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Abstract— Studies indicate that breast density is related to the risk of developing cancer since dense breast
tissue can hide lesions, causing cancer to be detected at later stages. In this paper we classification method using
support vector machines (SVM) associated to data reduction techniques to classify mammographic texture. An
analysis of the parameters that influence the effectiveness of texture classification is also provided. Experiments
were conducted on a set of 4,000 mammographic exams from which regions of interest representing the most
significantly part of the texture of the breast tissue were extracted. Compared to other quantitative results
found in the literature, the proposed multi-class SVM method using the radial basis function kernel and tuned
parameters proved to be superior while classifying mammographic texture, reaching up to 99% of precision for
10% of recall.
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Resumo— Estudos indicam que a densidade das mamas está relacionada com o risco de desenvolvimento de
câncer, pois mamas com tecidos mais densos podem esconder pequenas lesões e levar sua detecção a estágios
mais avançados. Neste artigo, é proposto um método de classificação da densidade das mamas, associado a
técnicas de redução de dimensionalidade, para classificar texturas de imagens mamográficas. Os experimentos
foram realizados em um conjunto de dados de 4000 exames mamográficos, dos quais as regiões de interesse que
representam a parte mais significativa da textura do tecido foram extráıdas. O método proposto utilizando um
SVM multi-classe e otimização de parâmetros alcançou uma taxa de precisão de 99%, para valores de revocação
de 10% das amostras, valores estes superiores aos publicados na literatura.

Palavras-chave— Classificação de Imagens, Descritor de Textura, Mamografias, Máquinas de Vetores de
Suporte

1 Introduction

According to statistics provided by the Brazilian
Institute of Cancer (INCA) (Instituto Nacional de
Câncer José Alencar Gomes da Silva, 2016), breast
cancer was responsible for 17, 488 deaths in Brazil,
representing 16.8% of cancer mortality in women
(World Health Organization, 2014) in 2014. Stud-
ies indicate that breast density is related to the
risk of developing breast cancer since dense breast
tissue can hide lesions, causing cancer to be de-
tected at later stages. Therefore, the analysis of
mammographic images is the main screening tool
for cancer detection, as it allows for radiologists
to evaluate and rate breast density on the basis of
visual inspection.

In 1976, the American College of Radiology
proposed the Breast Imaging Reporting Data Sys-
tem scale (BI-RADS) to represet 4 levels of breast

densities (Wolfe, 1976): BI-RADS I, almost en-
tirely fatty tissue; BI-RADS II, scattered fibrog-
landular tissue; BI-RADS III, heterogeneously
dense tissue; and BI-RADS IV, extremely dense
tissue. Fig. 1d shows typical examples of tissue
densities classified based on the BI-RADS scale.

Although mammography is still the best way
to screen for cancer and to evaluate the BI-RADS
levels of density, visual inspection presents some
problems related to human error and subjectiv-
ity. Furthermore, the breast may be composed
of heterogeneous tissues so that the classification
becomes more error-prone. Fig. 2 shows patches
of mammography exams that were classified into
the 4 BI-RADS levels, even though their textures
look very similar. In fact, these examples are not
exceptions. Databases of BI-RADS texture ex-
amples can be very heterogeneous, making clas-



Figure 1: Typical examples of BI-RADS densities.

(a) BI-RADS I (b) BI-RADS II

(c) BI-RADS III (d) BI-RADS IV

Source: Aachen University of Technology, IRMA

project.

sification a very difficult task for computer-aided
diagnosis systems.

Machine learning techniques such as Support
Vector Machines (SVM), neural networks and
other classifiers based on texture descriptors have
been used in the development of systems to sup-
port diagnosis. Among all the available methods,
SVMs can be considered a good compromise be-
tween precision and computational costs. Never-
theless, the results obtained with SVMs are very
sensitive and dependent to the correct tunning of
their parameters.

This paper presents a comprehensive analysis
of the parameters that influence the effectiveness
of mammographic texture classification based on
SVMs. We also investigate the available topolo-
gies to perform multi-class classification using bi-
nary SVMs associated to data reduction tech-
niques.

