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AbstractIn this work, we present different configurations of Fuzzy Cognitive Maps (FCMs) controllers of three industrial pro-

cesses. A first-order heat exchanger (Heatex) with a classic FCM compared with a Fuzzy Logic Controller (FLC) and the original 

PI controller designed by MatWorks®, using the Integral Absolute Error (IAE), the Integral Squared Error (ISE), settling time, 
overshoot and control signal. The second process is a fourth order alcoholic fermenter, using FCM as an adjustment mechanism 

for a PID controller tuned heuristically, using the same comparison parameters than the Heatex. The last process is a mixer tank, 

with two methods for Dynamic Fuzzy Cognitive Maps’ (DFCMs) weight adjustment: the Hebbian learning algorithm (DFCM-
Heb) and a weight-scheduling (DFCM-WS) configuration. In this process, the most satisfactory method (DFCM-Heb) was embed-

ded in a PIC18F4520 to verify the low computational complexity of the DFCM. For the Heatex, the PI controller still the best 

option, however, the three controllers presented similar results. In the alcoholic fermenter process, the FCM-PID mechanism ob-
tained the most satisfactory responses. 

Keywords Heat exchanger, alcoholic fermenter, mixer tank, Fuzzy Cognitive Maps, adaptive control. 

Resumo Neste trabalho, foram apresentadas diferentes configurações de controladores Mapas Cognitivos Fuzzy (FCMs) de três 
processos industriais. Um trocador de calor de primeira ordem (Heatex) com um FCM clássico comparado com um Controlador 

Lógico Fuzzy (FLC) e o controlador PI original projetado pela MatWorks®, usando a Integral do Erro Absoluto (IAE), Integral do 

Erro Quadrático (ISE), tempo de acomodação, máximo sobressinal e sinal de controle. O segundo processo é um fermentador 
alcoólico de quarta ordem, usando FCM como um mecanismo de ajuste para um controlador PID sintonizado heuristicamente, 

usando os mesmos parâmetros de comparação do que o Heatex. O último processo é um tanque misturador, com dois métodos para 

ajuste dos pesos de um Mapa Cognitivo Fuzzy Dinâmico (DFCM): o algoritmo de aprendizado de Hebbian (DFCM-Heb) e uma 
configuração de escalonamento dos pesos (DFCM-WS). Neste processo, o método mais satisfatório (DFCM-Heb) foi embarcado 

em um PIC18F4520 para verificar a baixa complexidade computacional do DFCM. Para o Heatex, o controlador PI ainda é a 

melhor opção, no entanto, os três controladores apresentaram resultados semelhantes. No processo de fermentação alcoólica, o 
mecanismo FCM-PID obteve as respostas mais satisfatórias. 

Palavras-chave Trocador de calor, fermentador alcoólico, tanque misturador, Mapas Cognitivos Fuzzy, controle adaptativo.  

1    Introduction 

In modern control systems, it is noticed that linear 

control becomes insufficient when the operating con-

ditions of a system are not fixed. Thus, adaptive con-

trol is used. One of its objectives is to compensate var-

iations in the parameters of nonlinear control systems 

(Åström and Wittenmark, 2008) which, in general, are 

an interconnection of components forming a configu-

ration that produces a desired response (Ogata, 2010). 

An alternative is to use heuristic models or semi-quan-

titative methods like Fuzzy Cognitive Maps (FCMs), 

which encode experts’ knowledge about the connec-

tions among the different parameters of the studied in-

dustrial process control. These methods could be pre-

ferred to other alternatives as they allow modeling of 

complex system dynamics, without the need for cap-

turing the functional relationships between concepts 

of the real system by means of complex mathematical 

equations. In control systems, the main comparison 

between classical and fuzzy logic control provokes a 

general discussion of these two paradigms. Both in 

fuzzy and in FCM control, Fig. 1 (a), linguistic terms 

represent the degree of knowledge of the operator on 

the analyzed real-world plant. This fact provides the 

possibility of controlling the process without having 

its mathematical model, unlike classical control, Fig. 

1 (b), which requires the model and its simplifying as-

sumptions to the controller design, adding one more 

step in the paradigm, to prove the theorem stability 

(Ross, 2010). 

 

Figure 1. (a) Fuzzy/FCM and (b) classical paradigm. Adapted 
from (Ross, 2010) 



In this way, FCMs can encode control tactics that are 

imprecise in nature, commonly expressed in linguistic 

terms, which is helpful when it is difficult to obtain a 

mathematical model of the process. 

