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Abstract— This paper proposes a method based support vector machine and wavelet transform in order to
discriminate different disturbances in power transformers appropriately, such as internal and external faults, and
transformer energizations. The proposed method recreates the conventional differential function using a distur-
bance detector, by means of the energies of the wavelet coefficients, which enables the support vector machine
(SVM)-based differential phase functions. Furthermore, the proposed method can work in conjunction with other
system protections by sending warning signals, for example in external fault conditions of the transformer, so it
makes the protection system more reliable and intelligent. Several events were simulated in the alternative tran-
sient program, such as external and internal faults, turn-to-turn and turn-to-ground fault with variations of fault
resistance, fault inception angle, and fault type parameters, as well as transformer energizations. The method
presented better success rate and a faster trip in the internal fault detection then the conventional different
protection.
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Resumo— Este artigo propõem um método baseado em máquina de vetor de suporte e transformada wavelet
a fim de discriminar apropriadamente distúrbios em transformadores de potência tais como faltas internas, faltas
externas e energização de transformadores. O método proposto recria a função diferencial convencional usando
um detector de distúrbios, baseado nas energias dos coeficientes wavelet, o qual habilita as funções diferenciais
de fase baseadas em máquinas de vetor de suporte. Além disso, o método proposto pode trabalhar em conjunto
com outras proteções do sistema, enviando sinais de alarme, por exemplo, em casos de falta externa, tornando a
proteção mais confiável e inteligente. Vários eventos foram simulados no software alternative transient program,
tais como: falta externa, falta interna, Faltas entre espira-espira e espira-terra, variando-se o ângulo de incidência
de falta e a resistência de falta. Faltas entre espira-espira e espira-terra foram variadas as percentagens dos enro-
lamentos. Além disso, foram simulados casos de energização de transformadores. O método apresentou melhor
taxa de acerto e rápida atuação na detecção de faltas internas quando comparado com a proteção convencional.

Palavras-chave— Proteção diferencial, transformador de potência, transformada wavelet, máquinas de vetor
de suporte.

1 Introduction

Power transformers are essential devices in a
transmission and distribution system, since its op-
eration is associated with the continuity of the
electrical energy supply by interconnecting net-
works with different voltage levels. The increase
of the number of nonlinear loads and the devel-
opment of smart grids connected to the power
systems might lead to nonsinusoidal operation
and the occurrence of faults of the transformer
(Masoum et al., 2017). Faults in power transform-
ers are considered the more severe than faults in
transmission networks (ABB, 1999). In addition,
the cost of acquisition, installation, and repairs
of power transformer are among the highest on
the system. Therefore, condition monitoring of
the power transformer is required to a quick and
accurate diagnosis of disturbance as well predict
fault condition (Masoum et al., 2017).

The differential function has been largely used
in power transformer protection schemes. The
idea of this function is to compare the currents
that flow through the terminals of the protected

transformer, so that in the occurrence of an in-
ternal fault, the equipment must be disconnected
from the electrical system (Medeiros et al., 2016).
However, a great disadvantage of this technique
is associated to the false tripping during inrush
currents in the transformer energization maneu-
ver or external fault clearance situations, as well
as the presence of the distorted currents due to
the current transformer (CT) saturation. The
commercial differential relays have used additional
functions based on retrains and blocking harmonic
components to improve the protection (Rahman
and Jeyasurya, 1988), (Guillén et al., 2016), once
that during energization there is the presence
of second and fifth order harmonic components.
The signal trip occurs when second or fifth har-
monics the differential current exceeds a certain
percentage of fundamental component (Medeiros
et al., 2016). Therefore, these functions avoid the
trip relay during inrush currents.

The problem is that these harmonics can ap-
pear in other operating conditions such as CT sat-
uration, internal faults, and nonlinear loads bring



on the relay misoperation (Guillén et al., 2016).
In addition, the appropriate materials used in ac-
tual power core transformer producing low con-
tend harmonic which may cause improper oper-
ation of the relay (Masoum et al., 2017), (Shah
and Bhalja, 2013). Another problem is that the
differential function no send trip signal for criti-
cal internal faults, that is an internal fault in the
transformer windings involving few turns.