2 Background

Texture description has been frequently addressed
in the literature as a data reduction problem, in
which a set of descriptors of lower cardinality is
pursued. Methods such as the Haralick (Haralick
et al., 1973) and Tamura (Tamura et al., 1978)
descriptors as well as Principal Component Anal-
ysis (PCA) (Maćkiewicz and Ratajczak, 1993)
and the Two-dimensional Principal Component
Analysis (2DPCA) (Yang et al., 2004) are com-
monly used to represent texture. The transformed
data are then used as input to classifiers like

Figure 2: Examples of BI-RADS images with sim-
ilar texture.

(a) BI-RADS I (b) BI-RADS II

(c) BI-RADS III (d) BI-RADS IV

Fonte: Aachen University of Technology IRMA

project

Decision Trees (Safavian and Landgrebe, 1991),
SVMs (Vapnik, 2000) and Neural Networks. Con-
volutional Neural Networks on the other hand will
have the whole image as the input and perform
implicit description and data reduction.

Studies showing a comparisons between tex-
ture descriptors are not uncommon, as the ones
presented by (Mohanty et al., 2013) and (Guo
et al., 2014), in which features are rated with
respect to their ability to discriminate differ-
ent textures. The work proposed by (Mohanty
et al., 2013) applies decision trees in mammo-
graphic images to distinguish malign from benign
masses. The paper of (Guo et al., 2014) presents
a study of statistical and binary texture elements
called textons, although their effectiveness to dis-
criminate mammographic densities is unclear.

The management of big data in imaging sys-
tems is addressed by (Toews and Wells, 2013) and
(Ayma et al., 2015). While the works of (Toews
and Wells, 2013) and (Mohanty et al., 2013) pro-
pose a web system to support diagnosis, the main
goal of (Ayma et al., 2015) is the analysis of dis-
tributed aspects of image processing using Hadoop
for efficiency gain. Unfortunately, none of them
present results for mammographies.

Fuzzy logic has been used to enhance the ef-
fectiveness of existing models based on their abil-
ity to represent heterogeneous data. This can
be seen in the works of (Vieira et al., 2012) and
(Hammouche et al., 2015) that present enhanced
models using fuzzy logic, fuzzy local binary pat-



terns and fuzzy aura matrices. The fuzzy logic is
also used to achieve a better representation of the
data in the study of (Li et al., 2015), but applied
to modalities other than mammography exams.

Recent studies presented by (Wang et al.,
2014) and (Zhang et al., 2015) investigate the use
of deep learning techniques as a way to repre-
sent visual data and to achieve better discrim-
ination between classes. However, only (Wang
et al., 2014) used mammography images to per-
form the segmentation of masses.

Another important application of texture is
in content-based image retrieval systems (CBIR).
The work presented by (De Oliveira et al., 2010)
proposes a CBIR system to retrieve similar mam-
mographic images from a database, given a query
image. A large sample of over 5 thousand images
was used in the experiments and the precision was
measured based on the amount of retrieved images
of the same BI-RADS class. Relevance ranking
was obtained from a SVM classification module
that used polynomial kernels to enhance discrimi-
nation. This work is also one of the few that quan-
titatively evaluates the results of mammographic
texture classification, although the main objective
was to estimate the accuracy of the retrieval step,
based only on the 10% of the best rated retrieved
images. The best results obtained for PCA and
2DPCA were respectively 70, 86% and 97, 83% of
average precision.

More recently, the work presented by (Huang
et al., 2017) shows a study on the impact of
SVM kernel functions to mammography classifi-
cation in small and large datasets. Two datasets
of 102, 294 samples with 117 features and of 699
samples with 11 features were used in the exper-
iments. The results show that SVM still per-
forms better than other classifiers, although the
method has been applied to the classification of
masses. Nevertheless, the high precision and sen-
sitivity rates obtained motivates the analysis of
SVM parametrization and kernel functions in the
context of texture, as will be addresses in the next
sections.

3 Texture Characterization

Describing the texture of mammographies is a dif-
ficult task because different BI-RADS levels may
present similar aspects, as illustrated in Fig. 2.
Moreover, to input the images themselves to a
classifier may result in loss of efficiency due to the
large amount of data. Therefore, data reduction
techniques like PCA (Jolliffe, 2002) may be used
to extract information from mammographies and
transform them into a lower-dimensional represen-
tation, improving classification and the required
computational time.