FCMs allow dealing with subjective and vague lin-

guistic variables used by domain experts and handling 

uncertainties due to their approximate knowledge us-

ing Fuzzy Logic (Passino and Yurkovich, 1998), such 

as the heuristic process used in this work.  

There are many applications of FCMs in process con-

trol. In the work of (Mendonça et al., 2013), the au-

thors used a Fuzzy-PID controller development of an 

alcoholic fermenter process proposed in (Maher, 

1995). Also, (Lima and Serra, 2015) proposed a robust 

Fuzzy controller implemented for visualization and 

control of a thermal process.  

In this work, the objective is to investigate the appli-

cation of systems based on FCMs, designed using ex-

perts’ knowledge and compare their results with the 

more classical methods. We present three examples of 

industrial processes in this work. Intelligent control 

methods were used to tune the gains of a classical PID 

controller of an alcoholic fermenter, were directly ap-

plied as controllers in a heat exchange process 

(Heatex), and a Dynamic Fuzzy Cognitive Map 

(DFCM) with two weight’s adaptation methods: 

Hebbian learning algorithm (DFCM-Heb) and a 

weight-scheduling configuration (DFCM-WS). 

The paper is organized as follows. Section 2 describes 

the processes and presents a brief background about 

Fuzzy Logic and FCM, presenting our contribution in 

the intelligent control area. In Section 3, we show the 

obtained results and compare the other techniques. Fi-

nally, in Section 4, we outline some conclusions and 

directions for future work.  

2   Background and Processes’ Description 

In this section, we present a brief introduction of 

the industrial processes used in this work, namely the 

Heatex, the Alcoholic Fermenter and the Mixing Tank. 

In addition, we briefly describe Fuzzy Logic and the 

FCM technique applied in three different industrial 

processes.  

 

2.1 Heatex process description 

The original Heatex process used as a testbed in 

this work is found in the Matlab® documentation and 

in (Mollon et al., 2017), among other works. It is de-

scribed as a chemical reactor, called the stirring tank. 

In this process, the top piping provides liquid to be 

mixed in the tank. Then, this liquid must be main-

tained at a constant temperature from the variation of 

the amount of steam supplied to the heat exchanger 

(lower tube) by means of its control valve, which per-

forms the control action through a PI controller. 

The disturbance sources in this process are the varia-

tions in the temperature of the input flow, given by a 

disturbance plant. The Heatex process was designed 

using a Fuzzy Logic Controller (FLC) as well as a 

FCM controller, analyzed in the feedback form. The 

block diagram of the system is depicted by Fig. 2. 

 

Figure 2. Heatex block diagram 

The process is governed by two transfer functions: the 

mixer plant (Heatex) PH (1) and the disturbance plant 

PD (2), and the control is made through a setpoint, as 

shown in Fig. 2. 

𝑃𝐻 = 1
21.3𝑠 + 1⁄ 

 𝑃𝐷 = 1
25𝑠 + 1⁄ 

2.2 Alcoholic Fermenter Process Delimitation 

Fermentation is a process of energy release in 

which there is no oxygen participation, and is used in 

industrial fermentation processes for manufacturing 

alcoholic beverages. Fig. 3 shows a real alcoholic fer-

menter (a) and the simulated one used in this work (b). 

In Fig. 3 (b), the Fin valve is responsible for the sub-

strate flow in the tank, and Fout valve regulates the 

product’s flow out of the tank. These two valves are 

controlled by two independent PID controllers, which 

are adapted by the proposed tuning mechanisms, 

FCM-PID and Fuzzy-PID. 

 

Figure 3. Real (a) and simulated (Mendonça et al., 2013) (b) alco-
holic fermenters 

The fermentation process used in this work was in-

spired from the initial proposal of Maher (Maher, 

1995), which has been a recurrent system for valida-

tion of different control architectures. More details 

can be found in (Mendonça et al., 2013).  

The process has four state variables: the concentra-

tions (g/l) of substrate (S), the biomass (C), the prod-

uct (P), and the volume (V) of the fermentation tank.  

In this process, four differential equations govern the 

system’s behavior, and are given by equations (3) to 

(7). The variables are the same as found in (Mendonça 

et al., 2013). 
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Important system dynamics factors are the large ac-

commodation time and high correlation between the 

state variables. It is also noticed that it is a non-mini-

mal phase system, as seen in (Mendonça et al., 2013), 

with stabilization depending strictly on the correct 

concentrations to occur, thus being a MIMO control. 

