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Abstract—This paper focuses on the solution of the problem  This paper focuses on the solution of the problem faced by
faced by a hydro power producer that needs to determine the g hydro power producer that needs to determine the amount of
amount of power to offer to the market for a period of one ,q\yer tg offer to the market in a medium term horizon (one

year. To define the best offers, such producer must solve a Simil bl h b ivzed in the liteeat
bilevel optimization problem that is nonconvex and has loch year). Similar problems have been analyzed in the liteeatur

and global minima. The paper analyzes the performance of a Poth considering price taker [2] and price maker producers
piecewise linearization technique when applied to the sofion of  [8], [11], [13], [14]. Here, the problem is formulated for a

such problem. The procedure is tested in a small example and price maker producer in a predominantly hydro system and
in an equivalent of the Brazilian system. considers the stochastic nature water inflows [15]. However
the model described in this last reference has been extended
Index Terms—Piecewise linearization methods, energy mar- 0 consider nonlinear characteristics of the hydro geierat

kets, hydrothermal systems, bilevel optimization. production functions. Thus, this paper deals with a bilevel
nonlinear stochastic optimization problem. It is impottém
. INTRODUCTION ensure that reliable solutions are obtained for such pnople

o ~which is non-convex and have local and global optima [16].

Under energy markets, the agents that participate in e paper evaluates the use of a piecewise linearization
production, transmission, distribution and consumptidn @chnique in the solution of such problem.
electrical energy usually have different economical goatse When applied in the solution of the producer problem,
of these agents is the owner of generation plants. An imporigyixed integer linear formulations have been adopted toesepr
issue for such agent is to define the offers to the energympiementarity constraints [10], [13] and nonlinear con-
market that maximize its profits. This is known as fiteducer - giaints that represent some characteristics of the pesdif;
problem The optimal decisions of the producer depend n.tf)é], 18], [13]. The linearization models used in the pre\iaef-
only on the market structure, but also on the generatiences are designed to represent those particular dotstra
capacity of such producer and, consequently, its markeepow, tne present paper, a generic integer programming mduel, t
These are key factors to be considered when determining E'S‘i%aggregated Convex Combination (DCC) model [17]-[19],
offers to the energy market. is used for piecewise linearization of the nonlinear caists

A large body of work formulates and analyzes the prosf the hydro power producer problem [20]. The model can
ducer problem. The proposed models can be classified jg applied to approximate any nonlinear continuous functio
two categories: those that consider a price taker produ¢ght is defined over a compact set. The mixed integer linear
[1]-{4], which has no influence on the market price, anfhrmulation is expressed in GAMS platform [21] and solved
those models that take into consideration the influence ®f ith CPLEX. Results are obtained for a small example and
producer on the price of energy [5]-[13]. In the first casger an equivalent of the Brazilian system.
the producer problems can be regarded as particularizationThe remaining of the paper is organized as follows. Section
of classical optimal power dispatch problems defined fofresents the bilevel formulation of the hydro power proeiu
thermal and hydrothermal systems. Thus, usually the optim@splem and the the corresponding single level problem: Sec
decisions of the producer are obtained by solving a singigy || presents the piecewise linearizatin techniquepaed
level optimization problem. In the case that producer deess 1, formylate the mixed integer linear problem. Section IV
affect the price of energy, the optimal offers can be obtilne gna1yzes the results obtained in tests with hydro systems

solving a bilevel optimization problem, with the upper Ievesyiracted from the Brazilian system and, finally, section V
problem expressing producer goals and constraints, and the -judes the paper.

lower level problem representing the optimal power dispatc
of the system. Depending on the information available to the Il. THE HYDRO POWER PRODUCERPROBLEM

producer, these optimization problems can be deterministi
To supply the system demand, generators make offers to

stochastic. In both cases, different factors are considerthe : :
analysis of the problem: transmission constraints [5}g)], "€ Power market and the system operator is responsible for
poordinating all the offers in order to have a feasible disipa