In order to face these limitations, new tech-
niques and methods based on artificial intelligence
and signal processing have been applied for dis-
criminating internal faults from other power trans-
former disturbances accurately (Mao and Aggar-
wal, 2001), (Segatto and Coury, 2006), (Tripathy
et al., 2010). Among these algorithms, the
wavelet transform is an efficient tool for analy-
sis of non-stationary signals at different levels of
time-frequency, which makes it widely applicable
in the detection of electrical power system dis-
turbances (Costa et al., 2010), with applicabil-
ity to the power transformer differential protec-
tion (Oliveira and Bretas, 2009), (Medeiros et al.,
2016), (Medeiros and Costa, 2017). On the other
hand, the characteristic of learning makes the ar-
tificial neural networks (ANN) able to solve many
problems of pattern classification, such as fault
classification in transmission lines (Silva et al.,
2006), (Costa et al., 2006), (Swetapadma and
Yadav, 2015), and power transformers (Tripathy
et al., 2010), (Fernandes et al., 2016). For in-
stance, (Mao and Aggarwal, 2001) was proposed
the wavelet transform and a multilayer percep-
tron (MLP) neural network for classification of
internal faults, external faults, and transformer
energizations. An optimal probabilistic neural
network (PNN) was proposed for the same pur-
pose in (Tripathy et al., 2010). In (Segatto and
Coury, 2006), an MLP algorithm was presented
to discriminate internal faults from other events
and a reconstruction of the saturated current sig-
nals was performed based on recurrent ANNs.

Techniques based on support vector machine
(SVM) are comparable and often superior to those
obtained by other learning algorithms, such as
the ANNs (Haykin, 1998). For instance, MLP
trained using the back-propagation algorithm, it
supply a computationally efficient solution to the
pattern-classification (Haykin, 1998), with simple
architecture, nevertheless, the not optimal solu-
tion. In the order hand, the same problem can
be to solved using SVM in a manner close to the
optimal solution. Furthermore, the good accu-
rate performance SVM do not need the domain
knowledge built into the design of the machine.
However, SVM demand on computation complex-
ity (Haykin, 1998). It can be possible to achieve
a classification performance comparable to that
of SVM patter-classification problems using MLP.
However, it needs to build problem-domain knowl-

edge into the design of the MLP, and tune a
multitude of design parameters (Haykin, 1998),
which sometimes may not be feasible for difficult
pattern-classification problems.

This paper proposes the application of SVM-
based differential relay in order to discriminate
different disturbances in power transformers ap-
propriately, such as internal and external faults,
and transformer energizations. The proposed
method recreates the differential function using a
disturbance detector, by means of the energies of
the wavelet coefficients, which enables the SVM-
based differential phase functions.

The method was assessed in a power sys-
tem modeled in the alternative transient program
(ATP) (Dommel, 1984). Several events were simu-
lated, such as external and internal faults, internal
fault clearance with variations of fault resistance,
fault inception angle, and fault type parameters,
as well as transformer energizations. The pro-
posed method sent the trip signal in 100% of the
internal fault cases, whereas it provided no trip to
energization of transformers and external faults.
The proposed differential protection scheme can
work in conjunction with other system protections
by sending warning signals, for example in exter-
nal fault conditions of the transformer, in order to
accomplish the protection more reliable and intel-
ligent.

2 SVM-Base Differential Relay

The proposed relay consists of three SVM-
based differential phase functions SVM 87TW A,
SVM 87TW B, and SVM 87TW C, for phases
A, B, and C, respectively. These functions use a
combination of SVM and the Real-Time Station-
ary Wavelet Transform (RT-SWT) to recreate the
conventional differential function. The protection
zone of this relay is delimited by the current trans-
formers (CT1 and CT2), which is represented in
Fig. 1 by the hatched region. Fig. 2 depicts the
block diagram of the proposed SVM-based differ-
ential relay. Further details of the algorithm are
presented in the following subsections.
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Figure 1: The basic block diagram of the SVM-
based differential relay proposed.
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Figure 2: The SVM-based differential relay algo-
rithm proposed.

2.1 Preprocessing (block 1)

At the beginning, the analog currents in the
terminals of the primary iHφ = {iHA, iHB , iHC}
and secondary iXφ = {iXA, iXB , iXC} of the
power transformer are obtained through a cur-
rent transformer CT1 and CT2, respectively. The-
ses analog currents are filtered by means of anti-
aliasing filters with cutoff frequency of fc attend-
ing the Nyquist criterion, followed by analog-to-
digital conversions, where the currents are sam-
pled at a sampling frequency fs.