Some restrictions must be respected to ensure a cor-

rect fermentation setpoint campaign. For example, the 

concentration of biomass (C) should not exceed 8 g/l, 

while the substrate (S) should remain above 0.5 g/l, 

otherwise the reaction would end, and hence the pro-

cess should be restarted again. Another restriction is 

the setpoint range of 10 to 50 g/l for P, according to 

the assumptions made in (Mendonça et al., 2013). 

2.3 Fuzzy Logic 

Fuzzy logic, created by Zadeh, is an extension of 

Boolean logic (Zadeh, 1965), based on the theory of 

fuzzy sets, which is a generalization of the classical 

set theory.  A key concept in fuzzy logic is member-

ship functions. A fuzzy set A in the universe of dis-

course X is characterized by a membership function 

𝜇𝐴: 𝑋 → [0, 1]. A degree of zero means that the value 

is not in the set, a degree of one means that the value 

is totally representative of the set, and a degree con-

fined between zero and one means the value is par-

tially in the set.  

The shape of the membership function is often chosen 

based on the advice of an expert or by statistical stud-

ies. A Sigmoid shape, Triangular, Trapezoidal, Gauss-

ian or any other type can be used. The concept of 

membership functions discussed above allows the def-

inition of fuzzy natural language systems that make 

use of linguistic variables, where the universe of dis-

course of a variable is divided into a number of fuzzy 

sets with a linguistic description attributed to each 

one. In this work, Fuzzy systems were used as a way 

of representing the expert’s knowledge of the ana-

lyzed processes.  

2.4 Fuzzy Cognitive Maps 

A FCM is a soft computing technique that com-

bines the advantages of Artificial Neural Networks 

(ANNs) and Fuzzy Logic, using existing knowledge 

and human experience to model complex systems 

(Papageorgiou, 2014). Due to their simplicity, support 

for ambiguous (Fuzzy) knowledge, they are applicable 

in many areas, such as medicine, engineering, soft-

ware development, etc. FCMs emerged from Kosko’s 

work (Kosko, 1986), which expanded the concepts of 

Axelrod’s (Axelrod, 1976) and Tolman’s (Tolman, 

1948) previous Cognitive Maps works. FCMs intro-

duced fuzziness to Cognitive Maps, by using numeric 

descriptions (fuzzy binaries) of causal influences in-

stead of positive or negative symbols.  

In a FCM, the value Ai
(k+1) of each concept Ci at itera-

tion k+1 is calculated as a function of the sum of Ai(k) 

at iteration k, with the product of Aj(k) of the concept 

Cj by wij, which is the value of the causal link between 

Cj and Ci, given in the range [-1 1]. The mathematical 

representation of FCM inference is given by (8). 

𝐴𝑖
(𝑘+1)

 =  𝑓(𝐴𝑖
(𝑘)

 +  ∑  𝐴𝑗
(𝑘)

 ∗  𝑤𝑗𝑖)  
𝑁

𝑗=1
𝑗≠𝑖

 

In (8), f(.) denotes a threshold function like sigmoid to 

squash the values within the range [0 1], as shown in 

(9), where λ is a real positive number, which deter-

mines the steepness of f(.), and x is the value of Ai at 

the equilibrium point. 

𝑓(𝑥) = 1
(1 + 𝑒−𝜆𝑥)⁄                        

It is not scope of this work to analyze the stability of 

the FCM. However, these equations combined suggest 

stability similarly to the work  (Boutalis et al., 2009), 

which shows that threshold sigmoid functions have in-

terval previous defined and are continuous differenti-

able. Also, the calculated values and causes their con-

vergence to the same specific value (Eleni and Petros, 

2017).   

The stability initials analysis and results have been 

presented by the same authors in (Eleni and Petros, 

2017). This study was done by using an appropriately 

defined contraction mapping theorem and the non-ex-

pansive mapping theorem. In other way, Kosko exam-

ined Associative Memories stability by identifying a 

Lyapunov or energy function with associative 

memory states (Boutalis and Kottas, 2008; Kosko, 

1988; Martchenko et al., 2003). 

2.5 Design of Heatex Process Controller 

For the Heatex control, a Fuzzy controller (FLC) 

and a FCM controller were developed, and were com-

pared to the original PI controller in Matlab®, simi-

larly as seen in work (Mollon et al., 2017), which the 

FCM controller was compared with ANN-FCM and 

other techniques.  

The FCM controller was created at first, considering 

errors in the same way that in the PID controller, 

which are namely the error (Error) and the differential 

error (Errordiff) for each iteration. Due to the low 

complexity of this system, it was unnecessary to use 

the error integral as expected. 

