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Abstract— This paper proposes an online method to integrate the trajectories of differential-algebraic equations in the context
of networked power systems. We predict these trajectories from a real-time data stream generated by phasor measurementunits,
combining newly incoming data with past information. For this purpose, we propose a stochastic optimization techniquethat
incorporates new data as they become available, trading-off measurement errors for modeling uncertainty. The method is tested
on a benchmark system of 39 buses and 10 generators being ableto anticipate the system recovery from a three-phase-to-ground
short-circuit.
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1 INTRODUCTION

Recent advances on phasor measurement units
(PMUs) pose a broad interest on their use for moni-
toring, protection, and dynamical security assessment
of electrical power systems [1, 2]. The availability of
synchronized phasor measurements of electrical vari-
ables across the power system calls for new methods
to asses real-time transient stability, based on the pre-
diction of system trajectories. A real-time prediction
has to be fast enough to handle the relevant transient
phenomena and accurate enough for the system safety.
There exists a trade-off between accuracy and speed
that can be relaxed with the help of model reduction
techniques [3], clustering techniques and parallel com-
puting schemes [4, 5]. One approach consists of fit-
ting the power system trajectories using a set of sim-
ple basis functions (e.g. polynomials) and then use
this approximation to predict the trajectories for a fu-
ture horizon, see [6]. Alternatively, the power sys-
tem model can be used to predict future trajectories
based on a Taylor series expansion of the state vari-
ables [7]. These methods demand the estimation of an
initial condition from the available PMU data.

In this context, the present paper builds on ad-
vances on online prediction of the system trajecto-
ries [2], poses the prediction as an optimization prob-
lem that takes into account all the system information
available at real time, that is, current and past PMU
measurements, nodal equations and machine dynam-
ics. This approach allows us to weight each source
of information, considering measurement noise and
modeling errors. It also enables the incorporation of
incoming PMU measurements into the predictor iter-
atively, in real time, without discarding the data col-
lected in the past. As a byproduct, our method yields
an estimate of the current state, along with the pre-
dicted trajectory, that can be incorporated to the meth-
ods reported above.

The article is organized as follows. Section 2
presents the model and the main ideas for online pre-
diction. Section 3 describes the implementation de-

tails of the algorithm, that is tested and discussed with
the help of an example in Section 4. Section 5 wraps
up the paper with concluding remarks.

2 SYSTEM MODEL AND ESTIMATION
SETUP

Consider a power grid connectingNB buses andNM

synchronous generators, with each generator feeding
each of the firstNM buses. The power system is de-
scribed with the standard (second order) differential-
algebraic model

{

ẋ = ft(x, v)
0 = gt(x, v)

. (1)

Vectorx ∈ R
2NM denotes the system state (rotor an-

gle and speed of each machine), whilev ∈ R
2NB

represents the link variables; i.e., the bus voltage at
every bus in Cartesian coordinates. Functionft :
R

2NM × R
2NB → R

2NM in the first equation gath-
ers the whole system dynamics combining the swing
equations for all synchronous generators [8]. The ex-
plicit form of the swing equation, which associates the
rotational speed and acceleration of a generator with
the system electrical variables is given in (11) in the
Appendix. The subindext in ft(·) reflects the fact
that the system dynamics are time-varying, as it could
result due to a fault, load shedding event, etc. The
second functiongt : R

2NM × R
2NB → R

2NB col-
lects the Kirchoff equations across the network. More
precisely,gt(x, v) = im(x, v) − iNET (x, v) = 0
force the current flow balance at all buses, with vectors
im(x, v) and iNET (x, v) representing the (complex-
valued) current flows injected by machines or flowing
into the network, respectively. Particularly, an entry
of im is null if the corresponding bus is not conected
to a machine. Bothim(x, v) and iNET (x, v) belong
to R

2NB since the complex value of the current flow
at each of theNB nodes is decomposed into its real
and imaginary parts. Explicit forms ofim(x, v) and
iNET (x, v) in terms of the system statex and volt-
agesv are also given in the Appendix. As withft ,



the time-varying notation ofgt(·), reflects that the net-
work can change.

