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Diego Stéfano F. Ferreira∗, Augusto Loureiro da Costa∗

∗Robotics Laboratory, Federal University of Bahia, Salvador, Bahia, Brazil

Emails: diego.stefano@gmail.com, augusto.loureiro@ufba.br

Abstract— This work proposes a system level design of a special purpose RISC architecture for the imple-
mentation of Knowledge Based Systems (KBS). The processor implements an Instruction Set Architecture (ISA)
derived from the description of the Rete algorithm given in Forgy (1982) - the paper that proposes the algorithm
- alongside some general purpose instructions (not described here). It is part of a System-on-a-Chip (SoC) for the
execution of cognitive agents. The computational architecture of this SoC will be presented using the cognitive
model of the Concurrent Autonomous Agent (CAA) as a reference, since it has been successfully applied in
numerous intelligent robotics applications. The cognitive model of the CAA comprises three levels that run con-
currently: the reactive level, which executes the perception-action cycle, the instinctive level, that manages plan
execution, and the cognitive level, which performs planning. In the method here proposed, the KBS knowledge
base is compiled into a program composed by the application specific instructions and the matching procedure is
executed by the processor using this program. To validate the architecture of this processor, some experiments
using an example knowledge base will then be presented. The experiments - performed using a system-level
simulator written in the Scala language - shown that the simulated architecture reported the expected matches
for additions and exclusions of facts from the Rete memories.

Keywords— Knowledge Based Systems, Expert Systems, Reduced Instruction Set Computer, Autonomous
Agents.

Resumo— Este trabalho propõe um projeto em ńıvel de sistema de uma arquitetura RISC de propósito
especial para a implementação de Sistemas Baseados em Conhecimento (SBC). O processador implementa uma
Arquitetura de Conjunto de Instruções (ISA, do inglês) derivada da descrição do algoritmo Rete dada em Forgy
(1982) - o artigo que propõe o algoritmo - junto com algumas instruções de propósito geral (não descritas aqui).
A arquitetura é parte de um System-on-a-Chip (SoC) dedicado à execução de agentes cognitivos. A arquitetura
computacional desse SoC será apresentada utilizando o modelo cognitivo do Agente Autônomo Concorrente
(AAC) como uma referência, dado que este modelo foi aplicado com sucesso em aplicações de robótica inteligente.
O modelo cognitivo o AAC contém três ńıveis que executam concorrentemente: o ńıvel reativo, que executa
o ciclo percepção-ação, o ńıvel instintivo, que trata da execução de planos, e o ńıvel cognitivo, que executa
o planejamento. No método proposto aqui, a base de conhecimento do SBC é compilada em um programa
composto pelo ISA de aplicação espećıfica e o processo de correspondência de padrões é executado pelo processador
projetado utilizando este programa. Para validar a arquitetura desse processador, alguns experimentos utilizando
uma base de conhecimento de exemplo serão apresentados. Os experimentos - realizados utilizando um simulador
em ńıvel de sistema escrito na linguagem de programação Scala - motram que a arquitetura simulada acusou as
correspondências corretas para adições e exclusões de fatos.

Palavras-chave— Sistemas Baseados em Conhecimento, Sistemas Especialistas, Computador com Conjunto
de Instruções Reduzido, Agentes Autônomos.

1 Introduction

An agent is any entity that can sense the en-
vironment and act upon it (Russell and Norvig,
2010). Additionally, according to (Huhns and
Singh, 1998), knowledge about the environment
can be used by the agent to relate perceptions
and actions properly. In this case the agent is a
cognitive agent. Cognition, according to (Vernon
et al., 2007), is a process that allows a system
to robustly behave adaptively and autonomously,
with anticipatory capabilities. The authors pro-
ceed by classifying cognitive systems in two broad
classes, namely the cognitivist and the emergent
systems. Inside the cognitivist class goes systems
that relies on symbolic representation and infor-
mation processing. In the second class, the emer-
gent systems, are connectionist, dynamical and
enactive systems.

