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Abstract—This paper focuses on the solution of the problem
faced by a hydro power producer that needs to determine the
amount of power to offer to the market for a period of one
year. To define the best offers, such producer must solve a
bilevel optimization problem that is nonconvex and has local
and global minima. The paper analyzes the performance of a
piecewise linearization technique when applied to the solution of
such problem. The procedure is tested in a small example and
in an equivalent of the Brazilian system.

Index Terms—Piecewise linearization methods, energy mar-
kets, hydrothermal systems, bilevel optimization.

I. I NTRODUCTION

Under energy markets, the agents that participate in the
production, transmission, distribution and consumption of
electrical energy usually have different economical goals. One
of these agents is the owner of generation plants. An important
issue for such agent is to define the offers to the energy
market that maximize its profits. This is known as theproducer
problem. The optimal decisions of the producer depend not
only on the market structure, but also on the generation
capacity of such producer and, consequently, its market power.
These are key factors to be considered when determining the
offers to the energy market.

A large body of work formulates and analyzes the pro-
ducer problem. The proposed models can be classified in
two categories: those that consider a price taker producer
[1]–[4], which has no influence on the market price, and
those models that take into consideration the influence of the
producer on the price of energy [5]–[13]. In the first case,
the producer problems can be regarded as particularizations
of classical optimal power dispatch problems defined for
thermal and hydrothermal systems. Thus, usually the optimal
decisions of the producer are obtained by solving a single
level optimization problem. In the case that producer decisions
affect the price of energy, the optimal offers can be obtained by
solving a bilevel optimization problem, with the upper level
problem expressing producer goals and constraints, and the
lower level problem representing the optimal power dispatch
of the system. Depending on the information available to the
producer, these optimization problems can be deterministic or
stochastic. In both cases, different factors are considered in the
analysis of the problem: transmission constraints [5]–[8], [10],
[12], the random nature of system loads [8], energy prices and
offers made by competing power producers [3], [8], [9], [12],
[14] and intermittent renewable generation [8], [13], [14].
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This paper focuses on the solution of the problem faced by
a hydro power producer that needs to determine the amount of
power to offer to the market in a medium term horizon (one
year). Similar problems have been analyzed in the literature,
both considering price taker [2] and price maker producers
[8], [11], [13], [14]. Here, the problem is formulated for a
price maker producer in a predominantly hydro system and
considers the stochastic nature water inflows [15]. However,
the model described in this last reference has been extended
to consider nonlinear characteristics of the hydro generations
production functions. Thus, this paper deals with a bilevel
nonlinear stochastic optimization problem. It is important to
ensure that reliable solutions are obtained for such problem,
which is non-convex and have local and global optima [16].
The paper evaluates the use of a piecewise linearization
technique in the solution of such problem.

When applied in the solution of the producer problem,
mixed integer linear formulations have been adopted to express
complementarity constraints [10], [13] and nonlinear con-
straints that represent some characteristics of the producer [1],
[2], [8], [13]. The linearization models used in the previous ref-
erences are designed to represent those particular constraints.
In the present paper, a generic integer programming model, the
Disaggregated Convex Combination (DCC) model [17]–[19],
is used for piecewise linearization of the nonlinear constraints
of the hydro power producer problem [20]. The model can
be applied to approximate any nonlinear continuous function
that is defined over a compact set. The mixed integer linear
formulation is expressed in GAMS platform [21] and solved
with CPLEX. Results are obtained for a small example and
for an equivalent of the Brazilian system.

The remaining of the paper is organized as follows. Section
II presents the bilevel formulation of the hydro power producer
problem and the the corresponding single level problem. Sec-
tion III presents the piecewise linearizatin technique adopted
to formulate the mixed integer linear problem. Section IV
analyzes the results obtained in tests with hydro systems
extracted from the Brazilian system and, finally, section V
concludes the paper.

II. T HE HYDRO POWER PRODUCERPROBLEM

To supply the system demand, generators make offers to
the power market and the system operator is responsible for
coordinating all the offers in order to have a feasible dispatch.
The objective of each power producer is to maximize its
individual profit, which basically depends on the reservoir
storage levels, on the river natural water inflows and on the
outflows of up-stream reservoirs. This implies that the problem
faced by a hydro power producer is to maximize its profit over



a given time horizon. To obtain its best offers, the producer
must consider that the system operator determines the power
dispatch that minimize the amount of thermal generation to
be used in the planning horizon considering all the constraints
on the operation of the system.