[12], the random nature of system loads [8], energy pricek a . : e
offers made by competing power producers [3], [8], [9], ﬂthe objective of each power producer is to maximize its

[14] and intermittent renewable generation [8], [13], [14] ndividual profit, which basically depends on the reservoir
storage levels, on the river natural water inflows and on the
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a given time horizon. To obtain its best offers, the producef line [ and A the line-bus incidence matrix of the system.
must consider that the system operator determines the powhe power balance constraints can be written as:
dispatch that minimize the amount of thermal generation to

be used in the planning horizon considering all the constsai H Ny N
on the operation of the system. D An,  Phit,+ > Ay, Untw— O B 0jtw=pdnt,
=1 =1 =1
A. Physical and Operational Constraints m = max (3)
) —frex < "/ZZAZ,j 06,0 < 75,

In the mathematical framework used throughout the paper, =t

one power plant is associated with each power producer,y”’f(“)zo’

with one reservoir and one equivalent generation unit. The

dispatch procedure is carried out taking into considematiofor » = 1,...,N, I = 1,... L, andVt,w. In (3), N is the
besides physical and operational limits of the plants,rthélumber of buses in the system,, is the number of thermal
spatial and temporal interconnections represented byytieoh Plants,6;: ., is the voltage angle of bug, y. ;. represents
balance equations. The random nature of natural water isflotle amount of thermal generation necessary to supply thik loa
is represented through set of,, scenarios. For a planningPdn.:. f;"** is the transmission limit of ling.

horizon withT" periods and a system with hydro plants, the  Water inflows in the first planning period can be considered
dispatch obtains the amount of power produced by every plagiown; in the following planning periods; ; ., is a random

i in every time period and for every scenario of water inflowvariable represented by, scenarios, each one with proba-
w. The following hydro plant constraints must be satisfied ipility of occurrencer,,. Thus, in (1) for every plani and

the dlSpatCh: busn: Vi1,1 = V31,2 = .. = Ui 1,N,y 31,1 = 5,12 = -0 =

Qi 1,N,» Ui1,1 = U 1,2 = o0 = ui,lva7Phi,1,1 - Phi,1,2 =

Vitw = Vit—1l,w T Titw — Qitw — Uit,w - P, 011 =.. =0, 1N
i1,Ny 0 o In,l, 1N -

+ Z [qn,tw + un,t,w]
neN;
Py =k (hy —ho ) ais
e = Ri (o = hg,) G (1) B. The Producer Problem

VP <y, < UPEX

G < Giw < ¢
min max

Phi < Py < Phi

Ui t,w Z 0

The objective of each power producer is to maximize
its individual profit, which depends on how much water is
available to provide power, that is, it depends on the rederv
fori=1,.,H,t=1,..,T andw = 1,...,N,. In (1), for storage levels, on the river natural water inflows and on the
every scenariav, v; ¢, is the volume of water in reservoir outflows of up-stream reservoirs. When deciding its offer to
i at the end of time period, ;.. is the natural water the next market clearing time, this producer must take into
inflow, ¢; ¢, is the amount of water discharged through theonsideration a set of possible future water inflow scesario
turbines, P, , ., is the active power generation and,,, is and potential future revenues. It is assumed that the pesduc
the amount of spilled water of reservairduring periodt; €xpresses such criteria by establishing target valueshier t
N; is the set of up-stream reservoirs of resenigih,, and Vvolumes of water that are stored in its reservoirs at the end
h,, represent the forebay and afterbay elevations of reserveirthe planning periody;”. Thus, the problem of producér
i and superscriptsnin and max represent upper and lowerwould be to adjust the amount of offered power in order to
limits. The first equation represents the hydro balance én tminimize the difference between the volume of water stored
system, the second represents the input-output charstiteri in its reservoirs at the end of the planning period arjtl.
of the plant and the remaining equations set upper and lowlte offer for the first planning period, associated with the
limits on reservoir volume, power generation, water disghe next market clearing time, does not depend on scenarios;
through the turbines and water spillage. offers for the remaining planning periods depend on the

