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Abstract— This paper proposes an online method to integrate the toaies of differential-algebraic equations in the context
of networked power systems. We predict these trajector@s & real-time data stream generated by phasor measuremient
combining newly incoming data with past information. Foisthburpose, we propose a stochastic optimization techniate
incorporates new data as they become available, tradingi@disurement errors for modeling uncertainty. The metkddsted
on a benchmark system of 39 buses and 10 generators beintp @itcipate the system recovery from a three-phasedorgt
short-circuit.
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1 INTRODUCTION tails of the algorithm, that is tested and discussed with
the help of an example in Section 4. Section 5 wraps

Recent advances on phasor measurement unit$!P the paper with concluding remarks.
(PMUSs) pose a broad interest on their use for moni-
toring, protection, and dynamical security assessment 2 SYSTEM MODEL AND ESTIMATION
of electrical power systems [1, 2]. The availability of SETUP
synchronized phasor measurements of electrical vari- _ _ _
ables across the power system calls for new methodsConsider a power grid connectigs buses andVy,
to asses real-time transient stability, based on the preSynChYOHOUS_ generators, with each generator _feedmg
diction of system trajectories. A real-time prediction €ach of the firstVy, buses. The power system is de-
has to be fast enough to handle the relevant transienscribed with the standard (second order) differential-
phenomena and accurate enough for the system safety@lgebraic model
There exists a trade-off between accuracy and speed .
that can be relaxed with the help of model reduction { T f(@,v) (1)
techniques [3], clustering techniques and parallel com- 0 = gi(z,v)
puting schemes [4,5]. One approach consists of fit-
ting the power system trajectories using a set of sim-
ple basis functions (e.g. polynomials) and then use
this apprommatlon to predict th_e trajectories for a fu- every bus in Cartesian coordinates. Functipn:
ture horizon, see [6]. Alternatively, the power sys- _sn 9N ONr . .
. : - R#YM x R#YB — R#YM in the first equation gath-
tem model can be used to predict future trajectories . L .
: ; - ers the whole system dynamics combining the swing
based on a Taylor series expansion of the state vari- .
equations for all synchronous generators [8]. The ex-

ables [7]. These methods demand the estimation of an_. . . . . )
initial condition from the available PMU data. plicit form of the swing equation, which associates the

_ ) rotational speed and acceleration of a generator with
In this context, the present paper builds on ad- the system electrical variables is given in (11) in the
vances on online prediction of the system trajecto- Appendix. The subindex in f,() reflects the fact
ries [2], poses the prediction as an optimization prob- that the system dynamics are time-varying, as it could
lem that takes into account all the system information yegyit due to a fault, load shedding event, etc. The
available at real time, that is, current and past PMU gecond functiony, : R2V™ x R2Ns — R2Nz col-
measurements, nodal equations and machine dynampects the Kirchoff equations across the network. More
ics. This approach allows us to weight each source precisely, g, (z,v) = i (z,v) — ivgr(z,v) = 0
of information, considering measurement noise and force the current flow balance at all buses, with vectors
modeling errors. It also enables the incorporation of im(x,v) andiygr(z,v) representing the (complex-
incoming PMU measurements into the predictor iter- yajyed) current flows injected by machines or flowing
lected in the past. As a byproduct, our method yields of ; _ is null if the corresponding bus is not conected
an estimate of the current state, along with the pre-tq 3 machine. Botti,,, (z,v) andiy gr(z,v) belong
dicted trajectory, that can be incorporated to the meth-ig R2N5 gjnce the complex value of the current flow
ods reported above. at each of theVz nodes is decomposed into its real
The article is organized as follows. Section 2 and imaginary parts. Explicit forms af,,(z,v) and
resents the model an e main ideas for online pre-iy g7 (x,v) in terms of the system state and volt-
p ts th del and th deas f line p t f th t tate and volt
diction. Section 3 describes the implementation de- agesv are also given in the Appendix. As withj ,

Vectorz € R?V™ denotes the system state (rotor an-
gle and speed of each machine), whilec R?Vz
represents the link variables; i.e., the bus voltage at



the time-varying notation af; (), reflects that the net-
work can change.