A. Physical and Operational Constraints

In the mathematical framework used throughout the paper,
one power plant is associated with each power producer,
with one reservoir and one equivalent generation unit. The
dispatch procedure is carried out taking into consideration,
besides physical and operational limits of the plants, their
spatial and temporal interconnections represented by the hydro
balance equations. The random nature of natural water inflows
is represented through set ofNω scenarios. For a planning
horizon withT periods and a system withH hydro plants, the
dispatch obtains the amount of power produced by every plant
i in every time periodt and for every scenario of water inflow
ω. The following hydro plant constraints must be satisfied in
the dispatch:

vi,t,ω = vi,t−1,ω + ri,t,ω − qi,t,ω − ui,t,ω

+
∑

n∈Ni

[qn,tω + un,t,ω]

Phi,t,ω
= ki (hvi − hqi) qi,t,ω

vmin
i ≤ vi,t,ω ≤ vmax

i

qmin
i ≤ qi,t,ω ≤ qmax

i

Pmin
hi

≤ Phi,t,ω
≤ Pmax

hi

ui,t,ω ≥ 0

(1)

for i = 1, ..., H , t = 1, ..., T andω = 1, ..., Nω. In (1), for
every scenarioω, vi,t,ω is the volume of water in reservoir
i at the end of time periodt, ri,t,ω is the natural water
inflow, qi,t,ω is the amount of water discharged through the
turbines,Phi,t,ω

is the active power generation andui,t,ω is
the amount of spilled water of reservoiri during periodt;
Ni is the set of up-stream reservoirs of reservoiri, hvi and
hqi represent the forebay and afterbay elevations of reservoir
i and superscriptsmin and max represent upper and lower
limits. The first equation represents the hydro balance in the
system, the second represents the input-output characteristics
of the plant and the remaining equations set upper and lower
limits on reservoir volume, power generation, water discharged
through the turbines and water spillage.

The forebay and afterbay elevations of a planti are ex-
pressed by polynomials with degrees that depend on the
characteristics of the plant. Thus, we have:

Phi,t,ω
=

dv∑

γ=0

αγi
v
γ
i,t,ωqi,t,ω

−

dq∑

γ=0

βγi
(qi,t,ω + ut,u,ω)

γqi,t,ω, ∀t, ω ,

(2)

wheredv, dq are the degrees ofhvi andhqi , respectively, and
coefficientsαγi

, βγi
are empirically obtained.

In addition, the dispatch must respect power balance equa-
tions and transmission limits. LetB be susceptance matrix of
the system,Ah andAy zero-one matrices that associate hydro
and thermal generators to the system buses,γl the susceptance

of line l andA the line-bus incidence matrix of the system.
The power balance constraints can be written as:

H∑

i=1

Ahn,i
phi,tω+

Ny∑

i=1

Ayn,i
yn,t,ω−

N∑

j=1

Bn,j θj,t,ω= pdn,t,

−fmax

l
≤ γl

N∑

j=1

Al,j θj,t,ω ≤ fmax

l ,

yn,t(ω) ≥ 0,

(3)

for n = 1, ..., N, l = 1, ..., L, and ∀t, ω. In (3), N is the
number of buses in the system,Ny is the number of thermal
plants,θj,t,ω is the voltage angle of busj, yn,t,ω represents
the amount of thermal generation necessary to supply the load,
pdn,t. fmax

l is the transmission limit of linel.

Water inflows in the first planning period can be considered
known; in the following planning periods,ri,t,ω is a random
variable represented byNω scenarios, each one with proba-
bility of occurrenceπω. Thus, in (1) for every planti and
busn: vi,1,1 = vi,1,2 = ... = vi,1,Nω

, qi,1,1 = qi,1,2 = ... =
qi,1,Nω

, ui,1,1 = ui,1,2 = ... = ui,1,Nω
, Phi,1,1

= Phi,1,2
=

... = Phi,1,Nω
, ..., θn,1,1 = ... = θn,1,Nω

.

