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Abstract— Access to large amounts of data is becoming more common, as well as the use of methods based
on “deep” learning to obtain better results. However, using those techniques can lead to long training times.
To deal with this problem, the Deep Stacked Network (DSN) was proposed, where several small modules are
stacked to increase the model efficiency. However, this architecture suffers from some problems that increase its
training time and the amount of memory required to store it. To deal with some of these problems, we propose
in this paper a fast algorithm to train a DSN using Extreme Learning Machine (ELM). Experiments performed
on many classification datasets showed that the proposed method achieves similar accuracy when compared with
other techniques, with the advantage of training the network in less time and storing fewer parameters.
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Resumo— O acesso a grandes quantidades de dados está mais comum, assim como o uso de métodos de
aprendizado profundo em busca de obter análises cada vez melhores. Entretanto, o uso de tais técnicas pode
acarretar em longos tempos de treinamento. Para lidar com este problema, uma arquitetura chamada Deep
Stacked Network (DSN) foi proposta, onde vários módulos pequenos são empilhados para melhorar sua eficiência.
Porém, esta arquitetura sofre com alguns problemas que aumentam seu tempo de treino e a quantidade de
memória requerida para armazená-lo. Para lidar com estes problemas, neste artigo é proposto um algoritmo
para treinar uma DSN baseado em Extreme Learning Machine (ELM). Experimentos em várias bases de dados
de problemas de classificação mostraram que o método proposto atinge métricas similares quando comparadas a
outras técnicas, com a vantagem de reduzir o tempo de treinamento e o número de parâmetros armazenados.
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1 Introduction

In recent years, large amounts of data are pro-
duced each year by a great variety of applications,
and it is becoming easier to access them (Kaisler
et al., 2013). To process all these data, the use
of “deep learning” techniques are becoming com-
mon, where many layers (stages) of information
processing in hierarchical architectures are used
to extract complex structures and build internal
representations of a dataset (Deng and Yu, 2013).

However, these “deep” architectures have
many layers that must be trained at the same
time, which implies that their training has a high
computational and memory cost. Furthermore,
the large volume of available data makes the
training process very difficult (scalability prob-
lem) (Deng and Yu, 2011).

To overcome these problems, Deng and Yu
(2011) proposed the Deep Stacking Network
(DSN), where smaller modules are trained and
“stacked” on top of others. The concept of DSN
does not specify the training algorithm and type
of each module, and thus fast algorithms, such as
Extreme Learning Machine (ELM) can be used.

ELM (Huang et al., 2004; Huang et al., 2006;
Huang et al., 2012) is an algorithm to train Single-
Layer Feedforward Networks (SLFNs). Recently,
ELM gained significant attention by researchers
due to its low computational cost and good gen-
eralization performance (Huang et al., 2012).

The main idea of ELM is to randomly gen-
erate part of the SLFN parameters and find the
remaining, using a closed-form solution (Huang
et al., 2004). However, the number of hidden neu-
rons of the SLFN needs to be well-defined to avoid
problems such as underfitting or overfitting. The
effects of this problem can be reduced by using
regularization, such as proposed by Deng et al.
(2009), but it still can suffer from the limitation
of memory and intense computational cost of large
matrices inversion (Inaba et al., 2018).

Zhou et al. (2014) proposed the Stacked Ex-
treme Learning Machine (S-ELM) which applies
the concept of “stacking” in the context of ELM.
This algorithm stacks modules trained with ELM
and uses Principal Component Analysis (PCA) to
reduce dimensionality and “send” relevant infor-
mation to the next modules (Zhou et al., 2014).

Compared with a common “deep learning”
model, S-ELM or DSNs trained with ELM have
a low computational cost. However, they still
need to store a considerable amount of parame-
ters, which can be a problem if they are used in
an environment with restricted resources.