2.2 RT-SWT (block 2)

In each time step of the algorithm, the RT-
SWT wavelet coefficients w = {wiHφ and wiXφ}
of the currents are computed, which is defined as
inner products of the wavelet filter hψ with the
currents i = {iHφ and iXφ}, per sampling k, as
follows (Medeiros and Costa, 2017):

w(l, k) =
1√
2

L−1∑
n=0

hψ(n)
◦
i(k − L+ n+ 1 + l), (1)

where k ≥ ∆k−1; ∆k ≥ L is the length of sliding

window; L is the length of hψ; 0 ≤ l ≤ L;
◦
i(k +

m) =
◦
i(k−∆k+m) with m ∈ N∗ (periodic signal

in ∆k samples); ∆k is defined as fs/f which fs is
the sampling rate.

In Eq. 1 the wavelet coefficients w(0; k) with
l = 0 are the wavelet coefficients of the con-
ventional stationary wavelet transform (SWT),
whereas w(l 6= 0; k) are additional wavelet coef-
ficients with border distortions which are for de-
tecting overdamped transients of faults (Medeiros
and Costa, 2017).

2.3 Phase and Magnitude Adjustments (block 3)

The differential protection needs that the pri-
mary and secondary currents measured by the dif-
ferential relay are in phase. For instance, a trans-
former which has the windings connected in delta-
wye, the winding currents will be 30◦ angular mis-
match. If there is no adjustment for this phase,
the relay will be understood as a fault condition
and will therefore operate. Therefore, it is neces-
sary to perform the phase and magnitude adjust-
ment in order to calculate the differential currents.

In this paper the phase and magnitude adjust-
ment is made in the wavelet coefficients, as follows
(Medeiros and Costa, 2017): w′HA

w′HB
w′HC

 =
1

TAPH
MH

 wHA

wHB

wHC

 (2)

 w′XA
w′XB
w′XC

 =
1

TAPH
MH

 wXA

wXB

wXC

 (3)

where TAPH and TAPX are taps of the TC1 and
TC2, respectively, used for magnitude adjustment.
MH and MX are transformation array used for the
angular mismatch adjustment.

2.4 Differential Wavelet Coefficients (block 4)

In the conventional transformer differential
protection algorithms, the operating and restrain-
ing currents (Iop and Ires) are computed from
CT secondary phasor currents. In the proposed
method the differential operations are applied di-
rectly in the wavelet coefficients, as proposed by
(Medeiros and Costa, 2017), which proved to be
similar the conventional method. The differential
wavelet coefficients wdiff =

{
wiop and wires

}
are

defined as follows (Medeiros and Costa, 2017):

wiopφ(0, k) =
1√
2

(w′iHφ(0, k) + w′iXφ(0, k)), (4)

wiopφ(l 6= 0, k) = w′iHφ(l, k) + w′iXφ(l, k), (5)

wiresφ(l, k) = w′iHφ(l, k)− w′iXφ(l, k), (6)

where 0 ≥ l < L; ∆k ≥ L.



2.5 Differential Wavelet Energy (block 5)

The differential wavelet coefficient energy sig-

nal Ewdiff =
{
Ewiopφ and Ewiresφ

}
are computed

from the respective differential wavelet coefficients
wdiff =

{
wiop and wires

}
, as follows (Medeiros

and Costa, 2017):

Ewdiff (k) = Ewadiff (k) + Ewbdiff (k), (7)

where k ≥ ∆k − 1. Ewadiff is due to the first
L− 1 boundary wavelet coefficients of the sliding
window, defined as (Medeiros and Costa, 2017),
(Costa, 2014):

Ewadiff (k) =

L−1∑
l=1

w2(l, k), (8)

where k ≥ ∆k − 1. Ewbdiff is computed with no
boundary wavelet coefficients of the sliding win-
dow with length ∆k − L (Medeiros and Costa,
2017), (Costa, 2014):

Ewbdiff (k) =

k∑
n=k−∆k+L

w2(0, n). (9)

2.6 The Wavelet Disturbance Detector (block 6)

The disturbance detection is based on a com-
parison between the energy signal and energy
threshold Ewdiff = {Eiopφ , Eiresφ} in order to de-
tect the beginning of the disturbance. When any
disturbance occurs, such as external faults, inter-
nal faults, and transformer energizations, it is ex-
pected an increase of the energy Eiopφ and Eiresφ
due to the transients. Therefore, a disturbance is
detected if (Medeiros et al., 2016):{

Ewdiff (k − 1) ≤ Ewdiff ,

Ewdiff (k) > Ewdiff ,
(10)

where kd = k corresponds to the sampling in
which the method detected the disturbance.