Our algorithm will be based on PMU measure- ,
ments collected across the network. PMUs measure a

subset:yy = Sy v € R? of the voltage variables in,
where the selection matri&,, € RP*2(V5) collects
the corresponding rows of theNp x 2Np identity

be referred asesidual sum of squares

Nc
ss(z,0) = Y i ([|2vi — Svoil? + [|2xi — Sxil )

i=Np
(4)

Time varying coefficientsy; allow us to weight data

matrix (see Section 3.2). The PMU data are assumeduncertainty. The second and third terms capture the

to be noisy versions of the selectegd corrupted by
additive noise)yy € R? and denoted by
(2)

zy = Syv +ny.

Direct measurementsy = Sxz + 7, of the angles
and speeds im can also be incorporated if available.

NpT NcT

Hi NFT

Figure 1: Online predictor estimates the trajectory up
to a future timel' Ng from measurements taken in a
time window(T Np, T N¢).

Fig. 1 depicts the time-line of the online pre-
diction problem, where the actual trajectory is repre-
sented with a continuous blue line. Bt denotes the
current time and7'p, 7| the past interval where data
is collected. The future prediction horizon is repre-
sented byl'». Such a trajectory is sampled, with sam-
pling periodT', so that past, current and future time
instants are expressed in time peridds = T /T,
N¢o = To/T andNp = Ty /T, respectively. Noisy
PMU measurements;,i € {Np,...,N¢o} are de-

differential-algebraic model of the system, respec-
tively.

ode(x,v) :=

Tr
/T i — fule,0)|PB(D)dE (5)

Tr
alg(z, v) = /T ge(a, ) [Py (8)dt (6)

At an actual trajectory both should be zero as long
as the model is exactly known. However, the model
may not be assumed exact since it includes several pa-
rameters that are, e.g., suddenly affected by system
faults. Inclusion of these three terms in the cost al-
lows to handle model uncertainties, as opposed to set
the model equations as constraints. Functifinand
g: depend on machine parameters and the admittance
matrix Y, which can be reasonably estimated with the
help of protection devices in real time upon a given
delay. Weight functiong(¢) and~(t) normalize the
magnitude of dynamic and algebraic variables, and re-
flect our confidence in the model. They need tuning,
using for instance cross validation.

Remark Observe that we have a case fahc-
tional optimizationwhere the optimization variable is
the entire solution on the intervelp, 7] and the ini-
tial condition is the estimation for the previous win-
dow [9]. The estimation problem has two separate
time intervals: a first one where measurements have
great influence[T'Np, T'N¢| and a second one where
only the system’s dynamics matter&' N¢, T Ng].

The first part imposes a trade-off between the sys-
tem’s dynamics and the deviation from the measure-
ments. For the second interval, thes term is not

picted as black squares, and are available from timejnyvolved and the solution of (3) can be solved by stan-

T'p to the current timelx in which the prediction is
carried out. These PMU data are utilized along with

dard numerical integration methods (e,g. the trape-
zoidal method for differential-algebraic equations [8,

the system model to estimate the trajectory for both the p g59]) with initial condition the interpolation ob-
past and future horizons. Red dots in Fig. 1 representsained from the past. However, the formulation of (3)

the prediction result. One tif later the estimation is

as an optimization problem allows one to incorporate

updated and the window shifted, taking into account constraints based on field-experience, and to pursue

the next PMU data and forgetting the oldest one. In-

convex methods based on recent reformulations of the

deed, each time new PMU data becomes available wegptimal flow problem [12], although this is a direction

solve the following trajectory prediction problem

Online trajectory prediction

3)

minrss(z,v) + ode(x,e) + alg(x, v)
z,v

The cost to be optimized consists of the sum of

for future research and will not be addressed here.

The algorithm developed in this paper requires the
costin (3) to be discretized, and that is the goal of next
section.