B. The Producer Problem

The objective of each power producer is to maximize
its individual profit, which depends on how much water is
available to provide power, that is, it depends on the reservoir
storage levels, on the river natural water inflows and on the
outflows of up-stream reservoirs. When deciding its offer to
the next market clearing time, this producer must take into
consideration a set of possible future water inflow scenarios
and potential future revenues. It is assumed that the producer
expresses such criteria by establishing target values for the
volumes of water that are stored in its reservoirs at the end
of the planning period,vspk . Thus, the problem of producerk
would be to adjust the amount of offered power in order to
minimize the difference between the volume of water stored
in its reservoirs at the end of the planning period andv

sp
k .

The offer for the first planning period, associated with the
next market clearing time, does not depend on scenarios;
offers for the remaining planning periods depend on the
water inflow scenarios. When deciding its offers, the producer
must consider that, in every scenario, the system operator
will coordinate power production in order to minimize the
total amount of thermal generation. For that, it takes into
consideration anticipated values for the offers made by the
remaining power producers. Thus the producer problem has,
in the lower level,Nω problems that are solved by the system
operator to determine feasible dispatches.

To formulate the producer problem, it is supposed that
decisions related to the first planning period are made in
the first stage, whereas decisions related to the remaining
planning periods are made in the second stage considering
Nω streamflow scenarios. LetOk,t,ω be the amount of power
producerk offers to the market at periodt and scenarioω and
sω = {vi,t,ω, qi,t,ω, ui,t,ω, Phi,t,ω

, yt,ω, ∀i, t}. The problem of
producerk can be stated as:



min
Ok,t,ω

Nω
∑

ω=1

πω

∣

∣vk,T,ω − v
sp

k

∣

∣

subject to

Pmin

hk
≤ Ok,t,ω ≤ Pmax

hk
,

Ok,1,1 = Ok,1,2 = ... = Ok,1,Nω
,

vi,1,1 = vi,1,2 = ... = vi,1,Nω
,

...
θn,1,1 = ... = θn,1,Nω

,

sω solve

P (ω)



















min πω

T
∑

t=1

yt,ω

subject to
(1) − (3),

ω = 1, ...,Nω .

(4)

It should be noticed that generator offers,Oi,t,ω, ∀i, t, ω, are
fixed in the lower level problems.

C. Single Level Problem

The single level problem that is equivalent to (4) is obtained
by substituting the conditions that define the optimal solution
of every lower level problem into the upper level problem.
Lagrangian duality conditions are enforced. The basic suppo-
sition is that the lower level problems are “sufficiently convex”
to respect such conditions. Thus, an optimal solution toP (ω),
satisfies its constraints, the constraints of its dual problem and
the strong duality conditions [22]. To derive the single level
problem, the lower level problemP (ω) is rewritten as

min f(sω)
s. to g(sω) = 0,

h(sω) ≤ 0,

(5)

whereg andh are composed by the equality and inequality
constraints (1)-(3).

The Lagrangian of (5) is defined as

L(sω, λ, ζ) = f(sω) + λ⊤g(sω) + ζ⊤h(sω), (6)

whereλ andζ are multipliers (dual variables).

Let s∗ω be feasible to (5) and a stationary point of the
Lagrangian. Then:

∂L

∂sω
(s∗ω, λ, ζ) = 0,

ζ ≥ 0.
(7)

L(s∗ω, λ, ζ) ≤ L(sω, λ, ζ), for all sω that is feasible to (5).
The dual function is:

h(λ, ζ) = L(s∗ω, λ, ζ). (8)

It should be noticed that the analytical expression ofh(λ, ζ)
is obtained by substitutings∗ω, obtained from (7), intoL.

Let (λ∗, ζ∗) be the maximum ofh(λ, ζ) for ζ ≥ 0. If the
strong duality condition is satisfied, thenh(λ∗, ζ∗) = f(s∗ω).

Thus, a pointsω that solves (5) with multipliers(λ, ζ)
respects the following conditions:

g(sω) = 0,

h(sω) ≤ 0,

∂⊤g

∂sω
(sω)λ+

∂⊤h

∂sω
(sω)ζ = 0,

ζ ≥ 0,

h(λ, ζ) = f(sω).

