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Abstract— This paper proposes a method of maximum power point tracking for photovoltaic (PV) panels
using neural networks. The PV system consists of a solar panel, a DC-DC converter, a control system and the
load. Two neural networks will be trained to integrate into the system. The first network is responsible for
estimating the level of solar irradiance from the electric current, voltage and temperature signals of the solar
panel. The second neural network is connected to the first and uses its output (irradiance) with the temperature
to generate a reference voltage, corresponding to the maximum power voltage, to a PI controller. The system’s
response under variable conditions of irradiance, temperature and load will be analyzed, as well as a performance
comparison with the incremental conductance method. Results show that the artificial neural network was able
to detect the maximum power point under dynamics behavior quicker than the incremental conductance, hence,
maximizing the power transfered to the load.
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Resumo— Este trabalho propõem um método de rastreamento do ponto de máxima potência para painéis
fotovoltaicos (PV) utilizando redes neurais. O sistema PV consiste em um painel solar, um conversor DC-DC,
um sistema de controle e a carga. Duas redes neurais serão treinadas para integrar ao sistema. A primeira
rede é responsável por estimar o ńıvel de irradiação solar a partir dos sinais de corrente, tensão e temperatura
do painel solar. Já a segunda rede neural é conectada a primeira e utiliza sua sáıda (irradiância) junto com a
temperatura para gerar uma tensão de referência, respectiva a tensão de máxima potência, a um controlador PI.
Serão analisados as respostas do sistema sob condições variáveis de irradiância, temperatura e carga, além de um
comparação de performance com o método da condutância incremental. Os resultados apresentados mostram que
a rede neural artificial foi capaz de detectar o ponto de máxima potência sob condições dinâmicas mais rápido
do que o método da condutância incremental, portanto, maximizando a potência transferida para a carga.

Palavras-chave— Sistemas fotovoltaicos, Rastreamento do ponto de máxima potência, Redes neurais artifi-
ciais

1 Introduction

The use of solar energy for electric power gen-
eration has become increasingly common, not only
because it is a type of renewable energy but mainly
because it is a source of clean, inexhaustible, free
and widely available energy.

To perform the conversion of light into elec-
tricity, photovoltaic (PV) modules, composed of
semiconductor material, were developed using
the principle of the photovoltaic effect. Among
the semiconductors materials, most of the pan-
els available on the market are composed of
monocrystalline silicon and polycrystalline silicon
for being more efficient and reliable (Pinho, 2014).

However, the power supplied through these
panels may not be the maximum available. The
reason is the dependence of different factors that
influence the power generation and operation
point of the photovoltaic panels, such as: con-
nected load, cell temperature and incident irra-
diance value. Because of this, usually, a DC-DC
converter is connected to the output of the panel
in order to guarantee the generation of maximum
available power, regardless of the factors men-
tioned previously.

The main point for optimizing the system is

to control the duty cycle (D) through a control
based on the principle of Maximum Power Track-
ing (MPPT). Among the most known methods are
the Constant Voltage (CV), which is made to en-
sure that the panel operates at the voltage respec-
tive to the Maximum Power Point (MPP). The
Perturb and Observe method (P&O) is based on
the variation of the output voltage of the PV mod-
ule and calculate the power obtained from this
variation. The Incremental Conductance method
(InC) uses the value of the derivative of the power
by the voltage to determine the direction of the
MPP (Salas et al., 2006).

However, these MPPT methods have its own
advantages and drawbacks. Besides the easy im-
plementation, the CV method is not very effective
to temperature’s influence because the voltage at
MPP is very sensible to temperature. The P&O
method has the disadvantages of poor efficiency
at low irradiance, oscillations around MPP and
rapid changes of irradiation may lead the tracking
to a wrong direction of MPP causing energy loss in
the process (Babaa et al., 2014). The InC method
generally presents better results than the others,
but, it has a drawback of possible instability due
the calculation of derivatives. Also, these calcu-
lations may require big computational effort and



under low levels of irradiance, the differentiation
results become deficient (Liu et al., 2004).