Our algorithm will be based on PMU measure-
ments collected across the network. PMUs measure a
subsetzV = SV v ∈ R

p of the voltage variables inv,
where the selection matrixSV ∈ R

p×2(NB) collects
the corresponding rows of the2NB × 2NB identity
matrix (see Section 3.2). The PMU data are assumed
to be noisy versions of the selectedzV corrupted by
additive noiseηV ∈ R

p and denoted by

z̄V = SV v + ηV . (2)

Direct measurements̄zX = SXx + ηx of the angles
and speeds inx can also be incorporated if available.

Figure 1: Online predictor estimates the trajectory up
to a future timeTNF from measurements taken in a
time window(TNP , TNC).

Fig. 1 depicts the time-line of the online pre-
diction problem, where the actual trajectory is repre-
sented with a continuous blue line. LetTC denotes the
current time and[TP , TC ] the past interval where data
is collected. The future prediction horizon is repre-
sented byTF . Such a trajectory is sampled, with sam-
pling periodT , so that past, current and future time
instants are expressed in time periodsNP = TP /T ,
NC = TC/T andNF = TF /T , respectively. Noisy
PMU measurements̄zi, i ∈ {NP , . . . , NC} are de-
picted as black squares, and are available from time
TP to the current timeTC in which the prediction is
carried out. These PMU data are utilized along with
the system model to estimate the trajectory for both the
past and future horizons. Red dots in Fig. 1 represents
the prediction result. One ticT later the estimation is
updated and the window shifted, taking into account
the next PMU data and forgetting the oldest one. In-
deed, each time new PMU data becomes available we
solve the following trajectory prediction problem

Online trajectory prediction

min
x,v

rss(x, v) + ode(x, e) + alg(x, v) (3)

The cost to be optimized consists of the sum of
three terms. The first term measures the deviation of
the estimation from the PMU measurements and will

be referred asresidual sum of squares

rss(x, v) :=

NC
∑

i=NP

αi

(

||z̄V i − SV vi||2 + ||z̄Xi − SXxi||2
)

(4)

Time varying coefficientsαi allow us to weight data
uncertainty. The second and third terms capture the
differential-algebraic model of the system, respec-
tively.

ode(x, v) :=

∫ TF

TP

||ẋ− ft(x, v)||2β(t)dt (5)

alg(x, v) :=

∫ TF

TP

||gt(x, v)||2γ(t)dt (6)

At an actual trajectory both should be zero as long
as the model is exactly known. However, the model
may not be assumed exact since it includes several pa-
rameters that are, e.g., suddenly affected by system
faults. Inclusion of these three terms in the cost al-
lows to handle model uncertainties, as opposed to set
the model equations as constraints. Functionsft and
gt depend on machine parameters and the admittance
matrixY , which can be reasonably estimated with the
help of protection devices in real time upon a given
delay. Weight functionsβ(t) andγ(t) normalize the
magnitude of dynamic and algebraic variables, and re-
flect our confidence in the model. They need tuning,
using for instance cross validation.

Remark Observe that we have a case offunc-
tional optimization, where the optimization variable is
the entire solution on the interval[TP , TF ] and the ini-
tial condition is the estimation for the previous win-
dow [9]. The estimation problem has two separate
time intervals: a first one where measurements have
great influence,[TNP , TNC ] and a second one where
only the system’s dynamics matters,(TNC , TNF ].
The first part imposes a trade-off between the sys-
tem’s dynamics and the deviation from the measure-
ments. For the second interval, therss term is not
involved and the solution of (3) can be solved by stan-
dard numerical integration methods (e,g. the trape-
zoidal method for differential-algebraic equations [8,
p.859]) with initial condition the interpolation ob-
tained from the past. However, the formulation of (3)
as an optimization problem allows one to incorporate
constraints based on field-experience, and to pursue
convex methods based on recent reformulations of the
optimal flow problem [12], although this is a direction
for future research and will not be addressed here.

The algorithm developed in this paper requires the
cost in (3) to be discretized, and that is the goal of next
section.