In this context, our main contribution is a fast
algorithm to train a DSN using modules trained
with ELM. We propose to retain part of the cal-
culations of one module and using it in the follow-
ing. As a result, the proposed algorithm trains
networks with reduced training time, memory re-
quirement, and model size (number of stored pa-



rameters), while keeping similar results when com-
pared to other methods trained using ELM.

The remainder of this paper is organized as
follows. In Section 2, some brief literature review
is presented, where shallow and deep models are
introduced. In Section 3, the proposed algorithm
is described. The experiments to evaluate the pro-
posed method and the respective results are dis-
cussed in Section 4. Finally, the conclusion and
future paths are presented in Section 5.

2 Literature Review

According to Deng and Yu (2013), until recently,
most of the works related to machine learning and
pattern recognition exploited architectures consid-
ered “shallow”, where a single layer of non-linear
transformation is used. Some examples of “shal-
low” architectures are SLFN, Support Vector Ma-
chine and Hidden Markov Models.

These methods transform the input data into
a feature space, which may be unobservable. De-
spite the good results in simple or well-behaved
problems, these methods suffer in more difficult
tasks (e.g. speech, sound and image processing)
since they cannot extract complex structures and
features from the data (Deng and Yu, 2013).

To extract more complex features from the
data, a “deep” model is preferred, where several
non-linear layers are used. Historically, the con-
cept of “deep” learning originated in neural net-
work research, so the term “deep learning” usually
refers to methods similar to Multi-Layer Percep-
tron with many layers, also called Deep Neural
Networks (DNNs) (Deng and Yu, 2013).

To train an SLFN, which is a“shallow”model,
we can use algorithms based on gradient descent
(GD) or methods based on the ELM (Huang
et al., 2006) algorithm, which is usually much
faster and can obtain similar generalization per-
formance, when compared to GD-based methods.

However, it is not possible to use the origi-
nal ELM (Huang et al., 2006) algorithm to train a
neural network with many layers (“deep” model),
therefore, usually, GD-based methods are used.
Nevertheless, since the model has many layers,
this training process usually takes much more time
than a“shallow”model, but better results are usu-
ally obtained (Deng and Yu, 2013).

Another problem with these methods is their
training time and the memory requirement, espe-
cially when these models are trained using large
datasets, which is common for most recent appli-
cations (Bottou and LeCun, 2004). The effects of
this problem in the training stage can be reduced
if the Stochastic Gradient Descent (SGD) method
is used (Deng and Yu, 2013), which takes subsets
of the training data in each one of its iterations.

“Deep learning” models have been success-
fully applied to many applications, such as speech

recognition (Deng and Yu, 2011), semantic seg-
mentation (Long et al., 2015) and text localization
in real-world images (Zhu and Zanibbi, 2016) due
to its ability of extracting more complex struc-
tures and features from the used dataset.

However, the high computational cost and the
great memory usage can discourage researchers
from using this type of model. Thus, training
a “deep” architecture using algorithms with re-
duced computational time and memory require-
ment, such as the ELM, can be preferable.

In the following sections, we consider that a
classifier is trained with a generic classification
dataset, composed of N pairs (samples) (xi, ti),
i = 1, . . . , N , where xj is a vector with d features
and ti is a binary vector withm dimensions, where
m is the number of targets (classes). All xi and
ti row vectors can be used to construct the X =
[xT

1 , . . . ,x
T
N ]T and T = [tT1 , . . . , t

T
N ]T matrices, re-

spectively, where (·)T indicates transposition.

2.1 Extreme Learning Machine

ELM is a fast learning algorithm used to train
SLFNs, where it is not necessary to tune all the
network weights: some of them are randomly gen-
erated and the remaining are calculated using a
closed-form solution.

The output function of an SLFN with L hid-
den neurons and one output node (m = 1, the
matrix T changes into a vector t) is given by

f(x) =

L∑
i=1

βihi(x) = h(x)β, (1)

where β = [β1, . . . , βL]T is the weight vector
between the hidden layer and the output node,
h(xi) = [h(xi · w1 + ν1), . . . , h(xi · wL + νL)] is
the hidden layer output with respect to the input
sample xi.