Other tracking models use training-based
methods such as neural networks, fuzzy logic and
genetic algorithms, which are used to obtain a
rapid system response to locate the maximum
power point. In the case of neural networks, the
procedure is usually done by performing a train-
ing which input parameters are the values of ir-
radiance and temperature submitted to the so-
lar panel and the output is voltage respective
to the maximum power point. This voltage is
used as reference in a system formed by a con-
troller and a Pulse Width Modulation (PWM)
circuit, thus generating the respective duty cy-
cle value for the DC-DC converter (Salah and
Ouali, 2011), (Martin and Vazquez, 2015) and
(Dkhichi et al., 2016).

This paper aims to use an Artificial Neural
Network (ANN) to determine the maximum power
point in a solar panel using Matlab/Simulink soft-
ware. For this, two different networks will be
trained and then interconnected. The first one
will be responsible for estimating the level of lo-
cal solar irradiance from the temperature, electric
current and voltage signals. The second one will
use the irradiation level (estimated by the previ-
ous neural network) and the temperature signal to
generate reference voltage. The results will ana-
lyze the effectiveness in tracking for different levels
of irradiance, temperature and load.

This work is organized as follows: The de-
scription and models of the solar panel and DC-
DC converter considered in the system are dis-
cussed in section 2. Section 3 presents the details
of the neural networks implemented. The results
and discussions are presented in section 3 and then
the conclusions in section 4.

2 System descriptions

The system to be implemented is illustrated
in Figure 1. It is composed by the generation in
the PV panel, the ANN, a power stage composed
by the DC-DC converter, the control and the load
connected through the DC-DC converter. The
control is performed by a PI controller which re-
ceives the error between the reference voltage and
the variable measured. The proportional value (P)
uses the error value to produces a proportional
output while the integral value (I) uses the cumu-
lative error to accelerate the output to reach the
reference.

2.1 Modeling of Solar Panel

Figure 2 shows the electric model of a solar
cell proposed by (Gow and Manning, 1999). This
is the model commonly adopted in works that in-
volve the simulation of a solar panel, because, in

Figure 1: Schematic for the complete system.

Figure 2: Equivalent circuit of a photovoltaic cell.

addition to being simple, the model incorporates
the intrinsic losses of a solar cell which are essen-
tial to the simulations become closer to the real
values. The current source Iph represents the elec-
tric current generated from the solar irradiance
(G), V, the voltage at the output terminals, Rs

e Rp the series and parallel resistors respectively.
The electric current I provided by the solar cell
can be expressed by equation (1).

I = Iph− Io ·
[
e

q · (V + I ·Rs)

n ·K · T − 1

]
− V + I ·Rs

Rp

(1)
where Io is the reverse saturation current of the
cell, q is the charge of the electron, n is the ideality
factor, K is the Boltzmann constant, and T is the
cell temperature. The electric current Iph can be
calculated by (2) which depends on the incident
radiation G:

Iph = [Isc + αt · (T − Tr)] · G

1000
(2)

where Isc is the short-circuit current of the cell, αt

is the temperature coefficient of the short-circuit
current and Tr is the reference temperature. Fi-
nally, the reverse saturation current Io is depen-
dent of the cell temperature and can be calculated
by:

Io = Ioref ·
(
T

Tr

)3

· e

[
q · EG

n · k
·

(
1

Tr
−

1

T

)]
(3)

Electrical specifications considered in this pa-
per were obtained from a commercial low-power
solar panel (Supply, 2018). The solar module cho-
sen for simulations is a monocrystalline type ca-



pable of generating 20W under standard test con-
ditions (STC). Table 1 shows the characteristics
of the photovoltaic module under the STC.

From the presented equations and the infor-
mations of Table 1 it is possible to generate as
characteristic curves of a solar panel varying volt-
age and temperature and obtaining the value of
the respective electric current. Figure 3 shows the
influence of irradiance on current-voltage (IV) and
power-voltage (PV) curves while keeping the tem-
perature constant at 25◦C. On the other hand,
Figure 4 shows the temperature’s influence on IV
and PV curves when the irradiance is constant at
1000W/m2.