 

 

Figure 4. FCM used in the Heatex process 

For the FCM controller, Simulink® was used to mod-

ify the structure of the controller used in (Puheim et 

al., 2015). Figs. 4 and 5 show, respectively, the FCM 

created and its version in Simulink®. 



The causal relationships of the FCM were defined 

heuristically. The causal weight values were chosen as 

W13=0.75 and W23=0.2. 

 

Figure 5. Heatex FCM controller – Simulink® 

The second step was to create the FLC. In this process, 

the rule base used was the same as the one proposed 

by (Passino and Yurkovich, 1998) to control an in-

verted pendulum, with 25 rules, three triangular (cen-

ter) and two trapezoidal (borders) pertinence func-

tions. The inputs, like in the FCM controller, are Error 

and Errordiff and the output is the control signal.  

System simulations were run in Simulink® for the 

FCM and FLC controllers and data was collected for 

the Integral Absolute Error (IAE), Integral Squared 

Error (ISE), 2% settling time (Ts) and overshoot anal-

ysis in order to compare the different alternatives. 

2.6 Design of Alcoholic Fermenter Process Controller 

We designed an adaptive PID controller with 

FCM and Fuzzy adjustment mechanisms using Ma-

her’s approach (Maher, 1995). Subsequently, as in the 

Heatex process, the results were compared with the 

PID controller used as the basis for the tuning mecha-

nisms. 

In this work, we used a maximum tank volume (V) of 

4.75 l and a minimum volume of 1 l. Accordingly, if 

the former case occurs, the Fin valve is completely 

closed, and if the latter case occurs, the valve Fout is 

closed (Mendonça et al., 2013). As discussed in this 

work, equations (3) to (7) were used to simulate this 

process in Matlab®.  

 

Figure 6. Auto tune architecture 

The architecture shown in Fig. 6 was used as a tuning 

mechanism for the both FCM-PID and Fuzzy-PID 

controllers presented in this work. The variables Er-

ror, Errorint, and Errordiff represent the errors related 

to the gain parameters of the PID, which are respec-

tively error, integral error and differential error. The 

tuning mechanism interprets the errors coming from 

the parameters of the controller and, from the analysis 

proposed for each mechanism, applies multipliers to 

the proportional (Kp) and derivative (Kd) PID gains, 

adapting their values at each iteration. 

For a better validation among the tuning mechanisms 

used, a fermentation campaign was developed (group 

of setpoint values to be followed) that can describe a 

real fermentation campaign according to the re-

strictions imposed in this work. 

The initial step in the development was the tuning of 

the initial parameters of the PID controller: Kp, Kd and 

Ki, through the heuristic and process analysis. The val-

ues reached are Kp=2, Kd=4.95 and Ki=0.35. 

The first tuning mechanism to be developed was the 

FCM-PID, using a domain expert’s knowledge of the 

process. The developed FCM is shown in Fig. 7, 

where concepts 4 and 5 correspond to the Kp and Kd 

gain multipliers to be applied in the PID. In this work, 

the relation between computational cost and results’ 

improvement did not justified the use of Ki gain mul-

tipliers.  

From the expert’s knowledge employed in the FCM, 

it was noticed that there is a weak negative influence 

in all relationships. The overall FCM weights are: 

W14=-0.28, W15=-0.30, W24=W25=-0.25, W34=-0.15 

and W35=-0.17. 

 

Figure 7. FCM used in the alcoholic fermenter process 

  

Figure 8. Fuzzy surfaces for the fermenter process 

The Fuzzy-PID mechanism had its rules and member-

ship functions also adjusted heuristically, based on the 

relationships of the FCM-PID, with the same concepts 

used in the FCM.  

The FLC system used was a weighted Mamdani 

(Mamdani, 1974) with 3 inputs (Error, Errordiff and 

Errorint), 2 outputs (Kp and Kd multipliers) and 18 

rules. The pertinence functions were created to reach 

three ranges of values, namely “small”, “medium” and 

“large” for inputs and outputs, using trapezoidal func-

tions at the edges and a triangular one in the center.  

The inputs (absolute errors) range from 0 to 1 (100% 

positive error). The Kp output range is [0 1.5] and Kd 

is [0 2], both adjusted heuristically, obtaining the 

Fuzzy surfaces, two of which are shown in Fig. 9. 



