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Abstract The adaptive multirate codec (AMR) standard usage has been intensive in mobile networks as well as a speech stor-

age format. Due to its high availability, many AMR audio files take on a forensic evidence condition, which implies the need to 

demonstrate they are authentic. Detecting AMR double compression means that, in the multimedia forensics context, the file is 
not an original one and a tampering likely happened, since it is always necessary to decode and encode again to change utterance 

meaning. In this paper, we show a new method to detect AMR double compression based on compressed-domain linear predic-

tion (LP) coefficient extraction, statistical feature computation from LP coefficients and SVM application. The experiments 
demonstrate the proposed method can discriminate double compressed AMR files from single compressed files with satisfactory 

accuracy, either using mixed first compression bitrate sets, or fixed first compression bitrate ones. Using the TIMIT corpus, the 

average accuracy reached 93.66 %, which is a very satisfactory result. 

Keywords AMR codec, double compression, SVM, forensic authentication. 

Resumo O uso do codec padrão AMR (multitaxa adaptativo) tem se mostrado muito intenso nas redes móveis e também como 

formato de armazenamento de sinal de voz. Devido à alta disponibilidade desse codec, muitos arquivos de áudio nesse formato 
têm assumido a condição de prova forense, o que implica a necessidade de se demonstrar que são autênticos. Detectar a dupla 

compressão AMR significa dizer, no contexto da multimídia forense, que o arquivo não é original e que provavelmente houve e-

dição do conteúdo, uma vez que sempre é necessário decodificar e codificar novamente para editar. Neste artigo, nós apresenta-
mos um novo método para detectar a dupla compressão AMR baseado na extração de coeficientes de predição linear no domínio 

da compressão, cálculo de características estatísticas desses coeficientes e no uso de máquina de vetor suporte (SVM). Os expe-

rimentos demonstram que o método proposto é capaz de discriminar arquivos AMR com dupla compressão com boa taxa de a-

certo, tanto com conjuntos com primeira taxa de bits de compressão misturada, quanto com primeira taxa de bits fixa. Utilizando 

o corpus de referência TIMIT, a taxa de acerto média atingida foi de 93,66 %, que é um resultado bastante satisfatório. 

Palavras-chave codec AMR, dupla compressão, SVM, autenticação forense.  

1    Introduction  

Since the advent of digital audio, the task of au-

thenticating speech recordings has become a com-

plex and an audio generation dependent problem. It 

is actually easy to tamper with digital audio and, in 

contrast, speech evidence must be authentic to be 

admitted in court. Such a fact requires a myriad of 

techniques from forensic examiners to report digital 

audio authentication, like the passive ones, which 

take part of the so called multimedia forensics field. 

Passive techniques use only information extracted 

from the audio file instead of ancillary authentication 

bitstream, like watermarking. 

Double compression detection is a part of the 

more general compression history identification 

issue. The related works show that the previous com-

pression traces are essential to determine authenticity 

and they can be disclosed by processing the encoded 

or decoded signal to extract statistics or some encod-

er specialty. By processing encoded MP3, fake-

quality MP3 can be enlightened (Yang, 2009) be-

cause it has fewer MDCT coefficients of small val-

ues than unaltered MP3 audio. MP3 double compres-

sion detection was first accomplished by applying an 

SVM to statistical features extracted from MDCT 

coefficients (Liu, 2010). Since MP3 is a widely used 

codec, detecting MP3 double compression is an im-

portant problem of compression history for forensic 

authentication purposes. The analysis of chaotic 

features extracted from encoded audio can give valu-

able information about compression history for dif-

ferent encoders (Hiçsönmez, 2011), while the decod-

ed audio can be used to detect the speech codec with 

very low misidentification (Jenner, 2012). By using 

SVM to analyze statistical features of MDCT coeffi-

cients, the compression history for MP3 and WMA 

files can be traced as well as bitrate transcoding 

(Luo, 2012). Specifically about double compression 

with different codecs, like AAC, MP3 and AMR, an 

SVM-based method can identify this procedure and 

the respective bitrates before and after, with satisfac-

tory accuracy (Hiçsönmez, 2013). If the audio spec-

imen is an uncompressed WAV file, the compression 



 

history can be identified, including codec and bitrate 

determination (Luo, 2014a). 