The forebay and afterbay elevations of a plamare ex- Water inflow scenarios. When deciding its offers, the preduc

pressed by polynomials with degrees that depend on tg!st consider that, in every scenario, the system operator
characteristics of the plant. Thus, we have: will coordinate power production in order to minimize the

total amount of thermal generation. For that, it takes into
dv consideration anticipated values for the offers made by the
Pr, ., = Zawvzwqi,t,w remaining power producers. Thus the producer problem has,
=0 ) in the lower level,N,, problems that are solved by the system
operator to determine feasible dispatches.

i,t,w

d

q
7Zﬂ"/1 (qiyt,w + Ut,u,w)vqtt,wa Vtaw 9

=0 To formulate the producer problem, it is supposed that

decisions related to the first planning period are made in
whered,, d, are the degrees @f,, andh,,, respectively, and the first stage, whereas decisions related to the remaining
coefficientsa,,, 3,, are empirically obtained. planning periods are made in the second stage considering
In addition, the dispatch must respect power balance equé; streamflow scenarios. L&?, . ., be the amount of power
tions and transmission limits. L& be susceptance matrix ofproducerk offers to the market at periadand scenario, and
the systemA;, andA,, zero-one matrices that associate hydre, = {vi t.w, ¢i,t,w» Wi,t,0) Phi ¢ Y, Vi, t}. The problem of
and thermal generators to the system busgethe susceptance producerk can be stated as:



Thus, a points,, that solves (5) with multiplierg A, ¢)

Ny, respects the following conditions:
Omin Z T |Uk,T,w — vzp
gls.) = 0.
subject to h(sw) <o,
Pmin <0 w < I;bmax7 aT aTh
e = Tt = Dy B (s)A+ S (5,)C =0, )
Ok1,1=0k12="..=0 1N, 0s,, 0s,,
Vi,1,1 = V4,1,2 = ... = Ui,1,N,,» ¢=>0,
“) h(X, Q) = [(s0).
On,1,1 = ... =0pn1,N,»

Every lower level problem of (4)P(w), is substituted
T by conditions (9). The result is a single level optimization
min Tw ) Ytw problem with linear and nonlinear constraints and a non
t=1 differentiable objective function.

s, solve

P(w)
subject to

(1) = (3),
w=1,..,N,. IlIl. PIECEWISEINTEGERLINEAR MODEL

It should be noticed that generator offef,; .., Vi, , w, are To solve the producer problem, its objective function and
fixed in the lower level problems. - nonlinear constraints are represented by introducing reew v

ables, equalities and inequalities to the problem.

. To represent the objective function, let
C. Single Level Problem P )

_ _,SP
The single level problem that is equivalent to (4) is obtdine Vary = Uk Tw — Vg, Y. (10)

by substituting the conditions that define the optimal sotut min ZN“ _ — | is replaced b
of every lower level problem into the upper level problem. w=1"w [Tk T = Tk P y
Lagrangian duality conditions are enforced. The basic supp

. N,
. . .. min _4 TTvar,
sition is that the lower level problems are “sufficiently ger” 2wt T aTy,

to respect such conditions. Thus, an optimal solutiof(e), .10 vy — vy <wvar, (11)
satisfies its constraints, the constraints of its dual nobénd 0 — V1w < vary.
the strong duality conditions [22]. To derive the singlediev ) ) )
problem, the lower level probler?(w) is rewritten as Every nonlinear constraints of the single level problefn,
is approximated by a piecewise linear functighthat satisfies
min  f(s.) a set of constraints. Lef(x) : D — R be a continuous
s.t0 g(s,) =0, (5) piecewise linear function whose domain is a compact set
h(s,) < 0, D C R Thenf(x) = {m}x + cp, x € P,YP € P} where

P is a simplex, mp is a vectorcp is a scalar and is the
whereg andh are composed by the equality and inequalitfamily of simplexes that represerftin its entire domain.
constraints (1)-(3). Fig. 1(a) shows a nonlinear functighand Fig. 1(b) shows