Table 1: Electrical characteristics of 420J-20W
Photovoltaic module under Standard Test Con-
ditions (STC)

Electrical characteristics STC
Maximum power (Pmax) 20W
Voltage at Pmax (Vmp) 16.8V
Current at Pmax (Imp) 1.19A

Open circuit voltage (Voc) 21.0V
Short circuit current (Isc) 1.29A

Temperature coefficient de Isc 0.105%/◦C

Figure 3: IV (a) and PV (b) curves at various
levels of irradiance when T=25◦C.

Figure 4: IV (a) and PV (b) curves at various
levels of temperature when G= 1000W/m2.

2.2 Boost Converter

It is known that the power provided by the
photovoltaic panels depends on the weather con-
ditions and the load that are interconnected. One
way to ensure that the panel operates at the max-
imum available power is to connect a DC-DC con-
verter to lead the operating point of the PV panel
to the maximum power point.

The configuration of the boost converter is
shown in Figure 5. Considering that the con-
verter must operate in the continuous conduction
mode, the capacitance (C) and inductance (L) val-
ues used were 2µF and 10mH.

Figure 5: DC-DC boost converter.

The control in the converter is performed
through Pulse Width Modulation (PWM) and
switching devices such as IGBT or MOSFET. The
output of the PI control block is the modulator
to be compared to the 20 kHz triangular carrier,
thus generating Pulse Width Modulation (PWM)
which commands the opening / closing of the
Boost switch as seen in Figure 6. Therefore, it is
through the duty cycle D of the Boost converter
that the operating point of the modules for the
Maximum Power Point is shifted.

Figure 6: PWM signal generation with a triangu-
lar reference.

3 Artificial Neural Networks

The artificial neural networks were build and
trained using the neural network toolbox from
Matlab (Figure 7). The neural network proposed
in the work will be divided into two parts: The
first one will be responsible for estimating the
level of solar irradiance (G) from the voltage (V),
electric current (I) and temperature (T) measure-
ments of the photovoltaic panel. With the values



of irradiance and temperature it will be possible to
determine a reference voltage from a second neu-
ral network connected with the first one, as shown
in Figure 8. Thus, the proposed system will re-
place a solar irradiance sensor, potentially costly
equipment to a project of smaller proportions, by
current and voltage sensors, which are feasible for
any project.

Figure 7: Matlab neural network toolbox overview
.

Figure 8: Schematic diagram of the artificial neu-
ral network proposed.

3.1 Training

The neural network training was performed
using back-propagation’s method adopting the
Levenberg-Marquardt algorithm. For the first
neural network training, 18216 samples of temper-
ature, electrical current and voltage signals were
used to estimate irradiance values between 100
and 1200 W/m2. The result of training is shown
in Figure 9.

The second neural network training was per-
formed using 96 samples of temperature (from
15◦ to 50◦C with a step of 5◦C) and irradiance
(from 100 W/m2 to 1100 W/m2 with a step of

Figure 9: Result of first neural network training
(a); Close up view of results (b).

100 W/m2) to estimate the reference voltage. Re-
sult is shown in Figure 10.

Figure 10: Result of second neural network train-
ing (a); Close up view of results (b).

In order to verify the effectiveness of the train-
ing, three prediction error measures were calcu-
lated: The Average Percentage Absolute Error
(APAE); Mean Bias Error (MBE) and Root Mean
Square Error (RMSE). The equations are given
below, where m is the total number of samples; yi
is ith real value of sample; ei is the ith estimated
value by the neural network (Essefi et al., 2014).

APAE =
1

m

∑(
|yi − ei|
yi

)
(4)

MBE =
1

m

∑(
ei − yi
yi

)
(5)

RMSE =

√
1

m

∑(
ei − yi
yi

)2

(6)



4 Results and discussions

Next, the results will be presented when the
trained artificial neural network (Figure 8) is in-
serted in the PV system.

Table 2 shows the prediction errors for the
ANN. Results show small errors for the three pa-
rameters, therefore, the neural network is able to
estimate values with good precision. However, it
is seen that the RMSE penalizes large errors more
than the others.

