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∗Depto. de Engenharia de Telecomunicações e Controle
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Abstract— Adaptive Cruise Control (ACC) systems for vehicles came as an improvement to cruise systems
and there are several approaches for its development. In this paper, it is used a structure of two control loops
for simulate the ACC system. The vehicle model was estimated using the system identification theory. An outer
loop control manages radar data to adapt into a suitable cruise speed, and an inner loop control aims for the
vehicle to reach cruise speed given a desired performance. For the inner loop, it is used two different approaches
of model predictive control: a finite horizon prediction control, known as MPC, and an infinite horizon prediction
control, known as IHMPC.
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1 Introduction

The Advanced Driver Assistance Systems (ADAS)
are technologies developed to help a driver to han-
dle a vehicle more easily and to improve the driv-
ing safety. One of these technologies is the Cruise
Control (CC), a system that controls the longi-
tudinal speed of the vehicle to achieve a desired
cruise speed. In 1995, the Japan improved this
technology, creating the Adaptive Cruise Con-
trol (ACC) systems for their vehicles (Shakouri
et al., 2015).

Usually in ACC researches, the control design
is divided into two separate loops, an inner and an
outer, as can be seen in Figure 1. For inner loop
control, there are two input signals: cruise speed
and system (vehicle) speed. This loop outputs are
the actuators signals for the system. There are
three input signals for outer loop control: user de-
fined speed, vehicle speed and all important radar
data, for example distance from the closest vehicle
and its relative speed.

Figure 1: Representation of an ACC System

A control theory that has been very popular
in ACC researches is the model predictive control
theory (MPC). This technique is quite particular
considering that its origins came from industrial
control processes.

In Shakouri et al. (2015), a nonlinear model
was used as a simulated system in order to com-
pare three controllers: a proportional-integral (PI)
controller with Gain Scheduling, a Balanced-based
adaptive controller (Shakouri et al., 2012) and a
nonlinear model predictive controller (NMPC).

This paper aims to analyze the performance
of model predictive controllers for a future appli-
cation in a Polo Sedan, to start the research of
ADAS within the vehicle. Such vehicle has a cus-
tomized Electronic Control Unit (ECU), which of-
fers direct access to the engine using CAN mes-
sages. In this work, two different approaches of
predictive controllers that use linear models are
considered. Firstly, a conventional finite horizon
MPC and later an infinite horizon MPC, known as
IHMPC. To analyze the robustness of both con-
trollers, this paper suggests simulations with sys-
tem changing model.

2 System Identification

The equations for modeling a translational vehi-
cle are steadfast to obtain (Shakouri et al., 2010).
However, the biggest issue for phenomenological
modeling is gathering the system parameters, in
particular, for the Polo vehicle.

Given this situation, an alternative method
for obtaining the vehicle model is using sys-
tem identification theory (Dias et al., 2015).
The selected input signal for the identification
was Pseudo-random Binary Sequence, known as
PRBS. The signal parameters for generating a
PRBS signal are number of samples, frequency
bandwidth, minimum and maximum signal lim-
its.

Usually, the frequency bandwidth is deter-
mined considering the slowest time constant of the
system. This time constant, named as τ , can be
identified, for instance, applying a step input and
analyzing the system output (Ljung, 1999).

The throttle pedal range varies from 0 (0% or
not pushed) to 1 (100% or fully pushed). For an
experiment of 60 seconds, in the first 30 seconds a



CAN message of 30% of throttle pedal was sent to
the ECU. In the last 30 seconds, this CAN mes-
sage was changed to 15% of throttle as input. The
system step response is presented in Figure 2.

Figure 2: System step response.

The step response pointed out that the system
has a time delay of one time sampling of θ = 0.5
seconds. Then, the system time constant was es-
timated as approximately τ = 5 seconds. Using a
time sampling of Ts = 0.5 seconds (fs = 2 Hz) im-
plies that the identification process would collect
10 samples of system constant τ , which is enough
for system identification (Ljung, 1999).

A sufficient frequency bandwidth can be cal-
culated with fs/20Hz to avoid short bit times,
which are the slowest interval that PRBS remains
constant during all of its sequence. Choosing
fs = 2 Hz gives a frequency bandwidth up to
0.1 Hz. The system is nonlinear and for this re-
search the system identification algorithm pro-
duces linear models. Additionally, the vehicle
speed response changes with each set gear. Given
these circumstances, it was be necessary to make
some study proposals.