The AMR codec compression history identifica-

tion is better explored in terms of double compres-

sion detection. The first known specific method to 

detect AMR double compression applied features 

extracted from decompressed audio to an SVM clas-

sifier using TIMIT database to compute accuracies 

(Shen, 2012). Such results were surpassed by deep 

learning technique which also used decompressed 

AMR audio and reached higher accuracies (Luo, 

2014b). The state-of-the-art was reached by using a 

stacked autoencoder neural network to detect AMR 

double compressed audio also using the decom-

pressed AMR version (Luo, 2017).  Such a technique 

made possible accuracies about 98% with TIMIT 

database.  

In this work, a new passive method based on 

compressed-domain features is proposed to detect 

AMR double compression via SVM. The method 

uses encoded audio instead of decoded speech to 

extract linear prediction (LP) coefficients and com-

pute their statistics. Such compressed-domain ap-

proach has already been applied to AMR codec for 

speaker recognition task, but not for double compres-

sion detection. To the best of our knowledge, our 

method is the first to use LP coefficient extraction 

from encoded speech to detect double compressed 

AMR audio.  

This article is organized in five sections. In Sec-

tion 2, we provide useful information upon AMR 

algorithm and analyze double compression effects 

over bitstream quantized LP coefficients. Section 3 

gives details about the methodology for LP coeffi-

cient extraction and feature computation via SVM. 

We explain how to extract LP coefficients from 

AMR files, how to generate statistical compressed-

domain features and how to select the SVM models. 

In Section 4 we explain experiment set up and reveal 

the results comparing them to previous works. We 

reach conclusions in Section 5 and also state future 

work to improve our method. 

2   AMR Codec and Double Compression  

The detection of double compression is a true 

indicative of forgery in AMR digital audio. Like in 

MP3 encoder, whenever the AMR audio is found to 

be double compressed, a time-domain conversion 

happened with or without a bitrate transcoding. We 

can face AMR double compression detection in-

spired by MP3 double compression detection, but, 

instead of MDCT statistics, we should pursue LP 

coefficient statistics. 

When it comes to mobile communication, the 

AMR codec is a widely used compression standard 

for speech in 3G and 4G networks and in voice mas-

sage apps (3GPP, 2017). Not less important, AMR is 

a file format and file extension designed to store 

encoded speech, which can be recorded and played 

by almost all mobile phone worldwide. The AMR 

codec considered in this work was engineered for 

commuted circuit mobile networks, transmitting 

3,200 Hz narrowband speech with sampling rate 8 

kHz. As the name implies, AMR codec can encode in 

eight modes (bitrates) depending on channel condi-

tions. The bitrates are 12.2, 10.2, 7.95, 7.4, 6.7, 5.9, 

5.15 and 4.75 kbits/s, which corresponds to modes 

MR122, MR102, MR79, MR74, MR67, MR59, 

MR515 and MR475 respectively. In this paper, we 

focus on AMR file format with constant bitrate (one 

mode) identified by file header reading.  

AMR encoder algorithm MR-ACELP (Multi-

Rate Algebraic Code Excited Linear Prediction) is 

based on a 10th order LP filter with coefficients ai, 

i=1...10, applied to each of 4 subframes of a 160 

sample frame. These LP coefficients are converted to 

line spectrum pairs (LSP) and line spectrum frequen-

cies (LSF) by means of a nonlinear operation. When 

speech is encoded, the AMR bitstream consists of 

quantized parameters whose bit allocation depends 

on AMR mode. If we inspect such parameters, we 

find out that the quantized LSF subvectors are the 

only ones directly related to LP coefficients. Double 

compression operation might affect LSF subvectors 

statistics and point out double compressed files. The 

statistics in the histogram shown in Figure 1 reveal 

that the differences occur, but they are too subtle to 

be promptly employed to build features. As we can

 

Figure 1. Histograms of single compressed file 1st LSF subvectors 

(black bars) and of double compressed file 1st LSF subvectors 
(white bars) extracted from encoded AMR over 6300 single and 

6300 double compressed AMR files at MR475 mode. The gray 

bars indicate overlapped histograms. 

see, the single compressed file 1
st
 LSF subvector 

histogram (black bars) is not much different from 

double compressed file 1
st
 LSF subvector histogram 

(white bars), noting that the gray bars indicate over-

lapped histograms. 