As can be seen in Figs. 4 and 8, in this work the FCM 

corresponds to a simple acyclic graph, different from 

Kosko's original proposal (Kosko, 1986). In this way, 

according to (Yuan Miao et al., 2001) and (Mendonça 

et al., 2013) the construction of large cognitive maps 

by steps always generates smaller maps usually acy-

clic, which correspond to well defined cause-effect re-

lations. 

2.7 Simulated and Embedded Mixer Tank Control 

For the last process analyzed in this work, we will 

use a recurrent case study used in works such as 

(Souza et al., 2017). This case was selected due to 

their need for refinements in the FCM’s causal rela-

tionships in way to do a satisfactory control of the 

mixer tank using exclusively experts’ knowledge. 

The process, shown in Fig. 9, consists of a tank with 

two input valves, V1 and V2 (each one for a different 

liquid), a mixer, an output valve for final product re-

moval, and a specific gravity (G) meter (gauger) for 

the product measurement. In this case, for exemplifi-

cation, we will use water (G=1) and soybean oil 

(G=0.9). 

 

Figure 9. Mixer tank (Souza et al., 2017). 

During the process functioning, V1 and V2 insert the 

different liquids in the tank, generating a reaction and 

producing, consequently, a new liquid with a new spe-

cific gravity, respecting the specified Volume level 

and G. At this time, V3 is opened in accordance with 

the selected output campaign. The gauger measures 

the control quality of the produced liquid. The tank has 

two startup states, as shown in Fig. 10.  

The first state is an empty condition, causing the full 

opening of V1 and V2 and closing V3 until the minimum 

Volume desired is reached, thereby initializing the 

controller. The second state, full tank condition, has 

the inverse functioning: fully open V3 and close V1 and 

V2 until the maximum volume (V) desired is reached, 

starting the controller. 

 

Figure 10. Mixer tank state machine diagram 

Although being relatively simple, this process is a 

MIMO (Multiple Inputs and Multiple Outputs) type, 

with two inputs and two outputs and coupled varia-

bles. When the value of G reaches the desired range 

specified, the liquid mixed is ready. The liquid re-

moval is only possible when V is also in its specified 

range. Thus, the control consists of keeping G and V 

in their desired ranges.  

The concepts (Ci) and cognitive model are: C1 - State 

of the V1; C2 - State of the V2; C3 - State of the V3; C4 

- quantity of mixture (volume) in the tank, which de-

pends on the operational state of the valves V1, V2 and 

V3; C5 - value measured by the gauger for the liquid’s 

specific gravity. The valves have three states: closed, 

open or partially open. 

The process design uses the mass conservation princi-

ple in incompressible fluids in order to generate a set 

of differential equations representing its behavior, and 

is used to test the DFCM controller. As a result, the 

volume of the tank is the sum of its initial volume and 

the input flow of V1 and V2 minus the output V3 (10).  

In this way, the weight in the tank follows the princi-

ple as shown in (11). The values used for me1 and me2 

were 1.0 and 0.9, respectively. 

𝑉𝑡𝑎𝑛𝑘 = 𝑉𝑖 + 𝑉1 + 𝑉2 − 𝑉3 
𝑊𝑒𝑖𝑔ℎ𝑡𝑡𝑎𝑛𝑘 = 𝑀𝑖 + (𝑉1. 𝑚𝑒1) + (𝑉2. 𝑚𝑒2) − 𝑀𝑜𝑢𝑡


In this case, a Dynamic Fuzzy Cognitive Map 

(DFCM) is used to control the mixer, which should 

maintain levels of volume and mass within specified 

limits through the adaptation of the causal relation-

ships (weights, given by Wij). 

We used two methods for the adaptation of the FCM 

weights: first by using the Hebbian learning algo-

rithm, and second using weight-scheduling according 

to the V3 campaign, through a Genetic Algorithm 

(GA) (Holland, 1992) with 30 individuals (real num-

bers), tournament, simple crossing and 1% mutation.  

To the dynamical adaptation of the DFCM weights it 

was used the Hebbian learning algorithm for FCM 

(DFCM-Heb), an adaptation of the classic Hebbian 

method, as well as used in, for example, (Souza et al., 

2017). In this paper, this method is also used to update 

the intensity of causal relationships.  

The Hebbian learning algorithm provides the follow-

ing control actions: if G or V of the liquid mixture in-

creases, the input valves have a weight negatively in-

tensified and tend to a more quickly close. On the 

other hand, if G or V decreases, V1 and V2 have a 

causal relationship positively intensified. The mathe-

matical equation is presented in (Souza et al., 2017). 