The Lagrangian of (5) is defined as the piecewise linear functiorf that approximatesf. The
domain of the function is divided into a set of simplex@s

L(80,\C) = f(50) +ATg(5w) + ¢ h(sy), (6) shown in Fig. 1(c). The J1 triangulation [19] is adopted to
subdivideD. Each simplex has a set of verticds(P). The

where\ and ¢ are multipliers (dual variables). set of all the vertices in the domain ¢fis denotedV. The
Let s, be feasible to (5) and a stationary point of théimplexes, and also the vertices of each simplex, are sorted
Lagrangian. Then: according to pre-defined schemes [20].
In convex combination piecewise linearization models, the
%(S* A =0 representation of a point iy, (x, f(x)), is given by the convex
s, 777 ’ (7) combination of the vertices of the simplexes. To accomplish
¢>0. this, the vertices of every simpleR are numbered and, to

each oney, is associated a weighting variablep » (Figure
L(s*,\,¢) < L(sw, A, C), for all s, that is feasible to (5). 1)(c). Then:
The dual function is:

(Xa f(X)) = Z Z,UP,ﬂ(’l?a f(ﬂ))v

h()‘7C> = E(S:nAaC) (8) PePYey
wpy > 0,YP € P VI eV,
It should be noticed that the analytical expression X, ¢) Z Z,LLP,ﬁ =1.
is obtained by substituting},, obtained from (7), intcC. PEPYICY

Let ()‘*v <*> be th_e_ mf%Ximu_m _OhO‘a O for ¢ > 0. If the 1 A simplex with dimensiond is the polytope which is the convex hull of
strong duality condition is satisfied, thé\*, (*) = f(s}).  d+1 vertices.

w



this case, the J1 triangulation is carried out using subidiki
1 or 2 of each cube (Figure 2(c)).
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Figure 2. Triangulation in Three Dimensions

Figure 1. Piecewise Linear Approximation ¢{x)

The piecewise linearization of (2) is given by (17). It is
expressed in terms of weighting variables s ; ; .., €ach one
associated with verte® of simplex P, defined in the domain
of a particular variable of the problem that is associatetth wi
ﬁydro planti, periodt and scenario.

A. Disaggregated Convex Combination (DCC) Model

A mixed-integer linear optimization algorithm scans th
simplexes that approximaté in the search for the optimal
solution to the problem. By choosing a particular piecewise

linear model, we define how such search is conducted. In the Z Zup’ﬂﬂ.wﬂ = Vit

DCC model, a binary variable;p is associated with every PeP ey

simplex P. When the algorithm scans simpléX zp = 1. Z Z“Pﬁ oo = i
yU,thl,w — 4,l,w>

The DCC model is expressed by [18], [19]: Pep dev

3> wpat =x, (12) S wpoite? =it

PEP 9V PeP 9V
Z ZMP;&JFW) = f(x), (13) Z ZNP,ﬂ,i,t,wPh(ﬂ) = Phi ., (17)
PeP 9eV PEP 9V
np,y Z O7VP e 'P7VQ9 = V, (14) HP9,itw 2 O,VP € ,P7VQ9 € V(P)a
> ey =zp,VPE€P, (15) " wpvitw = 2Pitw VP EP,
YEV VeV (P)
ZZP =1, zp € {0; 1}7VP eP. (16) ZZP,i,t,w =1, ZPit,w € {Oa 1}7vp eP.
PeP PepP

Constraints (12)-(14) represent a poifx, f(x)) in the The remaining nonlinear functions of the single level prob-
graph as a convex combination @f, f(1)). Constraints (15) lem are replaced by sets of constraints that are analogous to
and (16) limit the convex combination to a single simplefl7).
as, from (16), only one variabler can be equal to 1. When As the piecewise linearization requires that the domains of
zp = 1, the weighting variables associated Fomay vary the functions be bounded, upper bounds should be defined for
within [0,1], whereas the remaining weighting variables are; ., Vi,t,w, and upper and lower bounds should be defined
set to zero. for the dual variablea and(, as they appear in the nonlinear