The original ELM goal (Huang et al., 2006) is
to obtain the solution (βopt) which minimizes the
`2 norm of the training error, i.e.,

βopt = arg min
β
||Hβ − t||22, (2)

where t is the vector of target values and H is the
hidden layer output matrix given by

H =

h(x1 ·w1 + ν1) . . . h(x1 ·wL + νL)
...

. . .
...

h(xN ·w1 + ν1) . . . h(xN ·wL + νL)


(3)

where the weights wj (between the input and the
j-th hidden neuron) and bias νj are randomly
generated according to any continuous probabil-
ity distribution, and h(·) can be any nonlinear
piecewise continuous function satisfying the ELM
theorem (Huang et al., 2006). Each row i of H
corresponds to the vector h(xi).



The optimization problem presented in Eq.
(2) has a closed-form solution, which is given by

βopt = H†t, (4)

where H† = (HTH)−1HT is the Moore-Penrose
generalized inverse of the matrix H. Finally, the
output function of an SLFN trained using ELM is
given by

f(x) = h(x)βopt = h(x)H†t, (5)

where x corresponds to the input sample.
One problem of the original ELM algorithm

is that it tends to overfit if the number of hid-
den neurons is not properly chosen. To avoid this
problem, Regularized ELM (R-ELM) was pro-
posed by Deng et al. (2009). R-ELM adds a norm
of the output weights in the objective function
since it is a known practice to achieve better gen-
eralization (Bartlett, 1998).

The objective function of R-ELM is composed
of a sum of the weights model `2 norm and the
residual error `2 norm with a regularization pa-
rameter C. The R-ELM algorithm finds the solu-
tion βopt that minimizes its objective function:

βopt = arg min
β
C||Hβ − t||22 + ||β||22. (6)

According to Deng et al. (2009), this problem
also has a closed-form solution, given by

βopt =

(
I

C
+ HTH

)−1
HTt. (7)

These analyses can be extended to multiple
output problems, where β and t change into ma-
trices B and T, respectively, where each column
of B can be calculated using Eqs. (4) or (7) and
the correspondent column of T.

2.2 Deep Stacked Networks

While DNNs have shown good results in many
tasks, its training stage has proven to be computa-
tionally intense (Deng and Yu, 2013), and usually,
multiple CPUs and/or GPUs are used to speed up
this stage (Zhou et al., 2014).

One of the main reasons of this expensive
training of a DNN is that it usually has many lay-
ers, which means that the network has many pa-
rameters that need to be tuned at the same time
using an algorithm like SGD. This problem scales
with the usual large amount of data that is used
to train these networks.

To deal with this scalability problem, Deng
and Yu (2011) proposed a new deep learning ar-
chitecture, called Deep Stacking Network (DSN).
The central idea of this method is the concept of
stacking (Wolpert, 1992), where simple modules of
functions or classifiers are “stacked” on top of each
other in order to learn complex representations.

A DSN, as proposed by Deng and Yu (2011),
includes a number of modules S (a hyperparam-
eter). Each module can be an SLFN, with two
sets of trainable weights (and one set of bias) and
non-linear hidden units. In each module k, the
input is mapped by a weight matrix Wk followed
by a non-linear function (e.g. sigmoidal). These
outputs of the hidden layer can be mapped to lin-
ear units by a second matrix, Uk. To the best
of our knowledge, ELM was not used to train the
modules of a DSN, at least in its typical approach,
although it was suggested by Deng and Yu (2011).
In this case, Wk is randomly generated and each
column of Uk is calculated as βopt in Eq. (4) or
Eq. (7). An example of a DSN architecture is
shown in Fig. 1.

Module
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3

Figure 1: A typical DSN architecture. Rectangles
with the same color represent layers of the same
module, and green circles the original input data.