3 THE COST WITH MATRIX VARIABLES

In this section we rewrite the proposed predictor in
terms of matrix valued variables X and V. Such a
matrix representation not only reflects on a compact



form of the discretized cost in (3), but also reduces
the numerical complexity of its derivatives. As it is
detailed in the next subsection, the optimization vari-
ables X and V collect all system-wide machine angles
and speeds as well as complex voltages at a set of dis-
crete time instants in the interval[TP , TF ].

For such a construction, we will use the Kro-
necker product and the Hadamard (entrywise) product,
represented respectively by⊗ and◦. Let Idn be the
identity matrix of sizen, 0n×m denote the zero ma-
trix of dimensionsn×m and1n be the vector whose
n elements are equal to one.AT stands for the trans-
pose matrix ofA, and‖A‖F =

√

trace(ATA) is its
Frobenius norm.

3.1 Matrix variables

Let δm(t) denote the angle trajectory of them-th ma-
chine. Consider a constant time step h chosen as
a sub-multiple of the PMUs’ period and discretize
δm(t), collecting samplesδmn := δm((n− 1)h+TP )
for n = 1, . . . , N . The number of samples is se-
lected asN = (T/h)(NF − NP ) + 1 so that yields
δm1 = δm(TP ) and δmN = δm(TF ), covering the
time interval of interest. The same procedure is carried
out to obtain samples of the machine speed trajectory
wm(t). Then, samplesδmn andwmn are collected in
the columns of theN × 2NM matrix.

X =











δ11 ω11 . . . δ1,NM
ω1,NM

δ21 ω21 . . . δ2,NM
ω2,NM

...
...

. . .
...

...
δN1 ωN1 . . . δN,NM

ωN,NM











.

Recall that by construction the time indexes1, . . . , N
are relative to the current time interval[TP , TF ]. In the
same fashion, defineV R

nm andV I
nm, m = 1, . . . , NB

the real and imaginary parts of the Cartesian descrip-
tion of voltage phasors. Then build theN × 2NB ma-
trix

V =











V R
11 V I

11 . . . V R
1,NB

V I
1,NB

V R
21 V I

21 . . . V R
2,NB

V I
2,NB

...
...

. . .
...

...
V R
N1 V I

N1 . . . V R
N,NB

V I
N,NB











.

Besides,α, β andγ are vectors that collect the
weight values at discretized times. Henceforth, we
will use capital letters inRSS(X,V ), ODE(X,V ),
andALG(X,V ), for the functions that substitute (4),
(5), and (6), respectively, after replacing continuous-
time variables(x, v) for their matrix-valued counter-
parts.

3.2 Residual sum of squares

In the new variables, the first term of (3) can be rewrit-
ten as

RSS(X,V ) =
1

2
‖Diag(

√
α)(Z̄X − STXSX)‖2F (7)

+
1

2
‖Diag(

√
α)(Z̄V − STV SV )‖2F .

with Z̄X , Z̄V , ST , SX andSV defined as follows.
ST is the sub-sampling matrix that selects samples for
those instants in which a PMU measurement is taken,
and it is obtained by sampling the rows of the identity
matrix IdN . Matrix SV selects the buses with PMUs
andSX selects the measured angles or speeds, if any.
MatricesZ̄X andZ̄V contain the measurements.

3.3 Dynamic term

By discretizing the derivatives and the integral, the
second term in (3) can be rewritten as

ODE(X,V ) =
h

2
‖Diag(

√

β)(DX − CF )‖2F (8)

FunctionF := F (X,V ) ∈ R
N×2NM is a matrix

valued version of the swing equation, containing the
dynamic information for every machine and for every
time instant. We approximate the derivative in (3) with
the trapezoidal rule (see e.g [8], page 842), and the in-
tegrals with quadrature methods. Differential matrix
D implements the forward incremental quotient while
matrix C aggregates the rows ofF corresponding to
subsequent time instants, according to the quadrature
method of choice (e.g., Euler or trapezoidal rule). De-
tails of functionF and operatorsD andC are given in
the Appendix.

3.4 Algebraic term

The algebraic term of (3) can be approximated by

ALG(X,V ) =
h

2
‖Diag(

√
γ)(Im − INET )‖2F (9)

Matrix-valued functions Im = Im(X,V ) and
INET = INET (X,V ) represent the current injected
by machines and flowing to the network, respectively.
Expressions for these functions may be found in the
Appendix.