(9)

Every lower level problem of (4),P (ω), is substituted
by conditions (9). The result is a single level optimization
problem with linear and nonlinear constraints and a non
differentiable objective function.

III. P IECEWISE INTEGERL INEAR MODEL

To solve the producer problem, its objective function and
nonlinear constraints are represented by introducing new vari-
ables, equalities and inequalities to the problem.

To represent the objective function, let

varω = vk,T,ω − v
sp
k , ∀ω. (10)

min
∑Nω

ω=1 πω |vk,T,ω − v
sp
k | is replaced by

min
∑Nω

ω=1 πωvarω,

s. to vk,T,ω − v
sp
k ≤ varω ,

v
sp
k − vk,T,ω ≤ varω .

(11)

Every nonlinear constraints of the single level problem,f ,
is approximated by a piecewise linear function,f̃ , that satisfies
a set of constraints. Let̃f(x) : D → R be a continuous
piecewise linear function whose domain is a compact set
D ⊆ R

d. Then f̃(x) = {m⊤
Px + cP , x ∈ P, ∀P ∈ P} where

P is a simplex1 , mP is a vector,cP is a scalar andP is the
family of simplexes that represent̃f in its entire domain.

Fig. 1(a) shows a nonlinear functionf and Fig. 1(b) shows
the piecewise linear functioñf that approximatesf . The
domain of the function is divided into a set of simplexesP
shown in Fig. 1(c). The J1 triangulation [19] is adopted to
subdivideD. Each simplex has a set of vertices,V (P ). The
set of all the vertices in the domain off is denotedV . The
simplexes, and also the vertices of each simplex, are sorted
according to pre-defined schemes [20].

In convex combination piecewise linearization models, the
representation of a point iñf , (x, f̃(x)), is given by the convex
combination of the vertices of the simplexes. To accomplish
this, the vertices of every simplexP are numbered and, to
each one,ϑ, is associated a weighting variable,µP,ϑ (Figure
1)(c). Then:

(x, f̃(x)) =
∑

P∈P

∑

ϑ∈V

µP,ϑ(ϑ, f̃(ϑ)),

µP,ϑ ≥ 0, ∀P ∈ P , ∀ϑ ∈ V ,∑

P∈P

∑

ϑ∈V

µP,ϑ = 1.

1 A simplex with dimensiond is the polytope which is the convex hull of
d+ 1 vertices.
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Figure 1. Piecewise Linear Approximation off(x)

A. Disaggregated Convex Combination (DCC) Model

A mixed-integer linear optimization algorithm scans the
simplexes that approximatef in the search for the optimal
solution to the problem. By choosing a particular piecewise
linear model, we define how such search is conducted. In the
DCC model, a binary variable,zP is associated with every
simplexP . When the algorithm scans simplexP , zP = 1.

The DCC model is expressed by [18], [19]:
∑

P∈P

∑

ϑ∈V

µP,ϑϑ = x, (12)

∑

P∈P

∑

ϑ∈V

µP,ϑf̃(ϑ) = f̃(x), (13)

µP,ϑ ≥ 0, ∀P ∈ P , ∀ϑ ∈ V , (14)∑

ϑ∈V

µP,ϑ = zP , ∀P ∈ P , (15)

∑

P∈P

zP = 1, zP ∈ {0, 1}, ∀P ∈ P . (16)

Constraints (12)-(14) represent a point(x, f̃(x)) in the
graph as a convex combination of(ϑ, f̃(ϑ)). Constraints (15)
and (16) limit the convex combination to a single simplex
as, from (16), only one variablezP can be equal to 1. When
zP = 1, the weighting variables associated toP may vary
within [0, 1], whereas the remaining weighting variables are
set to zero.

The single level problem, which is equivalent to the pro-
ducer problem, has three types of nonlinear constraints: the
power production functions (2), the derivatives ofL with re-
spect tovi,t,ω, qi,t,ω andui,t,ω and the strong duality condition,
h(λ, ζ) = f(sω). Function (2) is expressed in terms of three
variablesvi,t,ω , qi,t,ω andui,t,ω, therefore the simplexes used
its linearization are tetrahedrons whose vertices are defined for
given values of these three variables. The piecewise lineariza-
tion shown in Figure 1 is extended to the three-dimension
case shown in Figure 2. The tetrahedrons used in the PWL
approximation are derived from the subdivision of small cubes
defined by the intervals of variation of the three variables.In

this case, the J1 triangulation is carried out using subdivision
1 or 2 of each cube (Figure 2(c)).