PCA is a statistical method that uses an or-
thogonal transformation to convert a set of possi-

ble correlated variables into a set of components
that are linearly uncorrelated. The number of
principal components should be much lesser than
the original number of variables in order for the
data reduction to be expressive. The linear trans-
formation of PCA is defined as:

Y = BX, (1)

where X denotes the original set of n observations
with p variables that should be reduced to m vari-
ables in set Y . The transformation matrix B is a
orthogonal matrix that rotates the original vari-
able space so as to align them with the principal
modes of data variance. B can be efficiently com-
puted based on the eigenvectors of the p× p data
covariance matrix.

Differently from PCA, 2DPCA generates vec-
tor components instead of scalars. In this case,
it is not necessary to transform the images into
one-dimensional vectors to calculate the covari-
ance matrix like in PCA. This process results in
a much smaller covariance matrix and facilitates
the evaluation of the eigenvectors, reducing the
computational time required to extract the new
features.

The goal of the 2DPCA technique proposed
by (Yang et al., 2004) is to project an image A of
size m×n on a vector space X using a linear trans-
formation. The result is a m-dimensional vector
Y that is a projected feature vector defined as:

Ym×1 = Am×nXn×1. (2)

In order to find a good projection on vector
X, the total scatter of the projected samples is
used and is defined as the trace of the covariance
matrix of the projected feature vectors. So, the
following criterion is adopted:

J(X) = tr(Sx), (3)

where Sx denotes the covariance matrix and
tr(Sx) denotes trace of Sx. Maximizing the crite-
rion showed in Equation 3 results in maximizing
the total scatter of the resulting projected sam-
ples, defined as:

Gt = E[(A− EA)T (A− EA)], (4)

where Gt denotes the n×n image covariance (scat-
ter) matrix and A is the images from the dataset.
So, alternatively the criterion in Eq. 3 can be de-
fined as follows:

J(X)1×1 = XT
1×nGt(n×n)Xn×1, (5)

where X is an unitary column vector.
The unitary vector X that maximizes the cri-

terion defined in Eq. 5 is called the optimal pro-
jection axis. The Xopt is the vector that maxi-
mizes J(X) and could be the eigenvector of GT



with the higher eigenvalue. In general one value
is not enough, so a set of d projection axes,
X1, . . . , Xd, is selected to represent the texture
features:

Yk = AXk

{
k = 1, 2, . . . , d, (6)

where Yk is a family of projected features vectors,
Y1, Y2, . . . , Yd that is called the principal compo-
nent vectors of image A.

4 Support Vector Machine (SVM)

The support vector machine is a classifier for su-
pervised learning based on statistical learning the-
ory proposed by (Vapnik, 2000). The SVM is es-
sentially a binary classifier, but several extensions
were added to allow for multi-class classification
problems (Weston, 2000).

The learning mechanism of the SVM consists
in determining a hyperplane defined as:

f(x) = w.x+ b, (7)

where w is a vector normal to the hyperplane and
w.x denotes the inner product between w and x.
Assuming the existence of two classes and sets
of points for each class inside the feature space,
the SVM determines an hyperplane that splits the
feature space so as to maximize the distance be-
tween each class and the hyperplane. The subset
of points that are used to define this hyperplane
are called support vectors.

There are some problems such as the BI-
RADs classification in which the feature space
cannot be effectively split by a linear function. In
this case, a kernel function can be used to map the
original feature space into a higher dimensional
one where the samples of the two classes are bet-
ter separated. The most common kernel functions
are:

1. linear → K(Xi, Xj) = XT
i Xj

2. polinomial → K(Xi, Xj) = (1 +XT
i Xj)

p

3. gaussian → K(Xi, Xj) = exp(−‖Xi−Xj‖2
2σ2 )

4. sigmoid → K(Xi, Xj) = tanh(β0X
T
i Xj + β1)

5. RBF → K(Xi, Xj) = e−γ||Xi−Xj ||2 , γ > 0

In cases where there are more than two
classes, the SVM should be adjusted to deal with
multiclass classification. Three approaches may
be used in this case:

1. In the one-against-one (or voting scheme) ap-
proach, the k classes are combined two by two
resulting in (k2 − k)/2 SVMs. Each SVM is
trained separately and the new subject to be
classified is input to all them. The class that
is chosen by the majority of the SVMs is as-
signed to the subject.