There are aspects of cognitive agents that re-
main invariant in time and over different tasks.
These aspects generally include the short-term

and long-term memories where knowledge is
stored, the knowledge representation structure
and the processes that performs over the previ-
ous elements (possibly changing its contents, like
learning). The aspects cited above are comprised
by a cognitive architecture (Langley et al., 2009).

An example of an architecture for cogni-
tive agents is the Concurrent Autonomous Agent
(CAA), an autonomous agent architecture for mo-
bile robots that has already proven to be very
powerful (Costa and Bittencourt, 1999; Costa and
Bittencourt, 2001; Cerqueira et al., 2013). The
architecture has three levels, namely, the reactive
level, responsible for performing the perception-
action cycle, the instinctive level, which governs
the selection of predefined behaviors in the reac-
tive level, and the cognitive level, which deals with
planning. The later two uses a Knowledge Based
System (KBS) as reasoning mechanism. These
levels runs concurrently, which makes parallelism
and fast inference cycles quintessential properties
of any real-time application of the CAA.



(Ferreira et al., 2014) embedded the CAA in
a microcontrollers network specially designed to
fit its cognitive architecture. The intention of the
authors was to optimize the performance of the
agent for an embedded environment, allowing it
to be physically embedded into a mobile robot. In
this work, a step forward is given in that direction,
since its main objective is to design a processor
for the execution of a KBS which, in turn, will
be part of a System-on-a-Chip (SoC) dedicated to
the execution of cognitive agents, using the CAA
as reference model.

Hardware design for cognitivist systems (us-
ing (Vernon et al., 2007) aforementioned classifi-
cation) is not a recent concern. The first paper
about the Rete matching algorithm (Forgy, 1982)
already presents a low-level (assembly) implemen-
tation of the matching algorithm for production
systems. Years later, (Lehr, 1985) designed a Re-
duced Instruction Set Computer (RISC) machine
for OPS production systems, focusing on optimiz-
ing the branch prediction unit for the task. A
more recent approach by (Peters et al., 2014) pro-
poses a parallelization strategy to use the paral-
lel processing power of Graphics Processing Units
(GPUs) for Rete pattern matching.

In this work, an application specific Instruc-
tion Set Architecture (ISA) based on the imple-
mentation provided in (Forgy, 1982) is provided,
defining a RISC processor architecture dedicated
to the execution of the Rete matching algorithm.
This is part of the more complex cognitive SoC
mentioned above, and since the later will use the
CAA as reference, which applies a Rete-based
KBS on both its symbolic levels, the processor
here presented will play a central role in its de-
sign.

This work is divided as follows. In Section 2,
the CAA is presented, with its levels explained.
Section 3 then exposes how knowledge is repre-
sented and inference is performed by the CAA
KBS (in both instinctive and cognitive levels).
The Section 5 describes the system proposed. Sec-
tion 6 shows the results of simulations and some
conclusions are presented in Section 7.

2 The Concurrent Autonomous Agent
(CAA)

The architecture of the Concurrent Autonomous
Agent (CAA) was inspired by the generic model
for cognitive agents. This model comprises three
levels: the reactive level, the instinctive level and
the cognitive level. The CAA levels are shown
in Figure 1 (Costa and Bittencourt, 1999; Costa
and Bittencourt, 2001). In this figure, the reac-
tive level, responsible for the real-time response
of the agent, contains a set of reactive behaviours
that are activated in specific situations. Only one
behaviour may be active at a time. This level ex-

ecutes the perception-action cycles. The instinc-
tive level, in turn, changes, after each perception-
action cycle, the state of the world that it main-
tains in a KBS. It also updates the symbolic in-
formation used by the cognitive level and coor-
dinates the selection of reactive behaviours. This
level executes a plan (stored in the knowledge base
of its KBS) to achieve the local goals and, when
a goal is reached, a message is sent to the cogni-
tive level signaling about it. Finally, the cognitive
level stores a logical model of the world, creates
global and local goals also using a KBS, and sends
the local goals to the instinctive level (Costa and
Bittencourt, 2001).

