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Abstract— Markov jump linear systems encompass a theoretically sound and solid framework for pursuing the optimal control
of systems with switching dynamics. Despite its broad applicability, demand for a priori perfect knowledge of the transition model
may render the application of the solution techniques impractical. To circumvent this limitation, two techniques were recently
proposed that prescind from the perfect prior knowledge of the transition model. In the face of one being model-free, and the other
model-based, the promising results that were presented by each technique separately may admit a comparative analysis. Here, we
provide an experimental evaluation of both techniques, applying them to the control in a simulator of a robotic arm whose joints are
subject to failure. Additionally, we test two variations of the policy update strategy for the model-free technique. The experimental
results suggest a comparable performance for both techniques.
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Resumo— Sistemas lineares com saltos Markovianos compreendem um arcabouço de sólida fundamentação teórica para a busca
do controle ótimo em sistemas cuja dinâmica está sujeita a chaveamento. Apesar de possuir larga aplicabilidade, a demanda por
conhecimento perfeito do modelo de transição a priori pode tornar a sua aplicação impraticável. Para contornar essa limitação,
recentemente foram propostas duas técnicas que prescindem do conhecimento prévio do modelo de transição. Considerando que
uma das técnicas é livre de modelo, sendo a segunda baseada em modelo, os resultados promissores apresentados por ambas
permitem uma análise comparativa. Neste trabalho apresentamos uma avaliação experimental das referidas técnicas, realizada
através de aplicação ao controle em um simulador de braço robótico cujas articulações estão sujeitas a falha. Adicionalmente,
apresentamos testes envolvendo duas variações na estratégia de atualização de política para a técnica livre de modelo. Os resultados
da avaliação experimental sugerem desempenhos comparáveis para ambas as técnicas avaliadas.

Palavras-chave— Sistemas com saltos Markovianos, aprendizado por reforço, controle adaptativo, robótica.

1 Introduction

Considering the ubiquitous possibility of system
malfunction that accompanies each control design
process, taking such phenomenon into account may
present considerable and valuable advantages. Sys-
tems in general may undergo abrupt changes, whose
examples include not only likely catastrophic situa-
tions, such as parts malfunction, infrastructure break-
down, economic collapse, environmental disasters, but
also dynamical changes in general, like the weather
sensibility to the seasons, service demand variation in
time, or even robotic dynamical changes due to warm-
ing of its corresponding parts, for instance. These mat-
ters are investigated in a vast amount of recent litera-
ture (see [1, 2, 3, 4], for a small sample), but open
problems still abound.

In this work, we apply the formalization frame-
work provided by the Markov Jump Linear Systems
(MJLS) paradigm, where, essentially, the switching
behavior in the system’s dynamics is modeled by
means of a Markov chain, with each state correspond-
ing to one operational mode of the system. This class
of systems exhibits broad applicability, encompass-
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ing flight systems, networked control, robotics, and
economics, for instance. A more comprehensive dis-
cussion on the subject may be found in the books
[5, 6, 7, 8, 9, 10], presenting MJLS’ solid theoreti-
cal foundations, which provide fertile grounds for the
investigation of this class of systems.

Notwithstanding the enormous flexibility given
by the MJLS model, assuming perfect knowledge of
the system’s transition probabilities may present a bar-
rier, that, if not unsurpassable, could be rather restric-
tive to its practical applicability. Indeed, substantial
research endeavor was undertaken in several scenar-
ios, with the investigation of methods that were able
to estimate or obtain bounds for the transition prob-
abilities. These include, for instance, polytopic un-
certainty, in which a polytope with known vertices
may contain the unknown parameters [11, 12, 13];
the multi-simplex setup [14]; the partially known
case [15]; the norm-bounded setup [16]; a randomized
Gaussian modeling [17]; maximum-likelihood estima-
tion [18], possibly with transfer [19]; temporal differ-
ences [20, 21]. A more recent discussion on the sub-
ject may be found in the book [22], which presents
also several other setups.

In this paper, we investigate the optimal quadratic
control of MJLS when there is no prior knowledge of
the Markov chain transition probabilities. We anal-
yse two recently proposed techniques: maximum like-
lihood estimation, referred to as MLEalg [18], and a
method that applies online temporal differences with
eligibility traces, dubbed Online TD(λ ) [21]. MLEalg
is model-based, meaning it circumvents the problem



of not having the transition model by using transition
samples to approximate one. On the other hand, On-
line TD(λ ) is able to completely prescind from the
transition model, thus being qualified as a model-free
technique. Model-based techniques usually possess
two main characteristics: (i) the model approxima-
tion process demands memory to keep it, and (ii) sam-
pled data may not be used immediately after being ob-
tained. From these characteristics, (i) may imply an
increase in the memory complexity of the correspond-
ing algorithm, while (ii) has the potential of delaying
the technique’s convergence process, by preventing it
from immediately applying the sampled data.