The lowest (first) module of a DSN is trained
in the same way a typical SLFN is, where the raw
input data X1 = X is mapped to an estimated
output T̂1. The remaining modules inputs are
“constructed”by concatenating the former module
input with its estimated output. This means that
the second module input is: X2 = [X1, T̂1]. This
can be extended to any module (except the first):

Xk = [Xk−1, T̂k−1] (8)

Using these“constructed” inputs, the modules
can be trained serially. By stacking them, it is
possible to achieve results similar to deep networks
with reduced training time (Deng and Yu, 2011).

2.3 Stacked Extreme Learning Machines

As presented in Section 2.1, the ELM algorithm is
used to train an SLFN model with very fast learn-
ing speed, good generalization ability and ease of
implementation (Zhou et al., 2014). However, as
pointed by Zhou et al. (2014), the accuracy ob-
tained in some datasets (such as MNIST, which
has 60000 samples with 768 dimensions) was lim-
ited by hardware, since it could be improved by
adding more neurons, but their computer could
not handle.



Following the “stacking” concept, the S-ELM
algorithm was proposed by Zhou et al. (2014).
Note that, although S-ELM has a similar archi-
tecture of a DSN, an important difference exists:
instead of using a module output to construct the
following module input, it uses a“projection”of its
hidden layer with reduced dimension (using PCA)
as part of the hidden layer of the next module.

The first module of S-ELM is trained using
the R-ELM algorithm, where the weight matrix
B1 between hidden and output layers is calculated
by extending Eq. (7). PCA is used in BT

1 , where
the eigenvalues and eigenvectors of its covariance
matrix are calculated. To reduce the hidden layer
dimension, L′ (L′ < L) eigenvectors, with respect
to the L′ largest eigenvalues, are used to compose
a matrix Ṽ1. Then, the hidden layer output H1

is “projected” using the calculated Ṽ1:

H
′

1 = H1Ṽ1. (9)

Therefore, the hidden layer output of the fol-
lowing module is constructed using

Hi = [H
′

i−1, Hnew] (10)

where Hnew is a matrix of new generated random
nodes. The same process is repeated until S mod-
ules are trained and stacked, where the dimension-
ality reduction is used in each module, with excep-
tion of the network last module, since it needs to
return an estimated output. An example of the
S-ELM architecture is shown in Fig. 2.

Ṽ1
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Ṽ2

B1

Module
1

Module
2

Module
3

W2

W3

PCA

PCA

W1

Figure 2: An example of the S-ELM architecture.
Rectangles with the same color represent layers of
the same module, and green circles represent the
original input data. Note that it is not necessary
to store the B matrix of all modules. Every ar-
row means a matrix multiplication, while a dashed
arrow means a PCA dimensionality reduction.

A variation of this S-ELM method, called
Autoencoder Stacked Extreme Learning Machine
(AE-S-ELM) is also proposed by Zhou et al.
(2014). The main difference of this method, when
compared to the S-ELM, is that instead of using
randomly generated weights in each module, the
AE-S-ELM method constructs an “auxiliary” au-
toencoder SLFN with random weights, and find its
matrix Baux using X as both input and output of
this network. BT

aux is used as weights between the

input and hidden layers of the AE-S-ELM module.
This procedure is used every time the algorithm
needs to generate random nodes.

It was observed by Zhou et al. (2014) that
both techniques showed good results in known
datasets when compared to other methods. S-
ELM and AE-S-ELM obtained similar results,
but usually the latter needed smaller architectures
(fewer neurons in the hidden layer of each module
and/or less number of modules) to achieve sim-
ilar accuracy to the former method. Although
sometimes the training time of these techniques
was greater than the time of a large SLFN, less
memory was used, which allows the use of these
techniques in systems with limited resources.