2. In the one-against-all approach, k SVMs are
trained, each one for a class, grouping the
remaining classes. The class of the associ-
ated SVM that reports the largest classifica-
tion probability is assigned to the new sub-
ject.

3. The third way to deal with multiclass classi-
fication is to construct a decision tree where
the root should have one of the classes against
the others and the sub-trees are recursively
built with the remaining classes. In this case,
k! trees are possible, resulting in a cascade of
k−1 SVMs. In the test step, the new subject
is input to the SVM at the root of the tree.
If the associated class presents a classifica-
tion probability greater than 0.5 the process
stops. Otherwise, the subject is input to the
next SVM and the process proceeds until a
single class is determined.

5 Methods and Materials

The dataset used in the experiments consists in
4, 000 mammographic images gently provided by
the IRMA project of the Aachen University of
Technology. The size of the images varies from
1024 × 300 pixels to 1024 × 800 pixels. The im-
ages are equally distributed among all classes and
each BI-RADS density is represented by 1, 000
images, containing both cranio-caudal (CC) and
medio-lateral (MLO) views. The original mam-
mographic exams were previously cropped to ex-
tract an region of interest (ROI) of 128× 128 pix-
els and stored in the Portable Network Graphics
(PNG) format. The extracted ROIs represent the
most significantly part of the texture of the breast
tissue, excluding artifacts such as annotation and
exam labels from mammographies.

The methods were implemented in Java pro-
gramming language. The OpenCV library was
used to perform PCA and the 2DPCA was imple-
mented according to the model described in the
previous section. The SVM implementation used
the libsvm library (Chang and Lin, 2011). The
library documentation also provides a guide and
highlights the importance of correct parametriza-
tion (Hsu et al., 2003).

The number of principal components ex-
tracted from the images were 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 15 and 20. These values were chosen so as to
allow for comparison with the work of (De Oliveira
et al., 2010) that used the same dataset and is one
of the few to present quantitative results on the
classification of mammographic texture. A differ-
ence between the two studies is that (De Oliveira
et al., 2010) aimed at proposing an image retrieval
system instead of a classifier. In order to evaluate
the results, the precision of retrieval was measured
for the 10% of the retrieved images.



After extracting the principal components,
the SVM classification process was performed us-
ing a random k-fold cross-validation design, with
k = 100. In order to achieve better classification
rates, two types of training schemes for multiclass
classification were investigated: the one-against-
one and the decision tree approaches. The deci-
sion tree that provided the best overall precision
rate had the following structure:

1. The first step used a SVM with BI-RADS I
against all the other BI-RADS. In the case the
machine returns the class I as the winner, the
procedure stops and the subject is assigned to
this class, otherwise it proceeds to the next
step.

2. The second step uses a SVM with BI-RADS
II against BI-RADS III and IV. In the case
the machine returns the class II as the win-
ner, the procedure stops and the subject is
assigned to this class, otherwise it proceeds
to the last step.

3. The last step is a binary SVM between BI-
RADS III and IV.

Five kernel functions were investigated: lin-
ear, polynomial, Gaussian, sigmoid and radial ba-
sis function, as described in section 3. The pa-
rameter estimation was performed for each con-
figuration through the method of grid searching,
in which the values of all parameters are jointly
varied according to a specific function, not neces-
sarily linear (Hsu et al., 2003).

6 Results

The experiments revealed that the PCA was more
effective using a sequence of SVMs just like a deci-
sion tree and the nodes are a SVM classifier, for all
numbers of components. The radial basis function
(RBF) also showed to be the best kernel, although
the linear and sigmoid functions presented similar
results. As suggested by (Hsu et al., 2003), the
RBF kernel was therefore preferred since it has
only two parameters to estimate, which makes the
grid search more computationally efficient. More-
over, it is more stable than some cases of polyno-
mial kernel that may go to infinite and is a gener-
alization of the sigmoid kernel.

The best precision rate (98.00%) was obtained
with 15 components. Table 1 presents the re-
sults achieved by the proposed method that can
be compared to the ones achieved by (De Oliveira
et al., 2010) (MammoSYS), used as the baseline
for comparison. The best results of MammoSYS
were achieved using 20 components (70.86%) at
10% of recall. The results of the proposed classi-
fier design was significantly superior for all number
of components.