 

This analysis shows that we better extract the 

unquantized LP coefficients to build features, since 

quantization may change LP coefficient double com-

pression discrimination power. As we show in Sec-

tion 3, a useful approach is to partly decode AMR 

files to extract unquantized LP and LSP coefficients 

and use them to compute compressed-domains fea-

tures. 

3   Methodology for LP Coefficient Extraction 

and Feature Computation using SVM 

Instead of processing decoded AMR audio to de-

tect double compression, we propose a method to 

compute features based on compressed AMR, i.e., 

we discriminate double compressed AMR by using 

compressed-domain features. In fact, compressed-

domain feature computation is a quite common ap-

proach. For instance, it is used to classify sound in 

MPEG-1 bitstream (Pfeiffer, 2003) and to implement 

an automatic speaker recognition system based on 

AMR compressed-domain features (Petracca, 2005). 

The aforementioned works used basic statistics over 

LSF indexes extracted directly from AMR bitstream, 

which encourages us to formulate a compressed-

domain feature algorithm focused on discriminating 

double compressed AMR audio. In the block dia-

gram depicted in Figure 2, we present the proposed 

method which is based on an SVM neural network to 

classify AMR audio.  

Considering a speech corpus with N uncom-

pressed WAV files, we double compress each of 

them at a second bitrate BR2 using the double com-

pression module, generating 2N audio files (N single 

compressed S-AMR and N double compressed D-

AMR) for each of the eight AMR modes. Inspired by 

the methodology proposed by Shen et al (Shen, 

2012), we assume two kinds of AMR file sets: the 

SB1B2, whose first compression bitrate BR1 is the 

same for all N double compressed files, and SBmB2, 

whose first compression bitrate Bm may assume all 

the eight possible AMR bitrates, that is to say, about 

N/8 files are first compressed at each AMR bitrate. 

Therefore, we generate 8 sets of type SBmB2, one for 

each BR2, and 64 sets of type SB1B2, because BR1 

and BR2 may be set to eight possible bitrates. 

As long as a given AMR set is computed, we are 

able to extract compressed-domain LP and LSP coef-

ficients of each file without the need to decode it to 

waveform. Such coefficients are essential to compute 

572 statistical features, i.e., a given AMR file corre-

sponds to a 572-dimension vector. From this point 

on, we compute a feature matrix with 2N rows and 

572 columns but, on account of LP or LSP coeffi-

cients distributions, some columns may carry no 

useful information because they have null or constant 

values. This situation leads to the deletion of some 

features depending on AMR bitrate and kind of set, 

resulting in a number of current features (NCF) such 

that NCF  572. We then compute a 2N x NCF fea-

ture matrix and reach a new experiment starting 

point, i.e., from this point onwards we can extract 

different training and test sets by shuffling the fea-

ture matrix, thus reaching different models and veri-

fying different accuracies. After scaling training and 

test sets, we use the training set for SVM model 

selection by grid search based on maximum cross-

validation accuracies. Once concluded the training, 

we store 8 AMR bitrate models for testing both SBmB2 

and SB1B2 sets. We show the method details in the 

following subsections. 

3.1 Extraction of LP Coefficients 

We extract the unquantized LP coefficients by 

using a modified AMR decoder instead of collecting 

quantized LSF subvectors from bitstream, enlighten-

ing double compression clues in LP coefficients. 

Starting from the unaltered 3GPP source code of 

AMR decoder, we deliberately added few lines to 

extract the LP (A_t[] variable) and LSP (lsp[] varia-

ble) coefficients after decoding a given file, i.e., we 

partly decode AMR files to generate two raw binary 

files which contain the coefficients. At the end of 

 
Figure 2.  Block diagram of the proposed method. 



 

AMR decoding, we store the binary files, whose 

sizes depend on AMR file durations. 

3.2 Statistical Feature Computation 

 We create statistical features using extracted LP 

and LSP coefficients in order to discriminate double 

compressed from single compressed AMR files. 