Figure 1: Cocurrent Autonomous Agent Architec-
ture.

The level that interacts with the environment
executing a fast-perception-action cycle is the re-
active level. It consist of a collection of reactive
behaviors that determines the interaction of the
agent with the environment. Only one behav-
ior can be active at a time, and the instinctive
level makes the selection. The architecture used in
(Ferreira et al., 2013; Ferreira et al., 2014) consists
of a kinematic position controller for the omnidi-
rectional robot AxéBot. The reactive behaviours
were implemented based on the embedded kine-
matic controller. The behaviors implemented were
simple: there is one behaviour for each cardinal di-
rection, i. e., selecting the behavior corresponds
to selecting the direction (relative to the orienta-
tion of the robot) in which one wishes the robot
to move onto.

The instinctive level, as the reactive level, is
identical to the one purposed in (Ferreira et al.,
2014): its reasoning mechanism consists of a KBS
that executes a plan generated by the cognitive
level, sending symbolic information about the en-
vironment to the latter. The plans are executed
by coordinating behavior selection in the reactive
level, which sends the perceptions to this level.

The cognitive level also uses a KBS as auto-
matic reasoning method. Its facts base consists of
a logical model of the world. The inference engine
is multi-cycle, meaning that it keeps running in-
dependent of the update of the facts base by the



instinctive level. This level does the planning, co-
ordinating the instinctive level for the execution
of the plans. It is not used in this work.

3 Knowledge Based Systems (KBS)

In the instinctive and cognitive levels, as men-
tioned before, a KBS is used as automatic reason-
ing mechanism. The KBS comprises a facts base,
a rules base and an inference engine, as shown in
Figure 2 (Costa and Bittencourt, 2001).

Figure 2: KBS used by AAC.

The facts base contains information known by
the agent about its state and about the state of the
environment. This information is stored in the for-
mat logic( object attribute value ), where object
refers to some element of the world, attribute is
the attribute of this object and value is the value
of this attribute.

This format is used also to form the premises
of the rules, but in this case they are called spec-
ifications. The values of the attributes presents
restriction that must be met by the facts in or-
der to fire the rule. To help in the expression of
such restriction, the language allows the use of
filters and variables in the premise of a rule. A
variable is simply a symbol preceded by a interro-
gation (?) token (e. g. ?x, ?symbol). And the fil-
ters have the format filter( operator parameter1
parameter2 ), where the operator field tells how
to compare parameter1 against parameter2, and
these last two may be variables or numbers.

The inference engine then executes a forward
chaining algorithm, checking if the left side (or
premise) of a rule is satisfied by the facts base, and
if it does, right side of the rule (or consequent) is
executed. The consequents may consist of a new
fact being added to the facts base, an existing fact
being updated or a message being sent to another
level.

4 The Rete Algortihm

The Rete algorithm is used in the inference en-
gine of a KBS to efficiently match rules premises
with the facts without the need of looping through
both rules and facts bases at each inference cy-
cle, greatly improving performance. It was pro-
posed by Charles Forgy in 1979, in its doctoral
thesis (Forgy, 1979). Its name, rete, is latin for

network, because of how it organizes the informa-
tion in the knowledge base.

The Rete algorithm starts by constructing
a network of nodes and memories based on the
premises of the rules and eventual filters they may
contain. This network is divided in two parts: the
alpha and the beta networks.

The alpha network is composed by the follow-
ing nodes:

• a Root Node, which is the entry point for new
facts;

• Constant Test Nodes (CTN), which checks
whether the non-variable (constant) fields of
premises matches the corresponding ones in
the current fact; and

• Alpha Memories (AM), that stores facts
that successfully passed through constant test
nodes.