3 THE COST WITH MATRIX VARIABLES

In this section we rewrite the proposed predictor in

three terms. The first term measures the deviation ofterms of matrix valued variables X and V. Such a

the estimation from the PMU measurements and will

matrix representation not only reflects on a compact



form of the discretized cost in (3), but also reduces 3.2 Residual sum of squares

the numerical complexity of its derivatives. As it is

detailed in the next subsection, the optimization vari-
ables X and V collect all system-wide machine angles

and speeds as well as complex voltages at a set of di
crete time instants in the interv@lp, Tr].

For such a construction, we will use the Kro-

necker product and the Hadamard (entrywise) product,

represented respectively by ando. Let Id,, be the
identity matrix of sizen, 0,,«,, denote the zero ma-
trix of dimensions: x m and1,, be the vector whose
n elements are equal to ond.” stands for the trans-
pose matrix of4, and||Al|r = /trace(AT A) is its

Frobenius norm.

3.1 Matrix variables

Let §,,(t) denote the angle trajectory of the-th ma-
chine.
a sub-multiple of the PMUs’ period and discretize
0m(t), collecting samples,,,,, :== 6., ((n—1)h+Tp)
forn = 1,...,N. The number of samples is se-
lected asN = (T/h)(Ng — Np) + 1 so that yields
O0m1 = 0m(Tp) andd,,n = 6,,(Tr), covering the

time interval of interest. The same procedure is carried

out to obtain samples of the machine speed trajector
wp, (t). Then, samples,,,, andw,,, are collected in
the columns of théV x 2N, matrix.

011 W11 51,NM W1, Ny

021 wor 52,NM W2 N
X=1. .

ON1T WN1 ON, Ny  WN,Nu

Recall that by construction the time indexes.., N
are relative to the currenttime intervidlp, 7'%]. In the
same fashion, defing”? andV! ~m =1,...,Np

nm nm?

the real and imaginary parts of the Cartesian descrip-

tion of voltage phasors. Then build thé x 2N ma-
trix

I R I

V% V1]1 Vl}.?NB V1].NB

v — Vor Vs VQ,NB V27NB
VRl R —

Vi Var VN,NB VN,NB

Besides,«, 5 and~ are vectors that collect the

In the new variables, the first term of (3) can be rewrit-
ten as

S

RSS(X, V) = £ | Diag(Va)(Zx — SrXSx)[[} ()

1 . _
+§||Dlag(\/a)(zv — SrVSy) |7

with Zx, Zy, St, Sx and Sy defined as follows.

St is the sub-sampling matrix that selects samples for
those instants in which a PMU measurement is taken,
and it is obtained by sampling the rows of the identity
matrix Idy. Matrix Sy selects the buses with PMUs
andSy selects the measured angles or speeds, if any.
MatricesZ y andZy contain the measurements.

3.3 Dynamic term

By discretizing the derivatives and the integral, the
second term in (3) can be rewritten as

Consider a constant time step h chosen as

ODE(X.V) = ¥ Diag(/B)(DX - CF)[} (&)

Function F := F(X,V) € RV*2Nu is a matrix
valued version of the swing equation, containing the
dynamic information for every machine and for every
time instant. We approximate the derivative in (3) with
Yihe trapezoidal rule (see e.g [8], page 842), and the in-
tegrals with quadrature methods. Differential matrix
D implements the forward incremental quotient while
matrix C' aggregates the rows @ corresponding to
subsequent time instants, according to the quadrature
method of choice (e.g., Euler or trapezoidal rule). De-
tails of function/” and operator® andC' are given in
the Appendix.

3.4 Algebraic term

The algebraic term of (3) can be approximated by

ALG(X,V) = 3| Diag(y3) (I — Iner) [} ©)

Matrix-valued functions I,,, I,(X,V) and
Ingr = Inpr(X,V) represent the current injected
by machines and flowing to the network, respectively.
Expressions for these functions may be found in the
Appendix.