Such features are simple, but we intentionally de-

signed a large number of them because double com-

pression requires an in-depth description to be de-

tected. Table I shows the definition of all the used 

statistical measures where we introduce the normal-

ized first digit frequencies as the LP and LSP coeffi-

cient first digit histogram frequencies. When it 

comes to MP3 encoder, we know that first digit 

probabilities of single compressed MDCT coeffi-

cients obey Benford’s law while double compressed 

MDCT coefficients disobey (Yang, 2010). This find-

ing inspired us to verify first digit probability behav-

ior of LP and LSP coefficients, leading to the conclu-

sion that neither single compressed nor double com-

pressed coefficients obey Benford’s law. We verify, 

however, that single compressed AMR LP coeffi-

cient first digit probabilities are different from double 

compressed ones, i. e., they are useful to build fea-

tures do detect double compression.  

Table 1. Definition of Statistical Measures  

Measure Definition 

x  sample mean 
2  variance 

  standard deviation 

Mo mode 

kurt kurtosis 

1  skewness 

x~  median 

max maximum of samples 

min minimum of samples 

CV coefficient of variation 

geomx  geometric mean 

harmx  harmonic mean 

meanabs mean of absolute elements 
meansqr mean of squared elements 

ADev mean absolute deviation 

MAD median absolute deviation 
trimmean mean excluding  outliers trimmed at 5% 

my(x) normalized first digit frequency of  y,  

x=1...9 

Each LP coefficient ai, each LSP coefficient qi, 

i=1...10, and all ten LP (a1, a2,…, a10 together) and 

ten LSP (q1, q2,…, q10 together) coefficients may be 

considered for computing the statistics in Table 1. By 

doing so, we can calculate features for 10 LP and 10 

LSP coefficients individually plus one set of ten LP 

and one set of LSP coefficients, totalizing 22 possi-

ble parameters. Considering there are 26 measures in 

Table 1 (note that there are 9 digits to calculate the 

normalized first digit frequency), we can compute 22
 26 = 572 possible features to compose the feature 

matrix columns. 

3.3 Feature Deletion and Scaling 

We verify that the feature matrix needs to be 

processed after its computation because some fea-

tures carry no useful information. This observation is 

related to numerical properties of LP and LSP coeffi-

cients, like the absence of some first digits which 

results in zero frequency or the presence of sparse 

non-null values in the feature. We adopt the follow-

ing criteria to purge features: either the feature has 

zero standard deviation in single compressed half or 

in double compressed half, or the number of zero 

elements exceeds an empirical tolerance (we use 

99%). By deleting such features, we compute a new 

feature matrix with a lower number of columns 

which corresponds to the NCF for a given AMR 

bitrate. 

We initially assemble the feature matrix with 

first half accounting for single compressed AMR 

files and the second half for the double compressed 

files. The training matrix is thus extracted from a 

fraction of first half of feature matrix (e.g., 70%) and 

the same for second half, while the test matrix is 

extracted from the remaining events. The way the 

events are ordered defines one experiment to com-

pute, i.e., whenever we shuffle events we extract 

different training and test matrices for different ex-

periments, observing that we have to shuffle the 

single compressed half and the double compressed 

half in the same way so as to guarantee in training 

and test matrices the single and the double com-

pressed versions of a given event.  

After defining training and test matrices, we 

make scaling procedures according to the well-

known min-max algorithm, keeping feature values 

between 1  and 1 , described by Equation 1: 

      
      

         

 
(1) 

 

where xmin is the minimum value of the feature and 

xmax is its maximum value. 

3.4 SVM Model Selection 

Once computing the scaled training and test ma-

trices, an SVM model for each BR2 has to be chosen. 

For each experiment, we perform a grid search to 

find optimized penalty parameter C and gamma 

SVM parameters based on n-fold cross-validation 

maximum accuracy, since we use the RBF kernel for 

SVM computation, according to the methodology 

suggested in (Chang, 2011) and due to lower perfor-

mance observed using other kernels. Starting from a 

fixed grid for C and gamma, we perform a loose 

search and two fine searches by splitting the neigh-

borhoods of previous maximum accuracy grid points. 

We only proceed with the model selection for SBmB2 

sets and we use such models to compute the SB1B2 

sets, jointly with the experiment training matrix 

(used only for scaling) and the permutation used for 

training matrix extraction (this is necessary to pre-

vent using the same events in training for testing). 



 

4  Experiments 

We compute a series of three complete experi-

ments to confirm method effectiveness. We give 

detailed information about implementation in the 

following subsections and discuss the performance in 

contrast with published works. 