The beta network, in turn, have:

• Join Nodes (JN), where a set of test are per-
formed to check variable binding consistency;

• Beta Memories (BM), which conjunctively
“accumulates” facts that passed the corre-
sponding JN tests in tokens, which are partial
matches to specific premises; and

• Production Nodes, which are terminal nodes
for full matches.

5 The RISC Rete Machine

In this section, the proposed processor system
level architecture is described. As it was stated
in the introduction, this processor is part of the
design of a SoC for cognitive agents. The idea is
to have this processor working with another unit
for planning in the cognitive level and with a plan
execution unit in the instinctive level. The knowl-
edge bases should first be compiled into the appli-
cation specific ISA of the Rete processor and then
downloaded into its instruction memory

The system level architecture here presented
is a RISC Application Specific Processor (ASP)
whose special purpose ISA was inspired on the
description of the Rete algorithm given in (Forgy,
1982), the first paper written about the algorithm.
The author uses an assembly-like set of instruc-
tions to describe the operation of the algorithm.
But they serve only as guidelines for a high-level
implementation described afterwards in that pa-
per; no hardware implementations are presented.

Inspired by the aforementioned (pseudo-
)instructions presented in (Forgy, 1982), this
work purposes an actual machine for the execu-
tion of the Rete matching algorithm whose ISA
implements a modified version of the pseudo-
instructions presented in Forgy’s seminal paper.



The overall processor architecture is shown in
Figure 3. The alpha and beta memories are pre-
allocated at compiling time.

Figure 3: Architecture of the Rete processor

The rules are compiled in a sequence of these
instructions instead of being used for the creation
of the Rete tree in memory. The alpha and beta
memories will still exist but the nodes (constant
test and join nodes) will be implemented by in-
structions (Figure 3).

The new fact is stored in a register together
with a bit indicating whether it is being added or
deleted. The instructions arguments and opera-
tion are detailed below:

• FORK label: Represents a branch in the tree,
with one of the nodes represented by a node
instruction immediately after it and the other
at the instruction address given by label.
This address is stacked and the next instruc-
tion is fetched. label is popped from stack
when a mismatch occurs and the program
jumps to it. If the stack is empty, the match
failed.

• TEQA field, constant: Implements a
CTN: field is the field to be tested (object,
attribute or value) of the fact register and
constant is the value this field must equal.

• FILTER field1, field2, comparison:
Compares two fields inside a fact using
a given comparison operation. If the
comparison fails, so does the match.

• MERGE parent_bm, bm, am, next_join:
Saves in registers the addresses of its parent
memories and of the next MERGE instruction.
Also, it updates an alpha memory in a right
activation.

• TEST field1, premise, field2, compar-

ison: Deals with left and right activations of
the JN. It triggers an interruption, jumping

to a pre-programmed routine that runs
through the memories testing whether or
not the the field1 compares to field2

of premise-th premise. The comparison
operation is given in the field comparison.

• JOIN lbl: jumps to a JN (MERGE instruction)
defined previously in the code, on a right ac-
tivation.

• TERM rule, nsubs: Represents production
nodes. It saves the address of the consequence
of the matched rule in a register, for further
use. nsubs is the number of substitutions this
rule has, so that it can jump to the last one
(for popping the test stack) in the case where
the current fact is to be excluded instead of
added.

• SUBST p1, f1, p2, f2, lst: Uses the
matched token to create substitutions for the
variable in the consequence. The pairs (p1,

f1) and (p2, f2) are “coordinates” of occur-
rences of the same variable in the premises
and the consequence, respectively. lst in-
dicates whether it is the last substitution for
that match or not. If it is, the test stack must
be popped to proceed with interrupted tests.

6 Case Study

The architecture were simulated using a program
written in the Scala programming language, us-
ing array structures for the instruction, alpha and
beta memories, lists for fork and JN test stacks
and variables for registers (program counter, di-
rection flags, stacks counters, alpha and beta in-
dices etc.). The dynamics of the program was dic-
tated by the way the instructions changed the pro-
gram counter.