The single level problem, which is equivalent to the prosonstraints (9). These bounds define the number of simplexes
ducer problem, has three types of nonlinear constraints: thsed in the linearization and affect the computational time
power production functions (2), the derivatives ©fwith re- solve the mixed integer linear problem.
spect tov; ¢ ., ¢; .+, andu; ¢, and the strong duality condition,
h(A,¢) = f(sw). Function (2) is expressed in terms of three
variablesv; ; o, ¢+ andu; ., therefore the simplexes used Tests are carried out with two small systems, composed
its linearization are tetrahedrons whose vertices areelgfior by Brazilian hydro plants (Table I). The producer problem is
given values of these three variables. The piecewise lizeear solved for a single streamflow scenario, with water inflows
tion shown in Figure 1 is extended to the three-dimensi@et equal to the average value of monthly inflows during
case shown in Figure 2. The tetrahedrons used in the PWegar 2014 [23]. The planning period starts in January and
approximation are derived from the subdivision of smallesib the reservoirs are supposed to be initially at the 80% of
defined by the intervals of variation of the three variablas. their maximum storage capacity. Load curves are constiucte

IV. TESTRESULTS



by normalizing the annual load profiles of the Southeastern TABLE Il.  SOLUTIONS - CHAVANTES

Region of Brazil [24] and multiplying the normalized values T T T T T

by the total generation capacity of the system. Additioraad Nor?”neear 031'0”5 717(343.0) 5397(056?0 17(()77.53 365913.53

can be found in [20]. #2[35,113.6] 32,8674 [324,330.0| 73, 145.1
The solutions to the nonlinear single level problem are PWL 76,234.8]652,698.8] 280.32 [32,022.2

calculated by CONOPT, whereas those of the PWL problem

are calculated by CPLEX. The solvers run under GAMS

platform in a Intel Core i7-4500, 1600MHz computer wittpe local or global optima. The solution of the PWL model,

8GB RAM. CONOPT and CPLEX obtain the solutions to th@n the other hand, is obtained by exhaustive search, using

pr0b|ems of two different producers_ branch-and-bound algorithm. In this case, the solutiorhto t
PWL model is a global optimum. The results shown in Table
TABLE I.  SYSTEM DATA II confirm this point. Some characteristics of two solutions
to the nonlinear model, and the solution of the PWL model
Sysltem # Bélses # H-ZPlants Gen-le;p?-(MW Stora?g gga5p-(hﬁ) are presented: the total energy produced by hydro and power

plants, E and Y, the total volume of turbined water, Q, and

the total volume of spilled water, U, in the 12 months period.

In all these solutions, Chavantes meets its target value for
A. The Problem of Chavantes the final reservoir volume. Therefore, the optimal valuehaf t

In the first test, we obtain the optimal offers of ChavantédP/ective function of the upper level problem is the samellin a
power plant, located in the system shown in Figure 3. Tr;é)lutlons. Iq spite of this, the total thermal energy is letve
objective of the producer is to finish the planning periochwitat the solution of the PWL model, and is quite different at

its reservoir at 50% of the maximum storage capacity & the two solutions of the nonlinear model. From the point of
7274.5 hn) view of the system operator (the lower level decision maker)

the solution of the PWL model is the best one followed by
Chavantes o Paranapanema solution #2 of the nonlinear model. The solution of the PWL
’ - model is the global optimum for the problem.

2 15 4 7,277 46, 305

B. The Problem of\gua Vermelha

This hydro plant is located in the 15-bus system depicted in
s Fig. 5. When determining its optimal offers, the objectife o
this producer is to finish the planning period wité, 000 hm?

of water in its reservoir.
Figure 3. Three Bus System

Figure 4 shows the optimal trajectories of the reservoir

i _q Rio Grande
volumes at the solution of the nonlinear model (NL) and the i A ml

PWI model (L). It can be noticed that the solutions of the two ; T\:TE a _

models are different. In spite of this, the objective of Cirates HIA — e "

is fulfilled at both solutions. However, the final volume of it |—‘ \ H,1 B
stored water at Capivara is very different at the two sohgio s H““ \\ ; I—
While, at the solution of the nonlinear model, Capivara has _.\‘\\‘_\ \_#| s [ .
9222.2hm? of stored water at the end of the planning period, / 1_'|5_ “h \7!_,//_1-14_1_

at the solution of the PWL model, this amountigl6hm?.
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12000

10000

8000

6000

Volume (hm?)