In the weight-scheduling approach (DFCM-WS), the 

weight vectors is obtained through a GA algorithm 

which selects the most adequate weight according to 

the setpoint. Otherwise, the Reinforcement Learning 

(Sutton and Barto, 2017) can be used as a tool for ad-

justment or online tune for FCMs, as seen in 

(Mendonça et al., 2011).  

In this process, firstly a GA is used to choose a set of 

weights accordingly to the V3 campaign, generating 

weight-scheduling (DFCM-WS). Thus, the Hebbian 

method is used to adapt the weights of the DFCM 

(DFCM-Heb) in the same campaign. Finally, the best 

method is chosen to embed in a PIC18F4520 platform, 



which actuate as the controller while Matlab® assume 

the process.  

3   Results and discussion 

3.1 Heatex Process Control Results 

In this process, a fixed setpoint was chosen as 0, 

in the three controllers, namely the non-adaptive PI, 

FCM controller and FLC. The results of analysis of 

the different control parameters (IAE, ISE, overshoot 

and Ts) are shown in Table 1. 

Table 1. Results – Heatex process 
 

PI FCM FLC 

Ts (105 s) 1.7683 1.1538 1.2462 

Overshoot 0.5310 0.6762 0.5257 

IAE 0.0991 0.1472 0.1171 

ISE 0.0362 0.0746 0.0481 

 

In Fig. 11, the values of the control signal, setpoint, 

disturbances inserted in the process, Error and Error-

diff used for the intelligent controllers’ development are 

also shown, with the Output representing the temper-

ature obtained in the Heatex.  

 
Figure 11. Heatex results – (a) PI, (b) FCM, (c) FLC 

We can notice from the analysis of Fig. 11 that the 

output temperature changes from the setpoint before 

the beginning of the disturbances caused in the sys-

tem, for both the FCM and FLC controllers, as op-

posed to the original PI controller of Matlab®, which 

is expected to be the best in this process. 

The results of Table 1 confirm that the PI controller is 

still the best option for the Heatex process control. 

However, from the analysis of Fig. 11, it can be no-

ticed that the main advantage of the two intelligent 

controllers was the lower Ts value especially for the 

FCM controller.  

Moreover, the FLC’s overshoot is lower than in the 
Matlab® PI controller. However, the analysis of the 
results shows that the control signal of the FLC con-
troller is the most unstable compared to the other sim-
ulated controllers, which in a practical situation could 
result in damaging the system components. It is em-
phasized that other weights could be used in the FCM, 
and different rules and pertinence functions for the 
FLC. 

3.2 Alcoholic Fermenter Process Control Results 

The fermentation campaign simulations were per-

formed for the PID, FCM-PID and Fuzzy-PID. The 

results for the parameters P, S, V and C for the last two 

cases are shown in Fig. 12. It can be observed that the 

different process variables are within the desired 

ranges for all tested approaches. However, the FCM-

PID presented the lowest values for all analyzed as-

pects, indicating that this mechanism caused less-var-

iant values for the analyzed parameters. 

In relation to the gain variations, it was observed that 

Kp and Kd are strongly calibrated in the setpoint 

changes, and their values decreased for both FCM-

PID and Fuzzy-PID. We also obtained the highest gain 

values in these tuning mechanisms, which suggests 

that these two tuning mechanisms use more relevant 

changes to achieve the desired results. 

 

 

Figure 12. Results – (a) FCM-PID controller, (b) Fuzzy-PID 

controller 

As in the previous analysis, the errors reached their 

highest values at the setpoint changes, where the con-

troller gain adaptations achieved higher levels. It 

should be noticed that in this work, we only used the 

sum of the current error with the previous one for Er-

rorint. 

The analysis of the used control parameters is shown 

in Table 2, for the first simulation step. For the settling 

time (Ts), there is a slight advantage for PID and 

FCM-PID, since the difference found is small, due to 

the high number of hours (350) used. The higher 

Fuzzy-PID’s Ts value also indicates a smoother set-

point stabilization curve compared to the FCM-PID 

tuning mechanism. 

As for the overshoot, the FCM-PID presents an ad-
vantage, since it produces the lowest value. In the IAE 
and ISE analysis, the results of the PID were the worst 
due to its non-adaptation. However, for the ISE, the 
values obtained were similar among the three analyzed 
controllers. The results of the IAE were in agreement 
with the others, with the FCM-PID having lower val-
ues compared to the conventional PID and Fuzzy-PID. 
Moreover, a performance analysis was performed, ob-
taining the execution times of the Matlab® simulation 
scripts. 