3.5 Algorithm

So far, we have expressed the cost in (3) in terms of
structured matricesX andV . For each PMU cycle
NC , new data become available and we solve (3) in its
discretized matrix form

[X̂NC
, V̂NC

] = argmin
X,V

U(X,V ) (10)

with U(X,V ) := RSS(X,V ) + ODE(X,V ) +
ALG(X,V ), using a standard gradient-descent algo-
rithm. In the next PMU cycleNC + 1, the previous



solution [X̂NC
, V̂NC

] is set as the initial seed for the
next optimization iteration in (10), in order to speed
convergence. The gradient-descent algorithm uses
the expressions for the derivatives∂U

∂X
and ∂U

∂V
with

respect to matricesX andV that can be found in the
Appendix.

4 SIMULATED EXAMPLE

In [10] we applied a preliminary version of the algo-
rithm to a one-machine-infinite-bus (OMIB) as a proof
of concept. In this Section, we move forward to a net-
worked setup. The classical IEEE New England 39-
bus system is adopted as the testbed for the numerical
example here, with generators modeled with second
order dynamics, see Fig. 2. The model includes 10
generators, 19 loads, and 36 transmission lines. The
system trajectories were obtained with the DSAT soft-
ware and integrating (1) by the standard methods in [8,
p.859].

Figure 2: New England 39-bus system.

We simulate a three phase fault in the middle
point of the line connecting buses26 and 29. The
DSAT trajectories will serve as the ground truth for the
prediction algorithm. Fig. 3 represents such ground-
truth trajectories for the generator at bus38, which is
the closest one to the fault. Starting from equilibrium
at t = 0 it remains invariant untilt = 300ms, when
the fault occurs. From then until the line is tripped at
t = 500ms the voltage drops.

At t = 700ms the line is reclosed and the system
transits back toward equilibrium, up to a time horizon
of t = 1s. The protection system reports the location
and time of the fault, with a delay after the short cir-
cuit, (dashed line att = 400ms in Fig. 3) and the
tripping event at timet = 500ms.

Data for the predictor are collected byNM = 10
PMUs, placed at the generator buses, which sample
voltage phasors every20ms. Readings from these

Figure 3: Ground-truth voltage at bus 38 and fault
time-line.

Figure 4: Voltage of busbar 38.

PMUs were simulated by adding5 percent of white
noise to samples of the ground truth trajectory. In ap-
plications, the optimal location of PMUs is depends
heavily on the fault to be considered. This factor and
the number of PMUs will affect the error of the algo-
rithm.

Figure 4 shows together the ground-truth trajec-
tory (green line), the initial guess for the algorithm
(red line) all the trajectories successively estimated
along the transient (blue lines). The speed of genera-
tor at bus38 is shown in a similar way in Fig. 5. Both
the machine acceleration due to the fault (green line)
and the corresponding predictions (blue lines) can be
appreciated.

The top plot in Fig. 6 depicts the PMU data (black
crosses), the ground-truth trajectory (green line), and
the prediction carried out at timet = 380ms (blue

Figure 5: Speed of machine at busbar 38.



line). The PMU data at fault (300 − 380ms) are not
enough yet to force the prediction to follow the incom-
ing voltage dip. The second plot in Fig. 6 shows the
prediction at timet = 400ms. The fault location was
reported att = 400ms and the system model updated
accordingly for the prediction. The estimation has im-
proved because more PMU data on fault are consid-
ered and the correct model has been already updated.
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Figure 6: Progression of the voltage estimation of bus-
bar 38. Predictions at380, 400 ms.

The upper plot in Fig. 7 shows the situation
right before the tripping (t = 480ms). New data has
been introduced and the voltage deep is now more ac-
curately described. The programed tripping time is
known by the algorithm so that the trajectory predic-
tion after tripping approximates the actual voltaje. The
bottom plot shows the situation after the line tripping
(t = 620ms). Again, the extra data collected renders
the prediction more accurate. These figures corrobo-
rate the ability of (3) to smooth the data by using the
dynamic model to average multiple data samples and
hence reducing their noise effect.