Firstly, all system identification and control
will be established with the vehicle set in the third
gear, since its speed range is wide and sufficient
for ACC. The only system input is the throttle
pedal, since the electronic brake system is still not
available in the vehicle. The system output is the
vehicle speed.

During the identification experiments, there
are intervals that the PRBS maintains constant,
either its maximum or minimum designed value.
However, the front wheels of the vehicle are in
constantly rolling over the dynamometer and, if
the accelerator pedal is not enough, the motor en-
gine stalls. Experimentally, this minimum value
was identified as 10%. Moreover, if the accelera-
tor pedal is overly pushed, the engine will exceed
6000 rotations per minute, which is detrimental
for the engine. Again experimentally, this maxi-
mum value was identified as 35%.

Nevertheless, using a PRBS with its range
from 10% to 35% would produce an inefficient lin-
ear model, because there are nonlinearities in the
system that would strongly affect the identifica-
tion. This research proposes to split accelerator

range into intervals and each one would produce
a linear model. Each model are identified with
different input signals, from 10% to 20%, another
signal from 20% to 30% and lastly a signal from
30% to 35%.

The identification experiments were done with
a dynamometer to assist automotive researches,
shown in Figure 3. It has capability of setting a
torque load and can be used to simulate different
roads, for example higher slope or different ter-
rains. Dynamometer load was used for increasing
the number of identification experiments and, con-
sequently, the number of linear models acquired.

Figure 3: Photo of dynamometer

2.1 PRBS specification

Next, in Table 1 it has been specified every PRBS
signal used in this system identification. The
time sampling chosen was Ts = 0.5 seconds, or
fs = 2 Hz. Every experiment lasted 4 minutes,
resulting in 480 samples. The first 3 minutes, or
360 samples, were used for system identification
and the last minute of experiment, 120 samples,
were used for system validation. It was used three
dynamometer loads: 0% (named as load A), 10%
(load B) and 15% (load C).

In order to identify the system with each
load, thus reducing correlations within each ex-
periment, each input range created 12 minutes of
data, or 1440 samples. Within these 12 minutes,
the first 4 minutes were used for Load A, the fol-
lowing 4 minutes were used for Load B and the
last 4 minutes for Load C.

Table 1: PRBS data specification
Bandwidth Minimum Maximum

Signal 1 [0 0.1] Hz 10% 20%
Signal 2 [0 0.1] Hz 20% 30%
Signal 3 [0 0.1] Hz 30% 35%

2.2 ARX Models

An autoregressive-moving-average (ARX) model
with one input and one output has the following
structure (Ljung, 1999):

Ana(z−1)y(t) = Bnb(z−1)u(t)



Given an input u and an output y, an ARX
model calculates all coefficients of the polynomi-
als Ana(z−1) and Bnb(z−1) in order to reduce the
error e(t). The system time delay is defined as
nk and the orders of Ana(z−1) and Bnb(z−1), re-
spectively, na and nb. Given Ts = 0.5 seconds,
for all ARX models the time delay order was de-
fined as nk = 1 because the time delay for step
response was θ = 0.5 seconds. The orders were
chosen utilizing the minimum description length
(MDL) criteria. The chosen order for A(z−1) was
na = 2 and for B(z−1) was nb = 3.

From now on, the ARX models will be refer-
enced as shown in Table 2.

Table 2: Models designation
Load A Load B Load C

Signal 1 Model 1A Model 1B Model 1C
Signal 2 Model 2A Model 2B Model 2C
Signal 3 Model 3A Model 3B Model 3C

In Table 3, it is shown all nine ARX models
coefficients, changing the minimum and maximum
input values and the dynamometer load. Every
system has one sample delay (nk = 1) with Ts =
0.5 seconds.

Table 3: Coefficients of the ARX models
a1 a2 b1 b2 b3

Model 1A -1.31 0.40 1.78 3.87 -0.78
Model 1B -0.98 0.15 5.60 1.94 -0.07
Model 1C -1.20 0.36 2.78 3.03 -0.14
Model 2A -1.42 0.46 4.70 1.75 -1.97
Model 2B -1.30 0.36 6.23 0.84 -1.00
Model 2C -1.33 0.40 4.98 2.53 -1.31
Model 3A -1.52 0.56 5.06 -1.28 -0.14
Model 3B -1.33 0.38 7.50 -0.66 -1.23
Model 3C -1.27 0.33 7.58 -0.10 -1.15

2.3 Models validation

For the model validation, the experiment data se-
lected for validation were used to compare ARX
models response with the corresponding experi-
mental vehicle speed. The Fit indexes were calcu-
lated for 1, 5, 10, 50 and infinite (simulation) steps
ahead and their results are presented in Table 4.
Even in the worst situation, the lowest Fit index
was 73.87%, that is not a poor value (Ljung, 1999).