Table 2. Results – Alcoholic Fermenter process 
 

PID FCM-PID Fuzzy-PID 

Ts 15.0000 15.0000 20.0000 

Overshoot 1.8071 1.8100 2.5019 

IAE 1.2827 0.9775 1.0755 

ISE 0.0517 0.0487 0.0497 



FCM-PID is slightly slower than PID, while the Fuzzy-
PID is approximately 10s slower than the PID control-
ler. Hence, it can be concluded that the FCM-PID is the 
best adjustment mechanism for the Alcoholic Fer-
menter Process. 

3.3 Mixer Tank Control Results 

In this case, the desired ranges for G and V are, respec-

tively, [800 850] mg and [830 880] ml. The initial val-

ues are G=810 mg and V=830 ml. For the empty tank 

startup, the controller is initialized when V are reaches 

the lower desired range. In the full tank startup, the 

controller begins at the moment that V reaches the up-

per desired range. 

Fig. 13 shows the weight evolution through the cam-

paign and Fig. 14 shows the control results for G and 

V. Figs. 15 and 16 presents the weight evolution and 

the range control for the DFCM-WS, respectively. Fi-

nally, Fig. 17 show the results for the best method cho-

sen, DFCM-Heb in the PIC18F4520. It is noteworthy 

that the weights for the embedded case have the same 

values of the simulated DFCM-Heb. 

 
Figure 13. Evolution of the weights – DFCM-Heb 

Figure 14. Mixer tank control – DFCM-Heb 

 

The results from both DFCM-Heb and DFCM-WS 

were satisfactory, with the values G and V maintained 

in their desired ranges. In (Souza et al., 2017), a FLC 

and a Fuzzy-ANN (Artificial Neural Network) con-

troller were also used to the mixing tank control. 

The PIC embedded DFCM-Heb obtained corre-

sponded to our expectations, presenting results with-

out disturbances and slightly higher than its simulated 

form, unlike previously found in the Arduino platform 

(Souza et al., 2017). Finally, the DFCM-Heb control 

showed more smooth weight changes than the weight-

scheduling (DFCM-WS) variant. 

 

Figure 15. Evolution of the weights – DFCM-WS 

 

Figure 16. Mixer tank control – DFCM-WS 

 

Figure 17. Mixer tank control – Embedded DFCM-Heb 

4   Conclusions 

For the Heatex, the results revealed that, even with the 

conventional PID being the best controller, the use of 

intelligent controllers should not be discarded, since 

the FLC controller presented similar results. 

In the case of the alcoholic fermenter process, the 

FCM-PID mechanism obtained the best responses ac-

cording to the analyzed parameters, obtaining the low-

est values in all of them considering the analyzed cam-

paign. 

Finally, for the Mixer Tank, the results suggest that 

the Hebbian method presented more adequate weight 

values due to its online adaptation. Thus, the weight-

scheduling need to be adjusted heuristically for every 

new V3 campaign, going against the FCM principle of 

adaptability. In addition, the values of G and V ob-



tained by the Hebbian have slightly modifications dur-

ing the campaign, unlike the second approach, which 

presented more drastic changes. 

Future research will focus on exploiting the potential 

of the soft computing techniques in industrial process 

control, including disturbances, new setpoint and oth-

ers changes in the processes addressed. Three im-

portant research topics are considered. First, we would 

like to embed all the developed controllers in other 

platforms, like Raspberry PI, Toradex etc., in order to 

verify the low computational complexity, time re-

sponse and software portability of the FCM-based con-

trollers. Secondly, addressing a real-time MIMO con-

troller for temperature and level in a real tank proto-

type, for example. The third topic is the stability anal-

ysis of the FCMs and the use of hardware-in-the-loop 

concept in the processes, important steps for further in-

vestigation. 

References 

Åström, K.J., Wittenmark, B., 2008. Adaptive 

Control, 2nd ed, Dover Books on Electrical 

Engineering. Dover Publications, USA. 

Axelrod, R., 1976. Structure of decisions: the 

cognitive maps of political elites, 1st ed, The 

Structure of Decision The Cognitive Maps of 

Political Elite. Princeton University Press, 

Princeton, NJ, USA.  

Boutalis, Y., Kottas, T., 2008. On the Existence and 

Uniqueness of Solutions for the Concept Values 

in Fuzzy Cognitive Maps, in: 47th IEEE 

Conference on Decision and Control. IEEE, 

Cancun, Mexico, pp. 98–104. 

Boutalis, Y., Kottas, T.L., Christodoulou, M., 2009. 