3 The Proposed Method: FDSN-ELM

3.1 Problems in training stacked networks using
ELM

Although it has been shown that methods such as
DSN (Deng and Yu, 2011; Deng and Yu, 2013) and
S-ELM (Zhou et al., 2014), based on the stacking
concept (Wolpert, 1992), were capable of improv-
ing the results (such as the accuracy metric when
new modules are added to the network) in public
datasets, they still have some drawbacks.

The DSN method is composed of stacking
some kind of classifier, and each module has a pa-
rameter set that needs to be stored. Using SLFN
in each module, it is needed to store the weights
between the hidden and output layers, the biases
and the weights between the input and hidden
layers, whose size grows along the modules, as ex-
plained in Section 2.2. This implies that the train-
ing time and memory usage is increased along the
modules, which might be prohibited sometimes.

The S-ELM method (and its variant AE-S-
ELM) also stacks modules of SLFN with L hidden
neurons. However, it does not have the growing
size problem of DSN. Since it does not predict an
output in each module, a reduced projection of the
matrix Hi (H

′

i) is used in each module i, except
in the last one, and, therefore, there is no need
to store the Bi ∈ RL×m matrices, only in the
last module. Nevertheless, it needs to store the

matrix Ṽi ∈ RL×L
′

of each module i, where L
′

is the number of remaining nodes after the PCA
reduction, which usually is larger than m.

Even with the need of storing a usually larger
matrix (Ṽi instead of Bi) in each module, the S-
ELM method still tends to need less memory when
compared with a DSN composed of SLFN modules
trained with the R-ELM algorithm (DSN-ELM).
However, it still needs to reduce dimension with
PCA in every module.

Another limitation of S-ELM method is that
it cannot be used when the dataset has one di-
mensional target (m = 1) (specially when it is a



regression problem, considering that a binary clas-
sification can be modeled using two output nodes),
since the PCA is calculated using BT ∈ R1×L of
every module, which is not possible.

3.2 FDSN-ELM

The algorithm proposed in this paper, called
Fast Deep Stacked Network (FDSN-ELM), is a
fast method to train a DSN with SLFN modules
trained using the R-ELM algorithm. Our method
deals with two of the main problems of the DSN-
ELM model: the quantity of memory it needs to
be stored and the time needed to train it. The
architecture used is the same shown in Figure 1.

In FDSN-ELM, the first module is trained us-
ing the same method employed to train a SLFN
with R-ELM algorithm: a set of random weights
W1 and biases N1 are generated, the matrix H1 is
calculated as in Eq. (3), which can be rewritten as

H1 = G(η1), (11)

where G is an operator that applies the activation
function h(·) in every element of the matrix η1,
which is defined as

η1 = X1W1 + N1, (12)

where X1 is the input matrix of the first module
(samples of the dataset), and each row of the ma-
trix N1 is the ν1 vector. Finally, B1 is calculated
using H1 by extending Eq. (7). Therefore, the
first module output is given by:

T̂1 = H1B1. (13)

The input of the second module is constructed
by concatenating the matrix X1 with T̂1:

X2 = [X1, T̂1], (14)

which will be used to calculate the hidden layer
output of this module. This can be written using
the notation of Eqs. (11) and (12):

H2 = G(η2), (15)

where η2 is given by:

η2 = X2W2 + N2. (16)

Eq. (16) can be rewritten as:

η2 = [X1, T̂1]

[
W

(1)
2

W
(2)
2

]
+ N2, (17)

where W
(1)
2 and W

(2)
2 are submatrices of W2.

Then, we can write:

η2 = X1W
(1)
2 + T̂1W

(2)
2 + N2. (18)

We can observe in Eq. (18) that the calcula-
tion of ηi is similar to ηi−1 in Eq. (12), but with

a new term T̂i−1W
(i)
i . As pointed in Section 2.2,

this increases the time to train each module (and
the number of model parameters), since it needs
to deal with matrices of bigger dimensions when
training a module that uses R-ELM.