4.1 Experimental Configuration 

We consider the methodology proposed by Shen 

et al. (Shen, 2012) and the original TIMIT speech 

corpus (Garofolo, 1993) in all experiments. The 

TIMIT corpus consists of 6,300 uncompressed files 

which contain ten sentences spoken by native USA 

speakers and last between 915 ms and 7,888 ms. For 

AMR double compression detection algorithm, we 

filter and resample files at 8 kHz with 16 bits sample 

size. We compute eight AMR models for each exper-

iment and use them to test eight SBmB2 sets and 64 

SB1B2 sets. Starting from the TIMIT corpus, we gen-

erate 6,300 single compressed AMR files and 6,300 

double compressed AMR files, observing that BR1 is 

assigned to one of the eight possible AMR bitrates 

for SBmB2 sets. We split the TIMIT corpus in approx-

imately eight fractions so as to guarantee BR1 as-

sumes all the AMR modes. After double compres-

sion procedure and feature computation, the feature 

matrix has 12,600 rows and 572 columns (or NCF 

columns after feature deletion). 

At the beginning of each experiment and before 

assembling the training and test matrices, we shuffle 

the first and second halves of feature matrix in the 

same way. We set 70% for training ratio so as to 

extract 4,410 rows of single compressed features and 

4,410 of double compressed ones, making 8,820 row 

training matrix and 3,780 row test matrix. We define 

a label vector for training matrix with 4,410 rows 

labeled 1  representing single compressed features, 

while 4,410 rows labeled 1  representing double 

compressed features. The label vector for test matrix 

is defined the same way with 1,890 labels 1  and 

1,890 labels 1 . Before proceeding to test, the test 

matrix and its labels are randomly shuffled in the 

same way. 

We scale the training and test matrices using the 

min-max algorithm depicted in Equation 1. After 

scaling the training matrix, the used parameters xmin 

and xmax of each feature are stored to scale the test 

matrix in order to avoid bad scaling and SVM per-

formance degradation.  

The SVM algorithm used in this paper is the 

same described in the package LibSVM (Chang, 

2011) which can be downloaded from (LIBSVM, 

2018).  

4.2 Parameter Selection for SVM 

We use the grid search method to find SVM pa-

rameters for each experiment. This procedure search-

es for C and gamma from a 5-fold maximum cross-

validation accuracy criterion. Starting from a 12 x 12 

grid of power-of-2 values for C and gamma, we 

proceed with a loose search, find the pair that gives 

the highest accuracy, make a new 12 x 12 grid in the 

neighborhood of such a pair and make a fine search, 

repeating this process once again to make a second 

fine search. At the end, we find the best C and gam-

ma that maximizes the cross-validation accuracy for 

a given training matrix and use them do train SVM. 

4.3 Method Performance for Discriminating Sin-

gle/Double Compressed AMR files 

We compute each experiment starting from 

SVM models for each BR2 and then use them to test 

SBmB2 and SB1B2 sets. The test accuracy is defined as: 

    
     

           
 

(2) 

 

where TP is the total true positive cases (label 1  

and predicted 1 ), TN is the total true negative cases 

(label 1 and predicted 1), FP is the total false positive 

cases (label 1 and predicted 1 ), FN is the total false 

negative cases (label 1  and predicted 1). We also 

calculate the double compressed file detection rate 

TP[%] and the single compressed file detection rate 

TN[%] as follows: 

      
  

     
 

(3) 

 

  

      
  

     
 

(4) 

 

Table 2 shows the average results for SBmB2 sets. 

We can observe that the proposed method is effective 

in discriminating double compressed AMR files from 

single compressed ones. The average accuracy over 

all bitrates is 93.66%, the average detection rate of 

double compressed AMR files (TP) is 93.44% and 

the average detection rate of single compressed AMR 

files (TN) is 93.87%. 