When a transient disturbance is detected
though (10), accomplishes the comparison be-
tween Eiopφ and Eiresφ in order to detect the in-
ternal faults (Medeiros et al., 2016), whereas the
internal fault detector in this paper is based on
the SVM as addressed in the remainder of this
section.

2.7 The phase function SVM 87TW (block 7)

Once the disturbance is detected, the al-
gorithm enables the differential functions SVM
87TW in order to classify and discriminate inter-
nal fault, external fault and energization in power
transformer appropriately. If the disturbance is
associated to an internal fault, the SVM-based
differential relay is able to send trip signal to the
relay.

The SVM 87TW function protection is com-
posed of SVM. It is not feasible to use as SVM
input the window wavelet signal, since that would
imply a very large number of input for the SVM
and consequently difficult the convergence of the
SVM (Mao and Aggarwal, 2001). Alternatively,
the differential energy wavelet Ewdiff is stored
in a sliding window with the last four samples
(k − 3, k − 2, k − 1, k), with k > kf + 3, where
kf is the first fault sample. Therefore, with each
new sample a displacement of one sample is per-
formed, discarding the first sample and adding the
new sample to the end of the sliding window. Fig
3 depicts a wavelet spectral energy vector with the
sliding window with the first 4 fault samples.

Figure 3: Vector of spectral energy wavelet.

The SVM used in the SVM 87TW function
has as input the sliding window of 4 samples of
the energies of the wavelet coefficients of the Eiopφ
and Eiresφ currents, as shown in Fig. 4. There-
fore, the SVM has 24 input patterns, 12 being the
three operating currents and 12 the three phase
restraint currents A, B and C, respectively.

Figure 4: Inputs for SVM 87TW phase functions.

The target output of the SVM 87TW has
value in accordance with Table 1. It is not neces-
sary to use a target output to a normal condition,



because the SVM 87TW functions are activated
when occurs a transient disturbance.

Table 1: Target output of SVM 87TW.

Disturbance Type Target Output

Transformer energization 1
External fault 2
Internal fault 3

3 Performance Evaluation

Fig. 5 depicts the power system used for eval-
uation of the SVM-based differential relay pro-
posed for power transformer disturbance classifi-
cation scheme, which was modeled by using the
program ATP. CT models reported by the IEEE
Power System Relaying Committee in [24]. C400
800-5 A and C800 1000-5 A CTs were used in
the high-and low-voltage windings of the power
transformer, respectively. Also, the CT in the
neutral of the high-voltage winding was taken as
C400 800-5 A. More details about the parameters
of the power system are presented in (Medeiros
et al., 2016).

Figure 5: Single line diagram of the electrical sys-
tem.

The databases with records of internal faults,
external faults, and transformer energizations
were generated in order to verify the performance
of the SVM-based differential relay.

• Internal fault: faults into the power trans-
former differential protection zone, on the
high and low voltage windings, between CTs
and T1;

• Critical internal fault: turn-to-turn and
turn-to-ground faults of the transformer
windings;

• External faults: faults on the high voltage
bus 2 and low voltage bus 3;

• Transformer energization: switching per-
formed by the high voltage bus 2, with the
secondary terminal opened.

Based on the electrical power system pre-
sented in Fig. 5, several oscillographic records

with internal faults, external faults and energiz-
ing transformers were generated. Table 2 summa-
rizes the characteristics of all the performed sim-
ulations, considering single-phase, two-phase and
three-phase faults, varying the fault incidence an-
gle (θi) and the fault resistance (θi) with steps
equal to θi and ∆Ri, respectively. Turn-to-turn
and turn-to-ground fault types were considered
varing the winding percentages, as shown in Table
3.

Table 2: Database for performance evaluation of
the SVM-based differential method.

Parameters
Int. Ext.