Table 1: Results of Classification using PCA for
different numbers of components m, at 10% and
100% of recall, compared to the results of Mam-
moSYS.

m MammoSYS Class. at 10% Class. at 100%
1 67.86% 70,80% 41,55%
2 68.30% 73,00% 49,82%
3 69.05% 83,30% 57,17%
4 69.56% 91,00% 62,80%
5 69.98% 89,20% 64,12%
6 69.8% 92,70% 64,57%
7 70.39% 93,80% 64,10%
8 70.27% 93,50% 64,17%
9 70.24% 97,00% 63,20%
10 70.45% 96,00% 62,90%
15 70.44% 98,00% 60,57%
20 70.86% 97,30% 60,60%

Experiments using 2DPCA were more effec-
tive using the one-against-one design. The radial
basis function (RBF) also showed to be the best
kernel, yielding a precision rate of 99.80% with 5
components. Table 2 presents the results achieved
by the proposed method that can be compared
to the ones achieved by MammoSYS, whose best
results were also achieved using 5 components
(97.83%). Fig. 3 shows the average precision-recall
plot, comparing the results between PCA and
2DPCA for the classification of mammographic
texture.

Table 2: Results of Classification using 2DPCA
for different numbers of components d. at 10%
and 100% of recall, compared to the results of
MammoSYS.

d MammoSYS Class. at 10% Class. at 100%
1 83,86% 88,70% 58,52%
2 86,03% 94.80% 63,38%
3 87,96% 98,00% 65,52%
4 90,87% 99,50% 67,72%
5 97,83% 99,80% 68,41%
6 97,67% 99,50% 68,91%
7 97,09% 99,80% 69,08%
8 97,00% 99,10% 68,80%
9 96,46% 98,90% 68,61%
10 96,22% 96,00% 68,36%
15 95,50% 98,30% 66,69%
20 93,85% 85,00% 65,16%

The results presented in Tables 1 and 2 cor-
roborate the importance of parameter estimation
for SVMs. By tunning the kernel function, the
results obtained with PCA become comparable to
the ones achieved by 2DPCA on MammoSYS. Fig.
4 illustrates how the results of PCA can be influ-
enced by the choice of the parameters to achieve
results similar to 2DPCA at MammoSYS.

Table 3 summarizes the best SVM parameters
a grid search was performed starting with ran-
domly values of cost and gamma. The achieved



Figure 3: Precision × recall curve for the average
precision using 2DPCA with 6 components and
PCA with 15 components.

Figure 4: A comparison between the precision
of MammoSYS using 2DPCA and the proposed
method using PCA for different number of com-
ponents.

result are shown in Table 3.

7 Conclusion

In this paper we presented an analysis of SVM
parametrization applied to the problem of mam-
mographic texture classification. Linear models of
data reduction like PCA and 2DPCA were used to
extract the features from breast images. Differ-
ent designs for multi-class classification were also
investigated, such as combining multiples SVMs
in a decision tree rather than using conventional
scoring systems. Compared to other quantitative
results found in the literature, the proposed multi-
class SVM using the radial basis function kernel
with tuned parameters proved to be superior while
classifying mammographic texture, reaching up to
99.8% of precision for 10% of recall.

Much improvement can still be achieved in
the classification of the whole dataset. Mammo-
graphic texture can be very heterogeneous, caus-
ing the classifier to fail in around 30% of the
cases. Methods such as the convolutional neural

Table 3: SVM best parameters

PCA 2DPCA
Cost Gamma Cost Gamma

1 0.5 0.5 512 0.03125
2 32 8 128 0.03125
3 128 2 2 0.5
4 8 8 2 0.125
5 8 8 2 0.125
6 32 2 2 0.125
7 2048 5 2 0.03125
8 8192 0.125 2 0.03125
9 2048 0.125 2 0.03125
10 2048 0.125 2 0.03125
15 2 2 2 0.03125
20 2 2 0.5 0.0078125

networks has not yet been applied to the classifi-
cation of BI-RADS density levels and are a field
for future work. Additionally, other descriptors
can be used or combined with the principal com-
ponents to improve accuracy.
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