3.5 Algorithm

So far, we have expressed the cost in (3) in terms of
structured matriceX and V. For each PMU cycle
N¢, new data become available and we solve (3) in its
discretized matrix form

weight values at discretized times. Henceforth, we

will use capital letters iIlRSS(X,V), ODE(X,V),
andALG(X,V), for the functions that substitute (4),

(5), and (6), respectively, after replacing continuous-

time variableqz, v) for their matrix-valued counter-
parts.

[Xne. Vive] = argmin U(X, V) (10)
with U(X,V) := RSS(X,V) + ODE(X,V) +
ALG(X,V), using a standard gradient-descent algo-
rithm. In the next PMU cycleVe + 1, the previous



solution [X v, Viv..] is set as the initial seed for
next optimization iteration in (10), in order to s
convergence. The gradient-descent algorithn
the expressions for the derivativé§ and 3% wi
respect to matriceX’ andV that can be found in

Appendix.

4  SIMULATED EXAMPLE

In [10] we applied a preliminary version of the algo-

rithm to a one-machine-infinite-bus (OMIB) as a proof
of concept. In this Section, we move forward to a net-
worked setup. The classical IEEE New England 39-

bus system is adopted as the testbed for the numerical 1
example here, with generators modeled with second o

order dynamics, see Fig. 2. The model includes 10

generators, 19 loads, and 36 transmission lines. The il

system trajectories were obtained with the DSAT soft-
ware and integrating (1) by the standard methods in [8,
p.859].

Figure 2: New England 39-bus system.

We simulate a three phase fault in the middle
point of the line connecting bus&$ and29. The
DSAT trajectories will serve as the ground truth for the
prediction algorithm. Fig. 3 represents such ground-
truth trajectories for the generator at B8 which is
the closest one to the fault. Starting from equilibrium
att = 0 it remains invariant untit = 300ms, when
the fault occurs. From then until the line is tripped at
t = 500ms the voltage drops.

At t = 700ms the line is reclosed and the system
transits back toward equilibrium, up to a time horizon
of t = 1s. The protection system reports the location
and time of the fault, with a delay after the short cir-
cuit, (dashed line at = 400ms in Fig. 3) and the
tripping event at time = 500ms.

Data for the predictor are collected By, = 10
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Figure 3: Ground-truth voltage at bus 38 and fault
time-line.
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Figure 4: Voltage of busbar 38.

PMUs were simulated by addirng percent of white
noise to samples of the ground truth trajectory. In ap-
plications, the optimal location of PMUs is depends
heavily on the fault to be considered. This factor and
the number of PMUs will affect the error of the algo-
rithm.

Figure 4 shows together the ground-truth trajec-
tory (green line), the initial guess for the algorithm
(red line) all the trajectories successively estimated
along the transient (blue lines). The speed of genera-
tor at bus38 is shown in a similar way in Fig. 5. Both
the machine acceleration due to the fault (green line)
and the corresponding predictions (blue lines) can be
appreciated.

The top plot in Fig. 6 depicts the PMU data (black
crosses), the ground-truth trajectory (green line), and
the prediction carried out at time = 380ms (blue

o155
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T
C
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PMUs, placed at the generator buses, which sample

voltage phasors ever0ms. Readings from these

Figure 5: Speed of machine at busbar 38.



line). The PMU data at fault300 — 380ms) are not
enough yet to force the prediction to follow the incom-
ing voltage dip. The second plot in Fig. 6 shows the
prediction at time = 400ms. The fault location was
reported at = 400ms and the system model updated
accordingly for the prediction. The estimation has im-
proved because more PMU data on fault are consid-
ered and the correct model has been already updatec
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Figure 6: Progression of the voltage estimation of bus-
bar 38. Predictions &80, 400 ms.

The upper plot in Fig. 7 shows the situation
right before the trippingt(= 480ms). New data has

been introduced and the voltage deep is now more ac-

curately described. The programed tripping time is
known by the algorithm so that the trajectory predic-
tion after tripping approximates the actual voltaje. The
bottom plot shows the situation after the line tripping
(t = 620ms). Again, the extra data collected renders
the prediction more accurate. These figures corrobo-
rate the ability of (3) to smooth the data by using the
dynamic model to average multiple data samples and
hence reducing their noise effect.