To speed up the training process and reduce
the memory requirements, instead of using new

values for W
(1)
2 and N2, FDSN-ELM considers

the following identities (in the second module):

W
(1)
2 = W1, (19)

and
N2 = N1. (20)

Then, Eq. (18) can be rewritten as:

η2 = X1W1 + T̂1W
(2)
2 + N1, (21)

and by replacing Eq. (12) in Eq. (21), we obtain:

η2 = η1 + T̂1W
(2)
2 , (22)

where W
(2)
2 is a randomly generated matrix.

Then, by using H2, B2 is calculated by ex-
tending Eq. (7). The second module output is:

T̂2 = H2B2. (23)

The method to train the second module de-
scribed above can be extended to train all SLFNs
modules of a DSN network.

There are two main advantages of assuming
Eqs. (19) and (20). The first is that some com-
putational operations of the i-th module training
stage are done in the former one (the matrix ηi is
calculated using ηi−1), implying that their train-
ing time is reduced, when compared to a common
SLFN. The second is that each module i needs to
store only the matrix W

(i)
i since it is the only new

matrix needed to calculate the new hidden layer
output, which implies that each module needs to
store a reduced number of parameters.

3.3 Size of a FDSN-ELM network

We can compare the model size (number of pa-
rameters or bytes it needs to be stored) of FDSN-
ELM and similar techniques. An SLFN needs to
store W and B matrices, of dimensions d×L and
L ×m, respectively, and the vector ν, with L el-
ements. Then, the total memory needed to store
the SLFN model is: Zslfn = L(d+m+ 1).

An S-ELM (and AE-S-ELM) network stores
in each module a Ṽi matrix, of dimension L×L′

,
instead of Bi (except in the last module), Wnew

and νnew corresponding to the L − L′
“missing”

nodes. It also stores W1 (and ν1) and BS of
the first and last modules, respectively. Hence,
the memory needed to store a S-ELM model is:
Zselm = (d+m+ 1)L +(S−1)(LL

′
+Ld−L′

d+
L− L′

).



A DSN-ELM consists of an SLFN in each
module, with d increasing along the modules, fol-
lowing the rule di = d+mi. Then, the total mem-
ory needed to store this model is:

Zdsn−elm = L (d+m+ 1) +

L

(
S−1∑
i=1

(1 +m+ (d+mi))

)
.

A network trained using the proposed algo-
rithm, in the first module, needs to store W1, of
size d × L, ν with L elements and B1, of size

L ×m, and in the remaining modules, W
(2)
i and

Bi, of sizes m×L and L×m, respectively. Then,
the total memory needed to store this model is:
Zfdsn−elm = (d+m+ 1)L+ 2(S − 1)mL.

Comparing the number of parameters in each
model using the stacking principle, and consider-
ing that usually m < d, we can observe that a
model trained with FDSN-ELM needs less mem-
ory than the other considered techniques.

4 Experiments and Discussions

In this section, experiments were carried out to
test our proposed algorithm, comparing it with
similar techniques. The experiments were con-
ducted using MATLAB on a computer with Intel
Core i5-2500, 8GB of RAM and Ubuntu 16.04.

4.1 Datasets

The datasets used in the experiments are shown
in Table 1. If a dataset does not give a test set, its
samples are randomly divided into train and test
sets with roughly the same number of samples.

Table 1: Datasets used in the experiment. The
columns indicate the number of training and test-
ing samples, features (d) and classes (m).

Dataset #Tr. Data #Te. Data #Feat. #Clas.
IRIS 75 75 4 3

MNIST 60000 10000 784 10
SatImage 4435 2000 36 6
Segment 1155 1155 19 7
USPS 7291 2007 256 10
Vowel 528 462 10 11
Wine 89 89 13 3

The features of these datasets were all normal-
ized between the interval [−1, 1], using the mini-
mum and maximum values found in the training
subset. Testing samples were also normalized us-
ing these values. For every sample xi of the k-th
class, its correspondent target ti is a vector with
m dimensions, where all elements equal to zero,
except for the k-th element, which is equal to 1.