Figure 2. Triangulation in Three Dimensions

The piecewise linearization of (2) is given by (17). It is
expressed in terms of weighting variablesµP,ϑ,i,t,ω, each one
associated with vertexϑ of simplexP , defined in the domain
of a particular variable of the problem that is associated with
hydro planti, periodt and scenarioω.

∑

P∈P

∑

ϑ∈V

µP,ϑ,i,t,ωϑ = vi,t,ω,

∑

P∈P

∑

ϑ∈V

µP,ϑ,i,t,ωϑ = qi,t,ω,

∑

P∈P

∑

ϑ∈V

µP,ϑ,i,t,ωϑ = ui,t,ω,

∑

P∈P

∑

ϑ∈V

µP,ϑ,i,t,ωP̃ h(ϑ) = P̃ hi,t,ω, (17)

µP,ϑ,i,t,ω ≥ 0, ∀P ∈ P , ∀ϑ ∈ V (P ),∑

ϑ∈V (P )

µP,ϑ,i,t,ω = zP,i,t,ω, ∀P ∈ P ,

∑

P∈P

zP,i,t,ω = 1, zP,i,t,ω ∈ {0, 1}, ∀P ∈ P .

The remaining nonlinear functions of the single level prob-
lem are replaced by sets of constraints that are analogous to
(17).

As the piecewise linearization requires that the domains of
the functions be bounded, upper bounds should be defined for
ui,t,ω, ∀i, t, ω, and upper and lower bounds should be defined
for the dual variablesλ andζ, as they appear in the nonlinear
constraints (9). These bounds define the number of simplexes
used in the linearization and affect the computational timeto
solve the mixed integer linear problem.

IV. T EST RESULTS

Tests are carried out with two small systems, composed
by Brazilian hydro plants (Table I). The producer problem is
solved for a single streamflow scenario, with water inflows
set equal to the average value of monthly inflows during
year 2014 [23]. The planning period starts in January and
the reservoirs are supposed to be initially at the 80% of
their maximum storage capacity. Load curves are constructed



by normalizing the annual load profiles of the Southeastern
Region of Brazil [24] and multiplying the normalized values
by the total generation capacity of the system. Additional data
can be found in [20].

The solutions to the nonlinear single level problem are
calculated by CONOPT, whereas those of the PWL problem
are calculated by CPLEX. The solvers run under GAMS
platform in a Intel Core i7-4500, 1600MHz computer with
8GB RAM. CONOPT and CPLEX obtain the solutions to the
problems of two different producers.

TABLE I. SYSTEM DATA

System # Buses # H. Plants Gen. Cap.(MW)Storage Cap.(hm3)
1 3 2 1, 127 19, 335
2 15 4 7, 277 46, 305

A. The Problem of Chavantes

In the first test, we obtain the optimal offers of Chavantes
power plant, located in the system shown in Figure 3. The
objective of the producer is to finish the planning period with
its reservoir at 50% of the maximum storage capacity (vsp =
7274.5 hm3).

~~

1 2

3

Chavantes
Capivara

Paranapanema

Figure 3. Three Bus System

Figure 4 shows the optimal trajectories of the reservoir
volumes at the solution of the nonlinear model (NL) and the
PWl model (L). It can be noticed that the solutions of the two
models are different. In spite of this, the objective of Chavantes
is fulfilled at both solutions. However, the final volume of
stored water at Capivara is very different at the two solutions.
While, at the solution of the nonlinear model, Capivara has
9222.2hm3 of stored water at the end of the planning period,
at the solution of the PWL model, this amount is4816hm3.