Adaptive estimation of fuzzy cognitive maps 

with proven stability and parameter 

convergence. IEEE Trans. Fuzzy Syst. 17, 874–

889.  

Eleni, V., Petros, G., 2017. New Concerns on Fuzzy 

Cognitive Maps Equation and Sigmoid 

Function, in: 2017 25th Mediterranean 

Conference on Control and Automation (MED). 

Valletta, Malta, pp. 1113–1118. 

Holland, J.H., 1992. Adaptation in Natural and 

Artificial Systems: An Introductory Analysis 

with Applications to Biology, Control and 

Artificial Intelligence, 1st ed, The University of 

Michigan Press. MIT Press, Cambridge, USA.  

Kosko, B., 1988. Bidirectional Associative Memories. 

IEEE Trans. Syst. Man Cybern. 18, 49–60.  

Kosko, B., 1986. Fuzzy cognitive maps. Int. J. Man. 

Mach. Stud. 24, 65–75.  

Lima, F., Serra, G., 2015. Fuzzy PID controller 

multiobjective genetic design. 2015 IEEE 10th 

Conf. Ind. Electron. Appl.  

Maher, M., 1995. Modélisation et élaboration 

d’algorithmes d’estimation et de commande : 

application à un bioprocédé. 

Mamdani, E.H., 1974. Application of fuzzy 

algorithms for control of simple dynamic plant. 

Proc. Inst. Electr. Eng. 121, 1585. 

https://doi.org/10.1049/piee.1974.0328 

Martchenko, M.A.S., Ermolov, I.L., Groumpos, 

P.P.P., Poduraev, P.J. V, Stylios, C.D., 2003. 

Investigating Stability Analysis Issues for 

Fuzzy Cognitive Maps, in: 11th Mediterranean 

Conference on Control and Automation - 

MED’03. Rhodes, Greece, pp. 1–7. 

Mendonça, M., Angelico, B., Arruda, L.V.R., Neves, 

F., 2013. A dynamic fuzzy cognitive map 

applied to chemical process supervision. Eng. 

Appl. Artif. Intell. 26, 1199–1210.  

Mendonça, M., de Arruda, L.V.R., Neves Jr, F., 2011. 

Autonomous navigation system using Event 

Driven-Fuzzy Cognitive Maps. Appl. Intell. 37, 

175–188. 

Mollon, M.F., Kaneko, E.H., Chaves, W.D.S., Niro, 

L., Marcio, A., Montezuma, F., 2017. Control of 

Non-linear Equation of Submarine Using PI-

like Fuzzy Controller. Int. J. Adv. Eng. Res. Sci. 

6495, 85–91.  

Ogata, K., 2010. Modern Control Engineering, 

Control Engineering.  

Papageorgiou, E.I. (Ed.), 2014. Fuzzy Cognitive Maps 

for Applied Sciences and Engineering. 

Springer-Verlag Berlin Heidelberg, Heidelberg.  

Passino, K.M., Yurkovich, S., 1998. Fuzzy Control, 

1st ed. Addison Wesley, Menlo Park, CA, USA. 

Puheim, M., Vaščák, J., Madarász, L., 2015. A 

proposal for Multi-Purpose Fuzzy Cognitive 

Maps library for complex system modeling, in: 

SAMI 2015 - IEEE 13th International 

Symposium on Applied Machine Intelligence 

and Informatics. Herl’any, Slovakia, pp. 175–

180.  

Ross, T.J., 2010. Fuzzy logic with engineering 

applications, 3rd ed. John Wiley & Sons, New 

Mexico, USA. 

Souza, L.B. De, Soares, P.P., Barros, R.V.P.D., 

Mendonça, M., Papageorgiou, E., 2017. 

Dynamic Fuzzy Cognitive Maps and Fuzzy 

Logic Controllers Applied in Industrial Mixer.  

Sutton, R.S., Barto, A.G., 2017. Reinforcement 

Learning: An Introduction, 2nd ed. MIT Press, 

Cambridge, USA.  

Tolman, E.C., 1948. Cognitive maps in rats and men. 

Psychol. Rev. 55, 189–208.  

Yuan Miao, Zhi-Qiang Liu, Chee Kheong Siew, Chun 

Yan Miao, 2001. Dynamical cognitive network 

- an extension of fuzzy cognitive map. IEEE 

Trans. Fuzzy Syst. 9, 760–770.  

Zadeh, L.A., 1965. Fuzzy Sets. Inf. Control 353, 338–

353.  

 