4.2 Experiment

In this experiment, we compare the algorithms
presented in Table 21. The purpose of this ex-

1Implementations of these methods are available in
https://github.com/labcisne/elmtoolbox

periment is to evaluate if the accuracy metric can
be improved by stacking modules. We compare
the values obtained using SLFNs with L = 100
and L = 3000 hidden nodes (this number was
chosen due to memory limitations on the MNIST
dataset). In this experiment, all “stacking” algo-
rithms were tested using S = 30 modules with
L = 100 neurons each, and in the S-ELM and
AE-S-ELM algorithms, the hidden layer dimen-
sion was reduced to L

′
= 50 neurons using PCA.

Table 2: Algorithms tested in this experiment.

Algor.
Params

Algor.
Params

L S L’ L S L’
RELM 100 - - Proposed 100 30 -
RELM 3000 - - SELM 100 30 50

DSNELM 100 30 - AESELM 100 30 50

In this experiment, we are concerned if the
“stacking”techniques are capable of improving the
results obtained with a small SLFN, if the result
is comparable to a larger SLFN and how much
time and memory it costs to achieve these results.
Thus, we give the same regularization parameter
C to all algorithms, which is defined by doing a
5-fold cross-validation on the training set using
the SLFN with 100 neurons. We test the values[
2−10, 2−9, · · · , 29, 210

]
and the one which returns

the best accuracy is chosen. The sigmoid activa-
tion function was used in all techniques.

The tests were repeated 100 times and its
mean and standard deviation are presented in Ta-
bles 3, 4 and 5 for testing accuracy, training time
and memory used, respectively, where the best
results (excluding RELM-100) were highlighted.
Table 5 also presents the regularization parame-
ter found in the 5-fold method for each dataset.

The results showed that, usually, training
stacked models is faster than a large SLFN
model, achieving similar accuracies. The pro-
posed technique, FDSN-ELM, was the fastest and
required the smallest amount of memory among
the stacking models (in many cases the amount
of memory was more than 3 times smaller). For
most datasets, it was also faster and consumed
less memory than R-ELM-3000, just RELM-100
achieved better results in these parameters. An-
alyzing only accuracies, the proposed technique
achieved similar results (and overcame RELM-
100) in almost all datasets, except in MNIST and
USPS, where both DSN-ELM and FDSN-ELM
showed inferior results. Since they use the same
architecture and both datasets samples are (al-
most) binary images of digits, the results could
imply that this type of architecture does not deal
appropriately with (almost) binary inputs.

Figures 3a and 3b shows the effect of insert-
ing new modules on the tested algorithms in Seg-
ment Dataset. In this particular set, the inser-
tion of new modules improved the accuracy of
all methods, showing that stacking modules is a



Table 3: Test accuracy obtained using the methods of Table 2 in Table 1 datasets.

R-ELM-100 R-ELM-3000 DSN-ELM Proposed S-ELM AE-S-ELM
IRIS 0.929 ± 0.012 0.923 ± 0.005 0.969 ± 0.006 0.971± 0.005 0.929 ± 0.006 0.912 ± 0.018

MNIST 0.751 ± 0.013 0.954± 0.001 0.766 ± 0.009 0.759 ± 0.012 0.926 ± 0.001 0.940 ± 0.001
SatImage 0.857 ± 0.004 0.867 ± 0.005 0.893 ± 0.003 0.887 ± 0.005 0.894± 0.003 0.894± 0.003
Segment 0.933 ± 0.004 0.951 ± 0.003 0.961± 0.003 0.959 ± 0.001 0.953 ± 0.002 0.948 ± 0.002

USPS 0.862 ± 0.006 0.945± 0.002 0.888 ± 0.006 0.859 ± 0.007 0.937 ± 0.002 0.935 ± 0.003
Vowel 0.480 ± 0.030 0.418 ± 0.009 0.536± 0.035 0.509 ± 0.034 0.452 ± 0.012 0.500 ± 0.010
Wine 0.980 ± 0.007 0.984 ± 0.009 0.988 ± 0.008 0.990± 0.008 0.981 ± 0.009 0.978 ± 0.000

Table 4: Training time (in seconds) obtained using the methods of Table 2 in Table 1 datasets.