Energization
Fault Fault

Fault 0 ◦ ≤ θi ≤ 180 ◦ 0 ◦ ≤ θi ≤ 180 ◦

Inception ∆θi = 30 ◦ ∆θi = 1 ◦

Angle

Fault 1 ≤ Ri ≤ 10Ω
-

Resistance ∆Ri = 1

Fault

AG, BG, CG,

-
Type

AB, BC, AC,

ABG, BCG, ACG,

ABC

Number
1400 1400 180

of Cases

Int.- Internal; Ext.- External.

Table 3: Database for performance evaluation
of the SVM-based differential method turn-to-
turned and turn-to-ground fault.

Parameters

Internal Internal

Turn-to-GND Turn-to-Turn

Fault Fault

Winding 1% ≤ θesp ≤ 99% 1% ≤ θesp ≤ 99%

Percent ∆θesp = 1% ∆θesp = 1%

Fault
AT AT

Type

Number
196 196

of cases

GND: Ground.

The SVM-based differential relay pre-
processing was designed for currents sampled
at fs = 15.36 kHz (256 samplings per cycle of
60 Hz), which is enough to evaluate transients
generated by faults by using only the first level
wavelet decomposition.

A white Gaussian signal with signal-to-noise
ratio of 60 dB was added for each the databases
illustrated in the Tables 2 and 3. This noise level
is typical in transmission systems (Petrovic et al.,



2012). For the treatment of the current signals
it was used a second-order butterworth filter with
cutoff frequency fc = 0.9fs/2.

The choice of the mother wavelet may change
according to the application. When it comes to
detection of short transients, the mother wavelet
of the Doubechies family db (4), db (6) present
better results, while for long transients, the db
(8) and db (10) are better (COSTA, 2014). The
works of Medeiros and Costa (2017) and Shah
and Bhalja (2013b) used the db (4), in the
first level of decomposition, to detect faults in
power transformers, which obtained better results.
In Medeiros and Costa (2017) one-cycle window
is used to increase the sensitivity of the relay.
Therefore, proposed method will uses the mother
wavelet db (4) for the calculation of the wavelet
coefficients with border distortions of the currents
of the primary and transformer secondary.

The databases summarized in Tables 2 and 3
was randomly partitioned in two sets, 50% used
for the training of the SVM 87TW functions pro-
tection and the 50% others for evaluated protec-
tion proposed SVM-based differential relay.

3.1 Performance of the Wavelet Disturbance De-
tector.

The detector proposed by (Medeiros and
Costa, 2017) proved to be efficient in detecting the
disturbances presented in Tables 2 and 3, obtain-
ing a 100% accuracy in the detection of external
faults, internal faults and transformer energiza-
tion. The energy threshold Ewdiff was adopted
equals 0,5.

3.2 Performance Assessment During the Train-
ing of the SVM 87TW Function.

The proposed SVM-based differential relay
has three SVM 87TW phase differential protection
functions, SVM 87TW A, SVM 87TW B and SVM
87TW C, respectively. As the principle of the per-
formance of the phase functions is identical, then
only a single SVM will be trained to be used in
each of the three phase functions. It is expected
that the SVM trained for function protection SVM
87TW A can be used for SVM protection func-
tions SVM 87TW B and SVM 87TW C with the
equal performance of the SVM 87TW A. For each
record of the training the first 64 sliding windows
of the last four 4 samples differential wavelet co-
efficients energy Ewiopφ and Ewiresφ were stored from
the first sample fault. In this way, each training
base record became 64 training partners. To re-
duce the training set, the training patterns were
randomly chosen, which were subdivided into two
sets, the training and test set, respectively, each
with a percentage of 70 % and 30 % of the total
training partners.

The confusion matrix for the test set of 1,350
patterns, from the trained SVM 87TW A func-
tion is illustrated in the Fig. 6 . The first three
diagonal cells correspond to the percentage of cor-
rect classification of the three classes: energiza-
tion (EN), internal fault (IF), external fault (EF).
Each class contains 450 patterns. Only three pat-
terns of energization are incorrectly classified as
internal fault, which corresponds to 0.67% of all
450 evaluated patterns. Therefore, 99.33% are
correctly classified. For the 450 internal fault pat-
terns, 438 are predicted correctly by the SVM,
however, 12 are incorrectly classified as energiz-
ing. Similarly, for the 450 internal fault patterns,
438 are predicted correctly by the network, and
12 are incorrectly classified as energizing. Thus,
99.32% of success rate was obtaiend. The trained
neural network obtained an accuracy of 98.00% in
the prediction of the test classes, being only 2.0%
the error rate. Given these results, it is expected
that the trained network get a good result like the
SVM 87TW protection function.