6.1 Domain Definition

The architecture will be validated using the block
world domain example, from (Russell and Norvig,
2010). The Figure 4 shows the knowledge base
that is going to be used in the simulation. The
same filter shown in the Move rule could be
present in the MoveToTable rule, but it was omit-
ted for simplicity. In spite of the fact that the
consequences won’t be used here (only the match-
ing procedure is important), one should notice the
add and the rem symbols. Those are simply in-
structions on how to modify the facts base in case
of a match.

6.2 Simulated Tests

The knowledge base shown in Figure 4 is then
compiled into the program presented in Figure 5.
This program is the input for the simulator, in



Figure 4: Knowledge base for the block world do-
main example.

the form of an array of instruction objects (ob-
jects from an instruction class defined inside the
simulator code). It then waits for a new fact to
come in and then executes the program once for
that fact, changing the memories accordingly.

Figure 5: Code for the Rete network of the block
world example.

The tests performed consisted of feeding some
facts that are known to cause a match, one by one,
to the simulator and check whether the system
detects that match. The facts (logic(C, on,A)),
(logic(C, type, block)) and (logic(C, state, clear))
must match the premise of the rule MoveToTable.

The Figure 6 shows the output of the simula-
tor after feeding it with the fact (logic(C, on,A)).
This output contains all the instruction executed
by the processor for the given fact. As the en-

try point of the the network is the root node and
it has three CTNs as children, a FORK is always
processed first. For the current fact, the forked
address is only taken after the fact is stored in
AM1 (and consequently in BM1 too, since the
parent BM is a dummy one), when the JN test
fails (pc = 5) due to the absence of facts in AM2.
It is noteworthy that the instruction at forked ad-
dress is another fork, because the root node has
three children. In the last CTN (pc = 33) the fork
stack is empty, and as the test failed, the program
finishes.

Figure 6: Output of the simulator for
(logic(C, on,A)).

For (logic(C, type, block)) the processing
mechanism is the same, but the execution path
is different, since the fact is going to a different
alpha memory.

When (logic(C, state, clear)) is added, a
match occurs (pc = 22), as can be seen in Figure 7.
In this output it is possible to see the JN tests be-
ing stacked once a partial match is found (pc = 5).
After that (pc = 8), a test fails, but the previously
stacked test is not popped yet: there is a FORK at
pc = 6, and forks have priority. Also, in this ex-
ecution four substitutions take place (pc = 23 to
26).

Figure 7: Output of the simulator for
(logic(C, state, clear)).

Finally, Figure 8 shows the output of
the simulator for the exclusion of the fact
(logic(C, on,A)). The procedure for exclusion



starts as the same as the one for addition: the
instructions guide the traverse of the tree looking
for a match. The difference is that no changes are
made to the memories. Instead, for every activa-
tion or match caused by the input fact, the index
of the corresponding memory and its position in-
side that memory are stacked. At the end of the
execution, when there are no more forks or tests
stacked, the exclusion stack is pop and the ele-
ments of the memories given by the indices stored
in it are deleted.

Figure 8: Output of the simulator for deleting
(logic(C, on,A)).

7 Final Considerations

In this paper the system level design of an ap-
plication specific RISC machine for the execution
of the Rete algorithm was proposed. It consists
of a special purpose ISA based on the algorithm
proposal (Forgy, 1982). The architecture was pre-
sented and simulated using a simple problem do-
main: the block world domain. After running
the program written for the processor on differ-
ent facts, for addition and exclusion, the expected
matches were successfully detected.

The proposed architecture allows for low-level
symbolic processing, which can give embedded
and on-chip systems fast automatic reasoning ca-
pabilities, with low power consumption.

As future works, the processor architecture
here presented should be included in the design
of the a SoC for the execution of cognitive agents
(which is actually the purpose of this design).
Also, some more complex tests are being applied
to it, which will help ensure its correctness and
efficiency.
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