3 Control Design

3.1 Outer loop controller

The algorithm frequently used for switching be-
tween CC and ACC modes is presented in Table
5 (Shakouri et al., 2015). Given the vehicle speed
as v, user defined speed as vuser, a security speed
as vref , the measured distance d with the closest
vehicle, a security distance dref with the closest
vehicle and a relative speed (vr) between the clos-
est vehicle and the system vehicle.

Table 4: Fit (%) for system validation, with sev-
eral configurations of steps ahead

1 5 10 50 ∞
Model 1A 95.56 86.49 83.03 84.56 82.28
Model 1B 96.14 89.73 87.95 91.72 87.37
Model 1C 94.01 84.47 83.29 83.88 83.27

Model 2A 96.15 87.80 83.35 85.87 79.62
Model 2B 96.60 90.12 86.83 84.86 84.15
Model 2C 94.40 81.55 75.41 77.51 74.09

Model 3A 95.10 84.95 78.45 76.48 73.87
Model 3B 94.90 88.97 85.83 84.39 83.93
Model 3C 92.54 82.83 77.28 84.97 74.47

Table 5: Switching logic between CC and ACC
modes

v < vref (v ≥ vref ) (v ≥ vref )
&(vr < 0) &(vr ≥ 0)

d > dref CC CC CC
d ≤ dref ACC ACC CC

The controller for the outer loop must com-
pute dref and vref to decide which mode must be
activated. In Shakouri et al. (2015), they suggest
computing dref as in Equation 1. The parameter `
is the length of the system vehicle, ds it is an addi-
tional distance to avoid crashes and Th is known as
constant-time headway, which estimates the time
of action and reaction for drivers. Usually, this
value varies between 0.8 and 2 seconds, without
any adverse conditions (Shakouri et al., 2015).

dref = `+ ds + Thv (1)

The suggested control law for computing vref
of Shakouri et al. (2015) is shown in Equation 2.
If the distance d to the closest vehicle is the same
as the security distance dref , the system is safe to
travel with the same speed of the closest vehicle
vl, commonly described as leading vehicle. Other-
wise, it is necessary to change the security speed
vref using a proportional gain Kp.

vref = vl −Kp(dref − d) (2)

If the controller is set in CC mode, the cruise
speed for the inner loop control will be vuser, be-
cause it is safe to achieve that speed, given restric-
tions by dref and vref . If the controller is set in
ACC mode, the cruise speed must be vref to keep
a safe distance from the leading vehicle.

3.2 MPC Design

The first control design for the inner loop is using a
finite horizon MPC. The formulation for the MPC
design was chosen using a state space model with
an incremental input ∆u(k) = u(k)− u(k − 1) as
follows:{

x(k + 1) = Ax(k) +B∆u(k)

y(k) = Cx(k)



Each ARX model was transformed into this
representation, given a realization in state space
and incorporating the time delay as additional
states. The input can be set in incremental
form using two subsequent instants (Camacho and
Alba, 2013). The objective function for finite hori-
zon MPC can be described as (Maciejowski, 2002):

JMPC
k =

p∑
j=1

(y(k + j|k)− ysp)T Q×

(y(k + j|k)− ysp) +
m−1∑
j=0

∆u(k + j|k)TR∆u(k + j|k)

(3)

The element ysp is the desired output value
and the control parameters are: m is the control
horizon; p is the prediction horizon; Q and R are
weight matrices related to output error and con-
trol input, respectively.

Foremost, the output prediction vector is as-
sembled, considering that after the sample k +m
there are no more control inputs (∆u(k +m|k) =
∆u(k + m + 1|k) = ... = 0). The Equation (4)
shows the prediction to the horizon p, compress-
ing all m control signals into ∆uk.

y(k) = Φx(k) + Γ∆uk (4)

with:

Φ =



CA
CA2

...
CAm

CAm+1

...
CAp


and

Γ =



CB 0 . . . 0
CAB CB . . . 0

...
...

...
...