5 CONCLUSIONS AND FUTURE WORK

A novel algorithm was presented for the prediction of
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Figure 7: Progression of the voltage estimation of bus-
bar 38. Predictions afi80, 620 ms.

smooth the data, to capture the networked dynamics
of the grid, and to incorporate newly available phasor
measurements to improve the results adaptively.

Next research steps will explore new optimization
algorithms and dimensionality reduction techniques,
as well as decentralized versions via in-network con-
sensus. We will pursue convex methods to solve (3)
based on recent reformulations of the optimal flow
problem [12]. These approaches, along with migra-
tion of the algorithm code to a compiled language, will
allow us to investigate the tradeoff between error per-
formance and execution time.

References

[1] GOémez-Expdsito, A. and Abur, A. "Foreword for
the Special Section on Synchrophasors Applica-
tions in Power systems'|EEE Transactions on
Power systemsviay 2013.

[2] X. Wu and J. Zhao and A. Xu and H. Deng and
P. Xu, "Review on Transient stability Prediction
Methods based on Real Time Wide -area Phasor
Measurements4th Intl. Conf. on Electric Utility
Deregulation and Restructuring and Power Tech.
(DRPT) 2011.

trajectories in power systems. The technique leverageg3] J. Cepeda, J. Rueda, D. Colomé, D. Echeverria,

the full information available at each time instant, in-
cluding the PMU data and the differential algebraic
system model. Two distinctive properties of the pro-
posed predictor with respect to available alternatives
are that it can incorporate real-time data adaptively,
while accommodating model errors and uncertainties.
A matrix formulation of the prediction problem fa-
cilitates the algorithm construction for large power
networks, and paves the way for the use of state-of-
the-art optimization methods. Numerical experiments
corroborate the ability of the proposed estimator to

“Real-time transient stability assessment based on
centre-of-inertia estimation from phasor measure-
ment unit records,"IET Generation, Transmis-
sion and Distributionyol.8, no.8, pp.1363-1376,
2014.

[4] C.-W. Liu, J.S. Thorp, " New Methods for Com-
puting Power System Dynamic Response for
Real-Time Transient Stability Prediction'lEEE
Trans. on Circuits and Systems-l:Fund. Theory
and Appl, v. 47, n.3, March 2000.



[5] S. Smith, C. Woodward, M. Liang, J. Chaoyang, tobeP, = V1T :
A. del Rosso, “On-line transient stability analysis _oT 5T ST 10O
using high performance computindEEE PES Pe =V =B J(Em=V)) = =BuV " J(Em=V).
ISGT,2014. Thus, the swing equation of a given machjnean be

. , . expressed as
[6] Anjia Mao, “Ball Catching: the Inspiration to

Power System Stability Control, A Fast Algorithm i

for the Generator’s Disturbed Trajectory Predic- [ ’p ]{ w “p = _ } )
tion,” IEEE Power Engineering Society General L%p ﬁ[P’”P_KDPwP + BV (Ep = V)]
Meeting,vol., no., pp.1,6, 24-28 June 2007 (11)

[7] Z. Wang and Z. Guo, “A Fast Method for Tran- Then, we construct the functidf, putting
sient Stgbn!ty Assessment Based on Taylor Series [F(X,V)nop1 F(X,V)nop] = |6,(nh) wp(nh)}
Expansion,TEEE/PES T&D Conference and Ex-
ibition: Asia and Pacific2005. form = 1,....,Nandp = 1,...,Ny. For each
machinep, and considering their own parameters, we
define the scalar constanksp, = ;’TOPK Dps Pp =
;’Tﬂmep and construct the respectivg,; x 1 vectors
[9] R. Garcia and V. Pérez-Garcia, “Solving Func- Kp andp. We consider the numbers, = 5%~ and
tional and Differential Equations With Constraints  B,,,,, and we form theV; x N diagonal matrices’
Via an Optimization Approach,’International and B,,,, padding with zeros for non machine buses.
Conference on Mathematical and Statistical Mod- Finally, putting all together, we may write

eling, 2006. 0 0
Fev) = x (1, 0 0 0])

[8] P. Kundur. Power System Stability and Contipol
Mc. Graw-Hill, 1994.