Table 2: Prediction errors for the trained ANN

Error Value
Average Percentage Absolute Error 0.0005%

Mean Bias Error 0.0009%
Root Mean Square Error 0.0096%

Table 3 and 4 bring general results when vary-
ing irradiance and temperature levels respectively
but keeping the load constant at 1kΩ. Where
Pref is the maximum power reference (obtained
from the model developed previously), P is the
measured power output of the PV panel from the
simulink simulations and ηpv is the efficiency given

by
P

Pref
· 100%

Table 3: Tracking efficiency of Neural Network’s
method (T=25◦C).

G(W/m2) Pref (W) P(W) ηpv
300 5.403 5.402 99.99%
350 6.404 6.403 99.99%
400 7.415 7.413 99.98%
450 8.434 8.431 99.96%
500 9.461 9.456 99.95%
550 10.494 10.492 99.98%
600 11.533 11.530 99.98%
650 12.577 12.572 99.96%
700 13.625 13.619 99.96%
750 14.679 14.667 99.92%
800 15.736 15.723 99.91%
850 16.797 16.780 99.90%
900 17.862 17.840 99.87%
950 18.930 18.925 99.97%
1000 20.002 19.995 99.97%
1050 21.075 21.060 99.93%
1100 22.153 22.133 99.91%

Table 4: Tracking efficiency of Neural Network’s
method (G=1000 W/m2).

T(◦C) Pref (W) P(W) ηpv
15 20.863 20.851 99.94%
20 20.434 20.428 99.97%
25 20.002 19.998 99.98%
30 19.570 19.561 99.95%
35 19.135 19.123 99.93%
40 18.794 18.680 99.39%
45 18.243 18.228 99.91%
50 17.797 17.774 99.87%
55 17.347 17.329 99.89%

Results show an effectiveness above 99% in
tracking the maximum power point considering
different levels of irradiance and temperature.

Figure 11 shows how the neural network per-
forms in tracking the MPP compared to Incre-
mental Conductance’s method (InC) when applied
two different values of irradiance (1000 and 400
W/m2). It is possible to see that the ANN method
reaches the reference value quicker (0.025s) and
with lower overshoot while the incremental con-
ductance takes almost 0.3s to stabilize in the ref-
erence. The same occurs when the irradiance is
modified to 400 W/m2. Similarly, Figure 12 com-
pares the two methods when submitted to differ-
ent temperatures keeping the irradiance constant.
In the same way, the ANN reaches the reference
more quickly when compared to InC.

Figure 11: Comparative of InC (blue) and ANN
(red) methods for R=1kΩ, T=25◦C.

Figure 13 presents the performance of the sys-
tem when the load is variable (1MΩ, 10kΩ and
100Ω) and considering irradiance and temperature
constant. Because it was chosen to use the boost
topology as a dc-dc converter it is expected that
lower values of load would produce more insta-
bility in the system. However, for values above
100Ω) it is shown that the variance of response is
minimum. Without an appropriate control, this
change of load would shift the operation point and



Figure 12: Comparative of InC (blue) and ANN
(red) methods for R=1kΩ, G = 1000W/m2.

Figure 13: Performance of ANN’s method for dif-
ferent loads T=25◦C, G = 1000W/m2.

therefore the maximum power point would not
be achieved. The ability of the system to deliver
maximum power even with a high load variation
reveals the effectiveness of the applied control.

5 Conclusions

In this paper it was developed an artificial
neural network applied to PV maximum power
point tracking composed by two stages. The first
was designed to estimate irradiance based on val-
ues of electric current, voltage and temperature.
While the second stage uses the irradiance esti-
mated and temperature to obtain the reference
voltage. It was shown that based on a training
data, the neural network achieved better results
than a incremental conductance’s method, spe-
cially under environmental changes of irradiance
and temperature when the transitory time was sig-
nificantly decreased when the ANN was applied
compared to the INC method. Furthermore, the
system also performed with good accuracy when

submitted to a load variance, being able to track
the maximum power point even though large vari-
ance of load.
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