CAm−1B CAm−2B . . . CB
CAmB CAm−1B . . . CAB

...
...

...
...

CAp−1B CAp−2B . . . CAp−mB


.

Considering that the output set-point ysp for
any output prediction, then the set-point vector

will be ysp =

[
ysp . . . ysp︸ ︷︷ ︸

p

]T
. To expand the sum

in (3), it is also necessary to consider weight matri-
ces Q and R in their respective horizons, obtaining

Q = diag

[
Q . . .Q︸ ︷︷ ︸

p

]
and R = diag

[
R . . . R︸ ︷︷ ︸

m

]
. Ex-

panding all elements of (3), the objective function
JMPC
k can be reduced to a quadratic form:

JMPC
k = ∆uk

TH∆uk + 2cf
T∆uk + c

where
H = ΓTQΓ +R;

cf
T = (Φx(k)− ysp)TQΓ;

c = (Φx(k)− ysp)TQ(Φx(k)− ysp).
The control law for conventional MPC will be

the solution of the following Quadratic Program-
ming (QP), subject to control input constraints:

min
∆uk

∆uk
TH∆uk + 2cf

T∆uk

s.t.
−∆umax ≤ ∆u(k + j|k) ≤ ∆umax,

umin ≤ u(k + j|k) ≤ umax, j = 0, 1, ...,m− 1

(5)

3.3 IHMPC Design

The second control design for the inner loop is us-
ing an infinite horizon MPC (IHMPC). The model
representation chosen for the IHMPC was Out-
put Prediction Oriented Model (OPOM) (Odloak,
2004; Martins and Odloak, 2016). As in MPC
design, each ARX model was transformed into
a state space representation, with incorporated
time delays and in incremental form, but using
the OPOM formulation. The objective function
for IHMPC can be described as (Odloak, 2004):

J IHMPC
k =

∞∑
j=0

(y(k + j|k)− ysp − δy)TQ(y(k + j|k)− ysp − δy)︸ ︷︷ ︸
J1

+
m−1∑
j=0

∆u(k + j|k)TR∆u(k + j|k) + δy
TSyδy

(6)

For this control technique, it is essential to
use slack variables δy for each output, because the
control law will converge to an expression with
equality constraints. Without slack variables, it is
possible to have unfeasible solutions. The IHMPC
control law must compute the control input ∆u
and slack variable δy. Sy is the weight matrix re-
lated to the slack variables and θmax is the max-
imum time delay of the system. At first, an ex-
pansion of the infinite sum of J1 of Equation (6)
is expressed in Equation (7):



J1 =

m+θmax∑
j=0

(y(k + j|k)− ysp − δy)TQ(y(k + j|k)− ysp − δy)︸ ︷︷ ︸
J1a

+

∞∑
j=m+θmax+1

(y(k + j|k)− ysp − δy)TQ(y(k + j|k)− ysp − δy)︸ ︷︷ ︸
J1b

(7)

Similar to the conventional MPC, an output
prediction vector is calculated with m + θmax as
the prediction horizon:

y(k) = Ax(k) +B∆uk (8)

with θmax being the maximum time-delay of the
system and:

A =



C
CA

...
CAm

...
CAm+θmax


and

B =



0 0 . . . 0
CB 0 . . . 0

...
...

...
...

CAm−1B CAm−2B . . . CB
...

...
...

...

CAm+θmax−1B CAm+θmax−2B . . . CAθmaxB


Consequently, creating an output set-point

vector ysp =

[
ysp . . . ysp︸ ︷︷ ︸
m+θmax+1

]T
, a supporting vector

Iny =

[
Iny . . . Iny︸ ︷︷ ︸
m+θmax+1

]T
and adjusting the weighting

matrix Q as Qy = diag

[
Q . . .Q︸ ︷︷ ︸

m+θmax+1

]
, the first ex-

pansion element of J1 can be calculated as:

J1a = (Ax(k) +B∆uk − ysp − Inyδy)
T
Qy ×

(Ax(k) +B∆uk − ysp − Inyδy)

For the element J1b, using the OPOM defini-
tion, the output prediction for any time instant j
after m+ θmax can be described as:

y(k +m+ θmax + j|k) = xs(k +m+ θmax|k) +

Ψxd(k +m+ θmax + j|k)

The previous equation can be described as:

y(k +m+ θmax + j|k) = xs + Ψxd(j) (9)

Replacing expansion (9) in J1b:

J1b =
∞∑
j=1

(xs + Ψxd(j)− ysp − δy)
T
Qy ×

(xs + Ψxd(j)− ysp − δy)

Being F stable, the condition for J1b to be
bounded is:

xs − ysp − δy = 0

If the above condition is satisfied, J1b remains
as follows:

J1b =

∞∑
j=1

(Ψxd(j))TQy(Ψxd(j))

= xd(0)T (

∞∑
j=1

F j
T

ΨTQyΨF j)︸ ︷︷ ︸
Qd

xd(0) (10)

The matrix Qd can be calculated as solution
of the following discrete Lyapunov equation:

Qd = FTΨTQyΨF + FTQdF

Next, the predicted states xs and xd(0) are
obtained:{
xs = NsA

θmax(Amx(k) +W∆uk)

xd(0) = NdA
θmax(Amx(k) +W∆uk)

where nd is the number of poles of the system
and
Ns =

[
Iny 0ny×nd 0ny×θmax

]
;

Nd =
[
0nd×ny Ind 0nd×θmax

]
;

W =
[
Am−1B Am−2B . . . B

]
.

As well as in MPC formulation, J IHMPC
k can

be reduced into a quadratic form:

J IHMPC
k =

[
∆uk δy

] [H11 H12

H21 H22

] [
∆uk
δy

]
+

2
[
cf1 cf2

] [∆uk
δy

]
+ c (11)



where

H11 = (B)TQy(B) +R+

(NdA
θmaxW )

T
Qd(NdA

θmaxW );

H12 = −(B)TQy(Iny);

H21 = H12
T ;

H22 = (Iny)TQy(Iny) + Sy;

cf1 = (Ax(k)− ysp)TQy(B)+

(NdA
θmax+mx(k))

T
Qd(NdA

θmaxW );

cf2 = −(Ax(k)− ysp)TQy(Iny);

c = (Ax(k)− ysp)TQy(Ax(k)− ysp)+
(NdA

θmax+mx(k))
T
Qd(NdA

θmax+mx(k)).

The control law for IHMPC will be the solu-
tion of the following QP, subject to control input
constraints and the restriction of the slack vari-
ables:

min
∆uk,δy

([
∆uk δy

] [H11 H12

H21 H22

] [
∆uk
δy

]
+

2
[
cf1 cf2

] [∆uk
δy

])
s.t.

−∆umax ≤ ∆u(k + j|k) ≤ ∆umax,
umin ≤ u(k + j|k) ≤ umax, j = 0, 1, ...,m− 1
NsA

θmax(Amx(k) +W∆uk)− ysp − δy = 0
(12)

4 Simulations

Firstly, the tuning of the outer loop controller was
set with the parameters of dref (Equation (1)) and
vref (Equation (2)).The security distance dref and
the security speed vref were computed with:

` = 4m; ds = 10m;Th = 2 s;Kp = 0.022

During the simulations, the distance d with
the leading vehicle was estimated integrating the
relative speed vr. In real applications, this dis-
tance should be given by a radar. With a low
value of Kp, the ACC mode computes a cruise
speed close to the leading vehicle speed vl, with
subtle adjustments related to the distance error.

The system actuator usually has three con-
straints: maximum value, minimum value and
maximum slew rate. As discussed in Section 2, the
maximum value of the throttle pedal is umax = 1
and the minimum value is umin = 0. Since there
is no explicit limitation regarding throttle slew
rate, it has been decided to use this constraint as
a tuning parameter for a smoother controller re-
sponse. The maximum slew rate chosen for MPC
and IHMPC was ∆umax = 0.1, for positive and
negative input variations. All simulations had a
time sampling of Ts = 0.5 seconds.

4.1 ACC with MPC

The tuning of MPC was performed with simula-
tions in CC mode, obtaining the following con-
troller parameters:

p = 10;m = 5;Q = 50;R = 1.

For simulation 1, the user defined speed was
set constant with vuser = 15 m/s. The controlled
vehicle begins the simulation with null speed and
a leading vehicle drives at vl = 15 m/s. During
all simulation, the MPC computes its control law
with Model 3A. At instants t = [15, 40, 65], the
leading vehicle suddenly breaks 10% of its speed,
simulating a heavier traffic.