5 CONCLUSIONS AND FUTURE WORK

A novel algorithm was presented for the prediction of
trajectories in power systems. The technique leverages
the full information available at each time instant, in-
cluding the PMU data and the differential algebraic
system model. Two distinctive properties of the pro-
posed predictor with respect to available alternatives
are that it can incorporate real-time data adaptively,
while accommodating model errors and uncertainties.
A matrix formulation of the prediction problem fa-
cilitates the algorithm construction for large power
networks, and paves the way for the use of state-of-
the-art optimization methods. Numerical experiments
corroborate the ability of the proposed estimator to

0 0.2 0.4 0.6 0.8 1
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Figure 7: Progression of the voltage estimation of bus-
bar 38. Predictions at480, 620 ms.

smooth the data, to capture the networked dynamics
of the grid, and to incorporate newly available phasor
measurements to improve the results adaptively.

Next research steps will explore new optimization
algorithms and dimensionality reduction techniques,
as well as decentralized versions via in-network con-
sensus. We will pursue convex methods to solve (3)
based on recent reformulations of the optimal flow
problem [12]. These approaches, along with migra-
tion of the algorithm code to a compiled language, will
allow us to investigate the tradeoff between error per-
formance and execution time.
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A Derivation of the ODF and ALG parts of the
cost

Function F (X,V ) : R
(N×2NM)×(N×2NB) →

R
N×2NM encapsulates the system dynamics. It is ob-

tained by looking at the equations for a single ma-
chine connected to a busbar, as it is shown next. In
what follows, we will express complex numbers as
vectors inR

2. For this case, the link variable is
V̄ = [V R, V I ]T , the complex voltage phasor at ter-
minal bus, and the state vector is[δ, ω]T . Denote by
Ēm andBm = 1

X′

d

the internal fem and the transient
susceptance of the machine, respectively. The inter-
nal fem is written as̄Em = Em[cos(δ), sin(δ)]T , and
the current̄I injected by the machine to the network is
Ī = 1

jX′

d

(Ēm−V̄ ) = −jBm(Ēm−V̄ ). This complex

quantityI = [IR, II ]T can be written as anR2 vector

Ī = −BmJ(Ēm − V̄ ) = −BmJ

[

ĒR
m − V̄ R

ĒI
m − V̄ I

]

with the help of the auxiliary matrixJ =

[

0 −1
1 0

]

.

The electrical power injected by the machine turns out

to bePe = V̄ T Ī :

Pe = V̄ T (−BmJ(Ēm−V̄ )) = −BmV̄ T J(Ēm−V̄ ).

Thus, the swing equation of a given machinep can be
expressed as

[

δ̇p
ω̇p

]

=

[

ωp
ω0

2Hp
[Pmp−KDpωp +BmpV̄

TJ(Ēmp−V̄ )]

]

.

(11)

Then, we construct the functionF , putting

[F (X,V )n,2p−1 F (X,V )n,2p] =
[

δ̇p(nh) ω̇p(nh)
]

for n = 1, . . . , N and p = 1, . . . , NM . For each
machinep, and considering their own parameters, we
define the scalar constants̄KDp = ω0

2Hp
KDp, ρp =

ω0

2Hp
Pmp and construct the respectiveNM × 1 vectors

KD andρ. We consider the numbersKp = ω0

2Hp
and

Bmp, and we form theNB ×NB diagonal matricesK
andBm, padding with zeros for non machine buses.
Finally, putting all together, we may write

F (X,V ) = X

(

IdNM
⊗
[

0 0
1 0

])

+X

(

Diag(KD)⊗
[

0 0
0 1

])

+ 1N (ρ⊗ [0 1])

+[V ◦Im]

(

K ⊗
[

0 1
0 1

])[

Id2NM

02(NB−NM )×2NM

]

where

Im = (Em − V ).
[

IdNB
⊗ JT

]

. [Bm ⊗ Id2]

is the current injected by the machines (i.e., it is 0 for
buses without generators). VectorEm contains the
internal voltage of the machines, padded with zeros
for non generator buses.