R-ELM-100 R-ELM-3000 DSN-ELM Proposed S-ELM AE-S-ELM
IRIS 0.009 ± 0.003 0.076± 0.011 0.088 ± 0.011 0.095 ± 0.022 0.121 ± 0.020 0.130 ± 0.017

MNIST 0.238 ± 0.012 23.759 ± 1.050 16.277 ± 0.416 3.425± 0.090 5.336 ± 0.518 10.957 ± 0.383
SatImage 0.020 ± 0.001 2.172 ± 0.103 0.546 ± 0.040 0.327± 0.063 0.336 ± 0.033 0.429 ± 0.033
Segment 0.013 ± 0.004 0.759 ± 0.041 0.226 ± 0.043 0.153± 0.026 0.198 ± 0.027 0.231 ± 0.023

USPS 0.029 ± 0.002 3.216 ± 0.095 1.416 ± 0.146 0.529± 0.077 0.579 ± 0.051 0.930 ± 0.070
Vowel 0.011 ± 0.003 0.314 ± 0.020 0.138 ± 0.011 0.102± 0.008 0.145 ± 0.027 0.167 ± 0.016
Wine 0.010 ± 0.003 0.080± 0.004 0.088 ± 0.008 0.080± 0.006 0.126 ± 0.011 0.136 ± 0.010

Table 5: Regularization parameter C and memory used (in Megabytes) by the methods of Table 2 in
Table 1 datasets.

Parameter C R-ELM-100 R-ELM-3000 DSN-ELM Proposed S-ELM AE-S-ELM
IRIS 25 0.006 0.183 1.181 0.141 1.236 1.236

MNIST 2−7 0.607 18.196 21.517 1.051 10.621 10.621
SatImage 210 0.033 0.984 2.978 0.300 1.684 1.684
Segment 27 0.021 0.618 2.943 0.333 1.505 1.505

USPS 2−2 0.204 6.111 9.432 0.648 4.377 4.377
Vowel 210 0.017 0.504 4.156 0.506 1.491 1.491
Wine 21 0.013 0.389 1.387 0.148 1.343 1.343

good approach when using limited computational
resources. Figure 3b shows that DSN-ELM and
FDSN-ELM, with S = 30, already reached a stage
where its accuracy does not improve significantly
when adding new modules, but there is still room
for improvement in S-ELM and AE-S-ELM.

We also tested the trade-off between choosing
the values of S and L using the DSN-ELM and
FDSN-ELM algorithms. We tested networks with
up to 100 modules with L = [100, 200, . . . , 1000]
hidden neurons in each module. The accuracy of
both techniques is shown in Figures 4a and 4b.
These images show, as expected, that the accuracy
in SatImage dataset can be increased by increasing
both S and L. These values should be defined
based on memory limitations and observing the
impact of a new module on the metric.

5 Conclusions and Future Work

In this work was proposed a fast algorithm to train
a DSN using ELM. FDSN-ELM uses the “stack-
ing” principle, so that its modules (layers) can be
trained individually, requiring less memory and
training time than other methods of deep learn-
ing. The algorithm was compared with other tech-
niques that uses the same principle, and obtained
similar accuracies in most datasets, spending less
time in the training stage. Furthermore, the num-
ber of parameters needed to be stored in the pro-

posed algorithm architecture is much lower when
compared to other techniques. Future work in-
cludes adapting the algorithm to deal with data
in a sequential approach, turning possible to deal
with samples that arrive over time.
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