To analyze the robustness of the controller,
during the simulation the system model smoothly
changes. The system model response is calculated
using a linear combination of three models, but
at the start, the system model is equal to Model
3A (represented in Figure 4). For each time sam-
pling, the importance of Model 3A slowly reduces
and the weight of Model 2A increases. After the
system model equals to Model 2A, its subsequent
weight slowly reduces and the weight of Model 1A
starts to increase, until the end of simulation.

Figure 4: System model diagram of Simulation 1.

The system speed response for Simulation 1 is
shown in Figure 5. Also in this Figure, it is shown
the leading vehicle speed vl, the cruise speed com-
puted by the outer loop controller and the user
defined speed vuser. The controller was able to
follow the constantly changing set-point (cruise
speed), even with the system model changing with
every time sampling.

Figure 5: Speeds for the Simulation 1 with MPC.
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In Figure 6, the simulated distance to the
leading vehicle is shown, assuring a safe distance
within all the simulation. In the same Figure, the
control input adapts its intensity for the changes
of the set-point and the system model response.

For simulation 2, the user defined speed was
set constant with vuser = 15 m/s. The controlled



Figure 6: Distances and Control Signal for the
Simulation 1 with the MPC.
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vehicle also begins the simulation with null speed
and a leading vehicle drives at vl = 15 m/s. Dur-
ing all simulation, the MPC computes its control
law only with Model 3A.

The leading vehicle also breaks at the same
instants, but in this case for a different reason.
In simulation 2, the system model changes from
models of low load to models of higher loads, rep-
resenting a harder terrain, for example with higher
slope hill, snow or a dirt road (represented in Fig-
ure 7).

Figure 7: System model diagram of Simulation 2.

The system speed response and all other im-
portant speeds for Simulation 2 are shown in Fig-
ure 8. The controller also was able to follow the
constantly changing set-point (cruise speed) and
system model.

Figure 8: Speeds for the Simulation 2 with MPC.
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In Figure 9, the distance to the leading ve-
hicle remains safe during all the simulation. The
control signal adapts with the changes of the set-
point and the system model response, even with
the different static gains for each model.

Figure 9: Distances and Control Signal for the
Simulation 2 with the MPC.
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4.2 ACC with IHMPC

The tuning of IHMPC was also performed with
simulations in CC mode, selecting:

m = 10;Q = 0.1;R = 100;S = 1000.

The same scenario of Simulation 1 (Figure 4)
was repeated with IHMPC, using the same Model
3A for the model prediction. The system speed
and the other speeds are shown in Figure 10. In
comparison with MPC response, IHMPC had a
slightly smoother response.

Figure 10: Speeds for the Simulation 1 with
IHMPC.
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The simulated distance and the control input
for Simulation 1 with IHMPC are shown in Fig-
ure 11. The distance d maintained at safe values
during all the simulation.

Figure 11: Distances and Control Signal for the
Simulation 1 with the IHMPC.
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The scenario of Simulation 2 (Figure 7) was
repeated with IHMPC. The system speed and the
other speeds are shown in Figure 12.

Figure 12: Speeds for the Simulation 2 with
IHMPC.
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The simulated distance and the control input
for Simulation 2 with IHMPC are shown in the
Figure 13. The controller kept the distance at
safe values during all the simulation.

Figure 13: Distances and Control Signal for the
Simulation 1 with the IHMPC.
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4.3 Discussions

Foremost, it is important to note that in both
MPC approaches the control law results in a
quadratic programming problem. In the matter
of the ACC system performance, both controllers
were successful to track the cruise speed while
maintaining a safe distance to the leading vehicle.
The controllers were able to perform with decent
performance even in cases that the model for the
prediction differs from the model carried out as
the system.

There are subtle differences between the con-
trol signals of both approaches. Generally, the
control signal of the IHMPC has fewer oscillations.
Such a feature is due to the definition of the states
xd(j), in which the IHMPC control law tries to
reduce the dynamic effects in the prediction af-
ter m + θmax samples. If the IHMPC manages
to reduce these dynamic states, the system will
converge to the set-point smoothly.

5 Conclusions

The high Fit indexes of the ARX models indi-
cates that the models appear to be validated.
Regarding the performance of controllers, both
MPC and IHMPC presented satisfactory results.
IHMPC had slightly smoother responses com-
pared to MPC. Although MPC and IHMPC have
distinct objective functions, both controllers have
a corresponding QP, which assists for future em-
bedded applications. Even with the ACC con-
troller having only one tuning parameter (Kp), its
performance was satisfactory.
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