[10] XX, YYY, Z2ZZ, WWWW, “Online prediction of
power systems trajectories from noisy data by pe-
0

nalized least-squares minimizationEEE ISGT- X Diao(K 0 1 01
LA, Oct. 2015. + (“‘9( p)®| o 1 |)Tin(pe[01])

[11] K.B. Petersen and M.S. Peterseith& Matrix

1 Idan,,
Cookbook, 2012 (http://matrixcookbook.com). +[Voln] <K® { 01 D [ T ]

o

[12] S. H. Low Convex relaxation of optimal power where
flow Part I: Formulations and equivalence, IEEE N T
Transactions on Control of Network Systems, vol I = (Em = V). [IdNB ®J ] (B ® Idy]

1, no.1 pp. 15-27, 2014. is the current injected by the machines (i.e., it is O for
buses without generators). Vecté, contains the
A Derivation of the ODF and ALG parts of the internal voltage of the machines, padded with zeros
cost for non generator buses.
Function F(X,V) : RWx2Na)x(Nx2Np) For the algebraic terml LG, the currentiy g1

RN*2Nw encapsulates the system dynamics. It is ob- must be derived. For a given time instantthe net-
tained by looking at the equations for a single ma- Work (complex) equation iy gz, = V.Y, where
chine connected to a busbar, as it is shown next. InY is the admittance matrix of the electrical network,
what follows, we will express complex numbers as With dimensiongNp x Ni), Ingr, isa(l x Np)
vectors inRR2. For this case, the link variable is Vvector of net currents entering the power system and
V = [VE V1T, the complex voltage phasor at ter- V5 is thel x Np vector of complex bus voltages. At
minal bus, and the state vector[sw]”. Denote by & fixed instant, for a given bug and considering the
E,, andB,, = - the internal fem and the transient real and imaginary parts 6f, we have that

susceptance of the machine, respectively. The inter-

Np
nal fem is written as,, = Ey,[cos(d),sin(5)]”, and Iy = YuVi =
the currentl injected by the machine to the network is k=1
I = ﬁ(Em—V) = —jBm(E,, —V). This complex Np
quantityl = [I%, 1] can be written as aR? vector IF 441} = Z(Ylfz + Y ) (Vi + Vi),
k=1
) o SR _ R so that/F = S V2 YAVE — vighV] and I] =
I'==BnJ(Epn —V)=—BnJ [ ‘z Vel ] St YAVE + YRV We put the real and imagi-

nary partsin a x 2 row vector, obtaining

. - . 0 -1
with the help of the auxiliary matriy = [ . _ Np
_ N 10 Ip=[I}F 1= [ ViR W (YViIda+ Y3 J7T).
The electrical power injected by the machine turns out Pt



These are collected in af x 2Nz matrix we have that

Ingr =V (Yi@Id+Y' ®@J"). %tr[AT(BoXC)] = (4oB)CT (13

The previous expression can be easily extended towhich will be our building block from which we
incorporate time changes in the network admittance pptain all the derivatives we need. As an ex-
matrix. As an example, suppose the power systemample, we present the derivative afX) =

faces a fault. Then, _after the protect_ion sys@em in- o [AT (XEOB)TD (XFoC)], a kind of term that
forms the event and trigger the respective contingency

actions, will know that there will be three different
admittance matrices: pre-fault’f), fault (Y») and
post-fault ). Defining AYr = Yr — Yp and
AYpr = Ypr — Yp, We obtain a unique addmittance
matrix

appears in ODF and ALG. Let us write down the dif-
ferencet(X + dX) — t(X) wheredX is a small de-
viation from X. From it, we will obtain the sought
derivative. Thent(X + dX) =

tr [AT (X + dX)E)oB)" D (X + dX)F)oC)}

Yo =Vp 4 i AV + v AYpr We will keep first order terms, dropping higher order

where ., andy, indicate the active matrix at every €rms. Itfollows that
instant. Then, we may write HX+dX) ~ (X)) +tr {AT(XEOB)TD (dXFoC)}
Ingr =V (Ypr®Ido +Ypr ® J") +
Diag(v)V (AYPFR @ Idy + AYpp; @ JT) which is equal to