For the algebraic termALG, the currentINET

must be derived. For a given time instantn, the net-
work (complex) equation isINET,n = VnY , where
Y is the admittance matrix of the electrical network,
with dimensions(NB × NB), INET,n is a (1 × NB)
vector of net currents entering the power system and
Vn is the1 × NB vector of complex bus voltages. At
a fixed instant, for a given busq, and considering the
real and imaginary parts ofY , we have that

Iq =

NB
∑

k=1

YqkVk ⇒

IRq + jIIq =

NB
∑

k=1

(Y R
qk + jY I

qk)(V
R
k + jV I

k ),

so thatIRq =
∑NB

k=1 Y
R
qkV

R
k − Y IqkV I

k and IIq =
∑NB

k=1 Y
I
qkV

R
k + Y R

qkV
I
k . We put the real and imagi-

nary parts in a1× 2 row vector, obtaining

Īq =
[

IRq IIq
]

=

NB
∑

k=1

[

V R
k V I

k

]

(Y R
qkId2+Y I

qkJ
T ).



These are collected in anN × 2NB matrix

INET = V
(

Y R ⊗ Id2 + Y I ⊗ JT
)

.

The previous expression can be easily extended to
incorporate time changes in the network admittance
matrix. As an example, suppose the power system
faces a fault. Then, after the protection system in-
forms the event and trigger the respective contingency
actions, will know that there will be three different
admittance matrices: pre-fault (YP ), fault (YF ) and
post-fault (YPF ). Defining ∆YF = YF − YP and
∆YPF = YPF − YP , we obtain a unique addmittance
matrix

Yn = YP + µn∆YF + νn∆YPF

whereµn andνn indicate the active matrix at every
instant. Then, we may write

INET = V
(

YPR ⊗ Id2 + YPI ⊗ JT
)

+

Diag(µ)V
(

∆YFR ⊗ Id2 +∆YFI ⊗ JT
)

+

Diag(ν)V
(

∆YPFR ⊗ Id2 +∆YPFI ⊗ JT
)

Observe that we can accommodate any finite number
of distinct admittance matrices.

B Derivatives required for the optimization
algorithm

In Section III, a matrix formulation of the optimiza-
tion problem was introduced, with particularly struc-
tured variablesX and V , involving Kronecker and
Hadamard products. In order to apply an iterative al-
gorithm, the derivatives of the cost function with re-
spect toX andV are needed. We could not find ex-
plicit expressions for the required derivatives in the lit-
erature, so we present here a brief derivation of one of
them. The others can be obtained in a similar way. We
start from [11]

d

dX
tr(ATX) = A (12)

which is straightforward to prove from the defini-
tion of the trace. Similarly, for Hadamard product
d

dX
tr(A◦X) = Diag(A). A basic result for the deriva-

tives we are interested in states that

d

dX
tr[AT (B◦X)] = A◦B

In order to prove it, we observe that

tr[AT (B◦X)] =
∑

j

[AT (B◦X)]jj =
∑

j

∑

i

aijxijbij

= tr[(A◦B)TX ]

The result follows from (12). In a similar way, since

tr[AT (B◦(XC))] = tr[(A◦B)TXC] = tr[C(A◦B)TX ]

we have that

d

dX
tr[AT (B◦XC)] = (A◦B)CT (13)

which will be our building block from which we
obtain all the derivatives we need. As an ex-
ample, we present the derivative oft(X) =

tr
[

AT (XE◦B)
T
D (XF ◦C)

]

, a kind of term that

appears in ODF and ALG. Let us write down the dif-
ferencet(X + dX) − t(X) wheredX is a small de-
viation fromX . From it, we will obtain the sought
derivative. Thent(X + dX) =

tr
[

AT (((X + dX)E)◦B)T D (((X + dX)F )◦C)
]

We will keep first order terms, dropping higher order
terms. It follows that

t(X+dX) ≈ t(X)+tr
[

AT (XE◦B)
T
D (dXF ◦C)

]

+tr
[

AT (dXE◦B)
T
D (XF ◦C)

]

+o(dX2)

which is equal to

t(X+dX) ≈ t(X)+tr
[

AT (XE◦B)
T
D (dXF ◦C)

]

+

tr
[

A (XF ◦C)
T
DT (dXE◦B)

]

+ o(dX2)

Then, using (13),

∂

∂X
tr

[

AT (XE◦B)
T
D (XF ◦C)

]

=
[

(DT ((XE)◦B)A)◦C
]

FT+

+
[

(D((XF )◦C)AT )◦B
]

ET .