4000 : Chav. (NL) Figure 5. 15-bus System

2000 Cop- (N
0 The solutions obtained for this producer problem using the
e e Do e two different models are given in Table Ill. In all the sohuis,
the producer attains its objective, i.e., the optimal valfithe
Figure 4. Three Bus System objective function of the upper level problem is equal toozer

Comparing solutions #1 and #2 of the nonlinear model, it is
Form the behavior of the reservoir volumes, it can be ifpossible to notice that the first one is better since it hagtow
ferred that the optimal values of hydro and thermal genematithermal generation. The solution obtained with the PWL nhode
are quite different at the solutions of the nonlinear and PWk, once more, the best one.
models. As nonlinear model is noncovex, depending on theFigure 6 depicts the hydro power generation of all the plants
inicialization adopted, the solutions obtained by CONORM c at solution #1 of the nonlinear model and at the solution of



TABLE Ill. SOLUTIONS- AGUA VERMELHA

Model [

Nonlinear

Solutiong
#1
#2

E (GWh)
100, 997.8
370, 082.8
406, 510.4

Q (hm?)
5,058, 505.8
Z,466,373.6
5,044, 393.4

U (hr)
542, 165.2
T,149,075.5
529, 025.2

Y (GWh)
298, 110.7
329,025.6
292, 596.3

(2]

PWL

the PWL model. The largest differences occur for Illha Saitei [
particularly between the third and the eighth month.
[4]

3500

3000

(5]

2500

1. Solt. (L)

Jupid (L)

~N
=}
S
=]

....... Comp. T (L) [6]

1500

———A. Verm. (NL)
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1000 | cap. (NL)

1. Solt. (NL)
500

(7]

Jupia (NL)
Comp. T (NL)

0

12 3 4 5 6 7 8 9 10 11 12
Meses

(8]

Figure 6. 15-bus System
El
C. Computational Effort

Some characteristics of the problems and also the Com[!)llfl)—]
tational effort needed to solve the two problems are shown
in Table IV. In the PWL process, the interval of variatiort!!]
of each variable is divided in two. It is transparent that the
main drawback of the PWL technique is the size of the mixgtk]
linear integer problem and the computational effort to bta
its solution.

[13]
TABLE IV. COMPUTATIONAL EFFORT
Problem | Solutiong #Cont. Var|# Bin. Var.|CPU Time (s] # lter. (14]
Chavantes NL #1 580 0 1.75 51
NL #2 580 0 1.20 43
PWL 35,908 7,140 963.9 2,967,499
Agua NL #1 2,200 0 0.33 49 [15]
Vermelha| NL #2 2,200 0 0.52 186
PWL 72,856 14,208 35,033.7 |[1,119,455
[16]
V. CONCLUSIONS (17]

The problem faced by a hydro power producer that needs
to determine its optimal offers to the power market can g’
formulated as a bilevel optimization problem. This bilevel
problem can be transformed into a single level problem usinl%
Lagrangian duality conditions. This single level probles i[ ]
nonconvex and has local and global optimal solutions. Menli
ear programming algorithms can be trapped in local statjona
points, therefore global optimization techniques must &du (201
to properly solve the problem. The disaggregated convex
combination model is used in this study to transform tHgll
nonlinear single level problem into a mixed integer—line%z]
problem that is solved using branch and bound algorithm.
Using this procedure, it is possible to obtain global optim&3l
solutions to the producer problem. The main drawback of tlfﬁ]
technigue is the size of the mixed integer linear problem.
To reduce this problem, other PWL techniques found in the
literature can be adopted.
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