T
Observe that we can accommodate any finite number (X+dX) & t(X 47 [AT(XEOB) D (dXFOC)} +
of distinct admittance matrices.

+#r[AT(dX EoB)" D (X FoC)| +0(dX?)

tr [A(XFoC)" DT (dXEoB)| + o(dX?)
o ] o Then, using (13),

B Derivatives required for the optimization

algorithm a%,tr {AT (XEoB)' D (XFoC)} -
In Section Ill, a matrix formulation of the optimiza- [(DT((XE)oB)A)oC] Ty
tion problem was introduced, with particularly struc- T T
tured variablesX and V, involving Kronecker and + [(D((XF>OC)A )OB] £
Hadamard products. In order to apply an iterative al- Taple | summarizes all the formulae needed by the
gorithm, the derivatives of the cost function with re- gptimization algorithm.
spect toX andV are needed. We could not find ex-
pllClt expreSSionS for the required derivatives in the lit- Since the internal fem of a given machine depends
erature, so we present here a brief derivation of one ofon the rotor angle, matri¥,, depends on variable
them. The others can be obtained in a similar way. WeX Then, to Comp|ete the task, we need an expres-

start from [11] sion for the derivative of a functioh(E,,) with re-
d spect toX. We focus on a general functiégii £(X)),
Etr(ATX) =A (12) h : RN*2P 5 R, In our particular case, we have a

special dependence &f on X. In fact, the elements
which is straightforward to prove from the defini- E,,,, , andE,,, , , which are actuall)Eﬁnp and

tion of the trace. Similarly, for Hadamard product E! | depend only od,,, the angle of the machine

Mnp

L tr(4X) = Diag(A). Abasicresultforthe deriva- ~ at timen. We have that
tives we are interested in states that

R I
d Mpp _ T Mpp _ R
d—Xtr[AT( BoX)] = AoB by B eJ e
. or, in a matricial form,
In order to prove it, we observe that
o R I R
Mnp — Mnp — J Mnp
tr[AT(BoX)] = Y [AT(BoX)]j; = > > aijwisbij by { By } [ By } { Ep,, ]
! s Then, discarding zero terms,
= tr[(AoB)" X]
N . aEgnp
The result follows from (12). In a similar way, since oh _ oh oh %2 _
R I
tr[AT (B X C))] = tr[(4B)T X C] = tr[C(4B)T X] Oonp | OE,, OF,, —



Table 1: Summary of the derivative formulae

Scalar function of X Derivative
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So, in order to get théV x 2P matrix g—)’;, we may
proceed as follows. First, we introduce the auxiliary

matrix £ which reorders the entries @f:

[En,Qp—l; En,Qp] = [_En,2p7 En,2p—1]-

Thus, -
E=E.(Idp®J").

Then, we have to construct the dependenck oh o
and add 0 for the dependencefobn w.
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As an application of the previous result, we
may now calculate the derivative of(X)
tr [XTA(Vo(E(X)B))C]. We know thatoh =
otr [XTA(Vo(E(X)B))C], so

Oh=tr [0(XTA(Vo(E(X)B))C)]
=tr [0XTA(Vo(E(X)B))C| +
tr [XT A9 {(Vo(E(X)B))C}]
=tr [0XTA(Vo(E(X)B))C| +
tr [XTA9{(Vo(E(X)B))C}]
The derivative of the first term comes from Table 1.

For the second term, we may apply ttain-rule-kind
previous result:
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Finally,
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