Table 2. Average Test Accuracies for BR2 SVM Models (SBmB2 
sets with TIMIT Speech Corpus, bitrates in kbits/s) 

BR2 Acc [%] TP[%] TN[%] 

4.75 92.62 92.63 92.61 

5.15 92.53 92.49 92.57 

5.9 94.03 94.06 94.00 

6.7 93.80 93.74 93.86 

7.4 93.72 92.82 94.62 

7.95 94.00 93.81 94.18 

10.2 93.99 93.70 94.28 

12.2 94.58 94.32 94.85 

 

We also compute for each experiment all the 64 

accuracies for SB1B2 sets using the eight SVM models 

employed in SBmB2 accuracy computations. Such 

results are useful to see the model performance with 



 

Table 3. Average Test Accuracies for BR2 SVM Models (SB1B2 sets with TIMIT Speech Corpus, bitrates in kbits/s) 

 BR2 

BR1 4.75 5.15 5.9 6.7 7.4 7.95 10.2 12.2 

4.75 95.57 95.46 96.87 96.70 97.08 96.93 96.94 97.29 

5.15 95.54 95.57 96.78 96.68 97.07 96.97 96.92 97.31 

5.9 94.43 94.40 95.43 95.48 95.73 95.70 95.48 96.36 

6.7 94.25 94.27 95.15 95.24 95.51 95.48 95.23 96.21 

7.4 93.91 93.93 95.05 95.33 95.33 95.29 95.08 96.00 

7.95 93.97 93.94 95.08 95.11 95.30 95.13 95.36 95.92 

10.2 86.66 86.38 87.57 87.76 87.28 87.95 87.87 90.10 

12.2 87.94 87.91 89.44 89.71 89.03 89.44 89.42 87.63 

 

constant BR1 in the training and test sets.  We can 

see the results in Table 3 as average accuracies for all 

experiments while we also observe the models are 

effective to discriminate double compressed AMR 

files for SB1B2 sets with average accuracy 93.78%. 

Like in Shen et. al (Shen, 2012), Table 3 shows that 

the accuracies increase (accuracies in bold at upper 

right corner) if an up-transcoding operations is done 

(BR1 <  BR2) and, in contrast, they decrease (accu-

racies at lower left corner) if a down-transcoding 

operation takes place (BR1 > BR2). Such behavior is 

expected because the down-transcoding operation 

loses useful information for double compressed 

AMR detection. 

4.4 Comparison with State-of-the-Art 

Our literature research identifies three methods 

to detect double compressed AMR audio, but all of 

them use uncompressed audio. Table 4 compares 

such techniques with the proposed method and we 

can affirm that, except for stacked autoencoder neu-

ral network (Luo, 2017), it outperforms all of them in 

all bitrates. 

 

Table 4. Comparative Performance Evaluation for SBmB2 sets with 

TIMIT Speech Corpus (bitrates in kbits/s). 

Average Accuracies [%] 

 Methods 

AMR 

Birate 

Shen, 

2012 

Luo, 

2014 

Luo, 

2017 

Proposed 

Method 

4.75 79.76 91.14 98.78 92.62 

5.15 83.73 91.32 98.88 92.53 

5.90 87.26 91.18 98.74 94.03 

6.70 86.17 91.23 98.77 93.80 

7.40 80.14 91.39 98.95 93.72 

7.95 82.36 91.28 98.87 94.00 

10.2 85.31 91.27 98.84 93.99 

12.2 88.16 91.33 98.82 94.58 

5   Conclusions and Future Work 

Whenever an AMR audio file is classified as 

double compressed, its authenticity becomes a ques-

tion raised because an original AMR file should be 

single compressed. Double compressed AMR detec-

tion is a complex multimedia forensics problem 

which solution is still in progress. 

In this paper, we propose a novel SVM-based 

algorithm for double compressed AMR detection 

which offers a higher performance than deep learning 

techniques. Our method innovates because we use 

LP-based compressed-domain features instead of 

decompressed audio to detect AMR double com-

pressed files. 

We believe the proposed method is a promising 

technique to detect double compressed AMR audio, 

since it is capable of getting around time domain 

transients. The LP and LSP coefficients can translate, 

in a compact way, some spectral differences between 

single and double compressed AMR audio, since we 

achieve a higher performance than deep learning 

algorithms.  

For future work, we intend to improve the pro-

posed method by introducing some modifications. 

First, we can extract from AMR encoded files more 

information, such as pitch lags. Second, a feature 

selection algorithm can be used because there must 

be an optimum number of features which increases 

detection accuracy. And third, at last, we should 

investigate the features so as to understand its statis-

tical behavior which could affect SVM performance. 
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