Table I summarizes all the formulae needed by the
optimization algorithm.

Since the internal fem of a given machine depends
on the rotor angle, matrixEm depends on variable
X . Then, to complete the task, we need an expres-
sion for the derivative of a functionh(Em) with re-
spect toX . We focus on a general functionh(E(X)),
h : RN×2P → R. In our particular case, we have a
special dependence ofE onX . In fact, the elements
Emn,2p−1

andEmn,2p
, which are actuallyER

mnp
and

EI
mnp

, depend only onδnp, the angle of the machinep
at timen. We have that

ER
mnp

∂δnp
= −EI

mnp
,

EI
mnp

∂δnp
= ER

mnp

or, in a matricial form,

∂

∂δnp

[

ER
mnp

EI
mnp

]

=

[ −EI
mnp

ER
mnp

]

= J

[

ER
mnp

EI
mnp

]

Then, discarding zero terms,

∂h

∂δnp
=

[

∂h

∂ER
mnp

∂h

∂EI
mnp

]

.





∂ER
mnp

∂δnp

∂EI
mnp

∂δnp



 =



Table 1: Summary of the derivative formulae

Scalar function of X Derivative
tr

[

(AT (B◦XC)
]

(A◦B)CT

tr
[

AT(XE◦B)
T
D(XF ◦C)

]

[

(DT ((XE)◦B)A)◦C
]

FT +
[

(D((XF )◦C)AT )◦B
]

ET

1
2‖D (XE◦B)A‖2F

[

A◦
(

DTD(X◦A)BBT
)]

ET

tr
[

A(XE◦B)TD(XF ◦XC)
] [

(DT (XE◦B)A)◦C
]

FT +
[

(DT (XE◦B)A)◦XF
]

CT+
+
[

(D(XE◦XE)AT )◦B
]

ET

1
2‖D (X◦(XA))B‖2F

[(

DTD(X◦XA)BBT
)

◦XA
]

+
[(

DTD(X◦(XA))BBT
)

◦X
]

AT

=
∂h

∂ER
mnp

.
(

−EI
mnp

)

+
∂h

∂EI
mnp

.ER
mnp

.

So, in order to get theN × 2P matrix ∂h
∂X

, we may
proceed as follows. First, we introduce the auxiliary
matrix Ẽ which reorders the entries ofE:

[Ẽn,2p−1, Ẽn,2p] = [−En,2p, En,2p−1].

Thus,
Ẽ = E.

(

IdP ⊗ JT
)

.

Then, we have to construct the dependence ofh on δ
and add 0 for the dependence ofE onω.

∂h

∂X
=

{

∂h

∂E
◦Ẽ

}

.

(

IdP ⊗
[

1 0
1 0

])

or

∂h

∂X
=

{

∂h

∂E
◦
[

E.
(

IdP ⊗ JT
)]

}

.

(

IdP ⊗
[

1 0
1 0

])

△
=

(

∂h

∂E
◦KE1

)

.KE2

As an application of the previous result, we
may now calculate the derivative ofh(X) =
tr

[

XTA (V ◦(E(X)B))C
]

. We know that∂h =

∂ tr
[

XTA (V ◦(E(X)B))C
]

, so

∂h = tr
[

∂
(

XTA (V ◦(E(X)B))C
)]

=tr
[

∂XTA (V ◦(E(X)B))C
]

+

tr
[

XTA∂ {(V ◦(E(X)B))C}
]

=tr
[

∂XTA (V ◦(E(X)B))C
]

+

tr
[

XTA∂ {(V ◦(E(X)B))C}
]

The derivative of the first term comes from Table I.
For the second term, we may apply thechain-rule-kind
previous result:

∂h

∂X
=A (V ◦(EB))C

+

{

∂

∂E
tr

[

XTA (V ◦(EB))C
]

◦KE1

}

.KE2

Finally,

∂h

∂X
=A (V ◦(EB))C+
{[

[(ATXC)◦V ]BT
]

◦KE1

}

.KE2