Figure 4. Three Bus System

Form the behavior of the reservoir volumes, it can be in-
ferred that the optimal values of hydro and thermal generation
are quite different at the solutions of the nonlinear and PWL
models. As nonlinear model is noncovex, depending on the
inicialization adopted, the solutions obtained by CONOPT can

TABLE II. SOLUTIONS - CHAVANTES

Model Solutions E (GWh) Q (hm3) U (hm3) Y (GWh)
Nonlinear #1 71, 343.0 599, 056.0 1, 077.5 36, 913.8

#2 35, 113.6 32, 867.4 324, 339.0 73, 145.1
PWL 76, 234.8 652, 698.8 280.32 32, 022.2

be local or global optima. The solution of the PWL model,
on the other hand, is obtained by exhaustive search, using
branch-and-bound algorithm. In this case, the solution to the
PWL model is a global optimum. The results shown in Table
II confirm this point. Some characteristics of two solutions
to the nonlinear model, and the solution of the PWL model
are presented: the total energy produced by hydro and power
plants, E and Y, the total volume of turbined water, Q, and
the total volume of spilled water, U, in the 12 months period.
In all these solutions, Chavantes meets its target value for
the final reservoir volume. Therefore, the optimal value of the
objective function of the upper level problem is the same in all
solutions. In spite of this, the total thermal energy is lowest
at the solution of the PWL model, and is quite different at
the two solutions of the nonlinear model. From the point of
view of the system operator (the lower level decision maker),
the solution of the PWL model is the best one followed by
solution #2 of the nonlinear model. The solution of the PWL
model is the global optimum for the problem.

B. The Problem of́Agua Vermelha

This hydro plant is located in the 15-bus system depicted in
Fig. 5. When determining its optimal offers, the objective of
this producer is to finish the planning period with10, 000 hm3

of water in its reservoir.

Figure 5. 15-bus System

The solutions obtained for this producer problem using the
two different models are given in Table III. In all the solutions,
the producer attains its objective, i.e., the optimal valueof the
objective function of the upper level problem is equal to zero.
Comparing solutions #1 and #2 of the nonlinear model, it is
possible to notice that the first one is better since it has lower
thermal generation. The solution obtained with the PWL model
is, once more, the best one.

Figure 6 depicts the hydro power generation of all the plants
at solution #1 of the nonlinear model and at the solution of



TABLE III. S OLUTIONS - ÁGUA VERMELHA

Model Solutions E (GWh) Q (hm3) U (hm3) Y (GWh)
Nonlinear #1 400, 997.8 5, 058, 505.8 542, 165.2 298, 110.7

#2 370, 082.8 4, 466, 373.6 1, 149, 075.5 329, 025.6
PWL 406, 510.4 5, 044, 393.4 529, 025.2 292, 596.3

the PWL model. The largest differences occur for Ilha Solteira,
particularly between the third and the eighth month.

Figure 6. 15-bus System

C. Computational Effort

Some characteristics of the problems and also the compu-
tational effort needed to solve the two problems are shown
in Table IV. In the PWL process, the interval of variation
of each variable is divided in two. It is transparent that the
main drawback of the PWL technique is the size of the mixed
linear integer problem and the computational effort to obtain
its solution.

TABLE IV. C OMPUTATIONAL EFFORT

Problem Solutions #Cont. Var. # Bin. Var. CPU Time (s) # Iter.
Chavantes NL #1 580 0 1.75 51

NL #2 580 0 1.20 43
PWL 35, 908 7, 140 963.9 2, 967, 499

Água NL #1 2, 200 0 0.33 49
Vermelha NL #2 2, 200 0 0.52 186

PWL 72, 856 14, 208 35, 033.7 1, 119, 455

V. CONCLUSIONS

The problem faced by a hydro power producer that needs
to determine its optimal offers to the power market can be
formulated as a bilevel optimization problem. This bilevel
problem can be transformed into a single level problem using
Lagrangian duality conditions. This single level problem is
nonconvex and has local and global optimal solutions. Nonlin-
ear programming algorithms can be trapped in local stationary
points, therefore global optimization techniques must be used
to properly solve the problem. The disaggregated convex
combination model is used in this study to transform the
nonlinear single level problem into a mixed integer-linear
problem that is solved using branch and bound algorithm.
Using this procedure, it is possible to obtain global optimal
solutions to the producer problem. The main drawback of the
technique is the size of the mixed integer linear problem.
To reduce this problem, other PWL techniques found in the
literature can be adopted.
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http://www.ons.org.br/operacao/vazoes naturais.aspx.

[24] ——, “Carga de demanda,” http://www.ons.org.br/historico/carga pro-
pria de demanda.aspx, 2017.


