike stan-
dard PSO algorithms, in which the particles are guided
only by its best historical parameter set and swarm
best parameters, it introduces the best neighbor infor-
mation, an abandon mechanism and a chaotic search
operator. This algorithm is thoroughly explained in
the referred paper.

• Modeling the TE as a function of the controller
parameters:

During the PSO execution, many different param-
eter combinations are searched, each with a different
effectiveness in the trajectory tracking. We save each
trial parameters and Trajectory Error. This informa-
tion is then used to model the error as a multidimen-
sional function of the controller parameters.

We assume the TE to be a high order sparse poly-
nomial function of the parameters, so all we have to
do is take a truncated Taylor expansion and find the
correct expansion weights. This is modeled as shown
in Equation 11:

T E = P×w (11)

Where T E stands for the Trajectory Error; P is
the vector containing each polynomial combination of
parameters, up to the desired order; and w is the vector
with the weight of the Taylor expansion.

This minimization problem is solved by em-
ploying an L0 minimization algorithm, as shown in
(Mohimani et al., 2009).

• Second Particle Swarm Optimization (PSO):

With the model obtained, we perform another
PSO for the optimal parameters.

4 Simulation and Results

In this section, we discuss the results of the appli-
cation of the referred tuning method to a quadcopter
Simulink model, which was adapted from (Hartman
et al., 2016) and (Mahony et al., 2012). The PSO sim-
ulations were also conducted in this same platform.

We simulated two different trajectories, a circle
and a triangle. To each of them, we compared the 3D
Graphic, the 2D Trajectory and the Altitude of classi-
cal and proposed tuning methods, as well as the MSE.

In the first trajectory, a 2m radius circle, the quad-
copter starts on the ground, then it goes up till a 3m
height, and it goes back to the ground after the circle
is completed in the air. In the next figures, the refer-
ence is shown in blue, while the output is red. Figures
4, 5 and 6 show the results of the quadcopter behavior
for PD and PID gains tuned using classical methods.

Even though we can see a considerable deviation
from the reference path on the output in Figure 5, the
most unstable part is the altitude, which has a consid-
erable amount of oscillation around the 3m reference,
as we can see in Figures 4 and 6. The goal here is to



Figure 4: Comparison between reference and 3D be-
havior of the quadcopter for traditional tuning.

improve this with the PSO-based tuning. The results
for the circle trajectory using the new proposed tuning
method can be seen in Figures 7, 8 and 9.

Figure 5: Comparison between reference and 2D tra-
jectory with traditional tuning.

Figure 6: Altitude behavior with traditional tuning.

With the new tuning method, we can see that the
altitude is much more stable, showing only a small

Figure 7: Comparison between reference and 3D be-
havior of the quadcopter for the PSO-based tuning.

peak at the beginning, but achieving stable regimen
very quickly, as ilustrated in Figure 9. The 2D trajec-
tory is also better, following the reference completely.
The deviation seen at the end of the red line in Figure
8 is due to the landing of the quadcopter, which can be
verified in the 3D representation in Figure 7.

Figure 8: Comparison between reference and 2D tra-
jectory with the PSO-based tuning.

Now for the triangle trajectory, a righ isosceles
triangle with 1m catheti. For the traditional tuning, we
have Figures 10, 11 and 12. Although the oscillation
here is also evident in Figures 10 and 12, if we check
the graphics scale, we can see that it is in the order of
centimeters, which is much smaller than in the previ-
ous trajectory, the circle. This is expected, since the
triangle is a much simpler path to follow, because it
consists of straight lines.

Using the PSO-based tuning, however, the oscil-
lations are even smaller, in the order of millimeters,
and the convergence of altitude is still faster than be-
fore. This can be verified in Figures 13, 14 and 15.

Despite the fact that the 2D trajectory output in
Figure 14 was slightly smaller than the reference, the
overall MSE was still better than the traditional tuning



Figure 9: Altitude behavior with PSO-based tuning.

Figure 10: Comparison between reference and 3D be-
havior of the quadcopter for traditional tuning.

Figure 11: Comparison between reference and 2D tra-
jectory with traditional tuning.

one, as shown in Table 1. The gains adopted in each
simulation are displayed in Table 2.

Figure 12: Altitude behavior with traditional tuning.

Figure 13: Comparison between reference and 3D be-
havior of the quadcopter for the PSO-based tuning.

Figure 14: Comparison between reference and 2D tra-
jectory with the PSO-based tuning.

Table 1: Mean-Squared Error analysis
MSE - Circle Path MSE - Triangle Path

Traditional tuning method 2.6469 0.0517
PSO-based tuning method 2.3244 0.0397

Improvement 12.18% 23.21%



Figure 15: Altitude behavior with PSO-based tuning.

Table 2: Gains calculated and used in the simulations
Traditional Tuning PSO-based Tuning

K pθ (PD) 0.32 0.7368
Kdθ (PD) 0.1 0.0030
K pφ (PD) 0.32 1.0815
Kdφ (PD) 0.1 0.0099

K pφ 2 29.3560
Kiφ 1.1 1.7548
Kdφ 1.2 6.1140
K pθ 2 43.9193
Kiθ 1.1 0.2127
Kdθ 1.2 6.0170
K pψ 4 0.3468
Kiψ 0.5 0.4036
Kdψ 3.5 11.4075
K pz 2 23.1958
Kiz 1.1 0.0366
Kdz 3.3 9.4616

5 Conclusions

In this paper, we developed a PSO-based tuning tech-
nique that improved the quality of our classical PD and
PID controllers when compared to the traditional tun-
ing methods, with no added complexity to the con-
trol system. From the results shown in the previous
Sections, we can see that the algorithm is capable
of achieving the system convergence. This was veri-
fied in two different paths with different complexities.
This method can also be applied to other types of con-
trollers in order to upgrade their performances.

For future work related to this subject, we sug-
gest using the technique in an embedded system for
real time flying experiments, in order to verify how
the controller tuned with this algorithm will behave in
comparison with the gains obtained by traditional tun-
ing. Also, implementing this algorithm with a more
robust controller that is very sensitive to tuning, like
the Nonlinear Model Predictive Controller (NMPC)
(Khan et al., 2011), may have very interesting appli-
cations.
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