EN IF EF

447 3 0 99,33%

33,11% 0,67% 0,00% 0,67%

12 438 0 97,33%

2,67% 32,44% 0,00% 2,67%

12 0 438 97,33%

2,67% 0,00% 32,44% 2,67%

94,90% 99,32% 100,00% 98,00%

5,10% 0,68% 0,00% 2,00%

Target Class

O
u

tp
u

t

C
la

ss
Confusion Matrix

EN

IF

EF

Figure 6: Confusion matrix obtained from the
SVM training for SVM 87TW A protection unit.

3.3 Performance Assessment Action for protec-
tion SVM-Based Differential relay

The proposed method was evaluated with re-
spect the success rate and relay operating time
considering half cases presented in the databases
of the Tables 2 and 3, which were not used in
the training of SVM. In the following subsections
will be presented details of the performance of
the SVM-based differential protection for internal
faults, critical internal faults, external fault and
transformer energization. In addition, the results
obtained the proposed method was compared with
the conventional method of differential protection
proposed by (Tavares and Silva, 2014).

3.3.1 Internal Fault

The conventional method using the combina-
tion of the 87T and 87Q functions obtained a
98.27% a success rate with an average operating



time of 16.77 ms for internal faults. The pro-
posed method, only with the SVM 87TW phase
functions, showed a 100% success rate for internal
faults. In addition, the proposed method obtained
an average time of 0.555 ms, therefore, its perfor-
mance was superior to the conventional one.

Considering the obtained results, the SVM
could be used without reduction of protection sen-
sitivity and actuation time. Therefore, the train-
ing standards presented to the SVM, composed by
the energies of the wavelet coefficients of the oper-
ation and constraint currents, contained sufficient
characteristics so that the SVM could be able to
correctly predict for cases, which implies in min-
imizing the training time of the SVM and size of
the training set.

3.3.2 Critical Internal Faults: Turn-to-
Turn and Turn-to-Ground Faults

The SVM 87TW phase functions protection
obtained a success rate of 95.91% for turn-to-
ground faults. Regarding the turn-to-turn faults,
the proposed method obtained a success rate of
83.67%. Theses cases that the protection did not
send a trip signal for the turn-to-ground cases in-
volving 1% to 5% of the primary windings, which
are connected in grounded star. They also did not
send a trip signal for the turn-to-turn cases involv-
ing 47% to 53% of the windings of the secondary
that are connected in delta. The average operat-
ing time of the SVM 87TW functions for internal
turn-to-ground and turn-to-turn faults were 0.91
ms and 1.1 ms, respectively.

The conventional differential protection
method obtained a success rate of 94.9%, with
an average operating time of 17.7 ms. However,
the conventional method only obtained this
performance with the support of the negative
sequence functions, since some of the critical
cases were not detected by the differential phase
functions protection with harmonic restriction.
Therefore, the proposed method presents best
performance to the conventional method using
only the SVM 87TW phase functions and with
an upper an average operating time relay.

3.3.3 External Fault and Energization

The proposed method did not send false trip
signals in any of the cases of external fault and
transformer energization. Similarly, the conven-
tional differential protection method did not send
false trip signals in the same cases evaluated.
The proposed SVM-based differential relay has
no problem in distinguishing internal energizing
faults without using the harmonious content. In
addition, it has provided additional information
on the type of disturbance, for cases of transformer
energization and internal fault, which can be used

for power monitoring purposes and support the
other protections of power system.

4 Conclusion

This paper presented a SVM-based differen-
tial relay for protecting power transformers based
on both the support vector machines and the real-
time stationary wavelet transform. The perfor-
mance of the proposed method was superior to
the conventional method, for the cases analyzed,
showing that it is possible to recreating the differ-
ential protection using only the phase function,
without the need of negative sequence function
and harmonic content. In addition, the proposed
method presented a faster operating time than the
conventional method for internal faults. Further-
more, the proposed method has addition function,
which send warning signals to the other system
protections in abnormal conditions, such as exter-
nal fault and energization.
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