We experimentally analyse both techniques in the
optimal control problem of a robotic arm whose ac-
tuators are subject to failure. Results of applying the
algorithms as originally proposed are presented, along
with two variations of Online TD(λ ), concerning the
time step interval related to the policy update. The ex-
perimental results show that the analysed techniques,
along with the proposed variations, are able to ade-
quately solve the problem, with qualitatively compa-
rable performance.

This paper is organized as follows. Section 2
presents the notation, along with the definitions and
relevant results from the literature. The MLEalg and
Online TD(λ ) algorithms are presented in Section 3.
Experimental results are put together in Section 4. We
present some concluding remarks together with direc-
tions for future research in Section 5.

2 Preliminaries

Consider a homogeneous Markov chain θ = {θ k;
k = 0,1,2, . . .} in a complete stochastic basis
(Ω,F,{Fk},P), along with the state space S ,
{1, . . . ,N}, with θ k ∈ S, ∀k, where the transition ma-
trix P = [pi j], i.e., P ∈ Π , {Q = [qi j] ∈ RN×N ; qi j ≥
0, ∑

N
j=1 qi j = 1 ∀ i, j ∈ S} is an N-by-N row-stochastic

matrix. The initial distribution of θ will be denoted
νi = P(θ 0 = i) for all such i. The mathematical ex-
pectation with respect to P will be represented as E,
and 1A will stand for the indicator of the event A (a
random variable that can be equal to 1 or 0, depend-
ing on whether the event occurs or not). For later use,
consider also the following operation:

Ei(X),
N

∑
j=1

pi jX j, i ∈ S, (1)

for any N-sequence of matrices of the form X =
(X1, . . . ,XN), with E(X) , (E1(X), . . . ,EN(X)), with
the slight variation Et

i(X), ∑
N
j=1 pt

i jX j, i ∈ S. The set
of all N-sequences of positive semidefinite n-by-n ma-
trices, i.e., objects of the form X = (X1, . . . ,XN) such
that 0 ≤ Xi ∈ Rn×n for all i ∈ S, will be denoted Hn+

N .
Throughout the paper, ‖·‖ will stand for the euclidean
norm of vectors.

The following discrete-time control system com-

prises the subject of our study:
xk+1 = A

θ k xk +B
θ k uk

zk =C
θ k xk +D

θ k uk

x0 = x̃, θ
0 = θ̃ ,

(2)

with x = {xk ∈ Rnx ; k = 0,1,2, . . .} corresponding to
the state, u = {uk ∈ Rnu ; k = 0,1,2, . . .} to the con-
trol, and z = {zk ∈ Rnz ; k = 0,1,2, . . .} representing
the controlled output. The shorthand notation (·)

θ k ≡
(·)i shall be used when θ k = i (e.g., if θ k = i, then
A

θ k ≡ Ai).

2.1 Jump linear quadratic optimal control

We define
Ai , Ai +BiFi,

Ci ,Ci +DiFi,
i ∈ S, (3)

assuming1

C′iDi ≡ 0,
D′iDi > 0,

i ∈ S, (4)

and focus our attention on the so-called state-feedback
controllers, which have the form

u = {uk = F
θ k xk; k = 0,1,2, . . .}, (5)

thus arriving at the closed-loop variant of system (2),
which is given by

xk+1 = A
θ k xk

zk = C
θ k xk

x0 = x̃, θ
0 = θ̃ .

(6)

Our interest resides in optimizing the controlled
output zk of (6), when the control performance is mea-
sured by the infinite horizon quadratic cost, defined by

J(θ̃ , x̃,u),
∞

∑
k=0

E
(
‖zk‖2). (7)

The notion of stability for the system (6) used in this
work is formalized in Definition 1.

Definition 1 (mean square stability) A control u =
{uk; k = 0,1,2, . . .} is said to stabilize system (2) in
the mean square sense if, regardless of x0 ∈ Rn and
θ 0 ∈ S, the application of u in (6), yields

lim
k→∞

E
(
‖xk‖2)= 0. (8)

In such case, we say that (6) is mean square sta-
ble (MSS). O

Here, we are interested in the solution of the fol-
lowing problem.

1It is shown in [5, Chapter 4], that the orthogonality between C
and D is without loss of generality, besides presenting the advantage
of simplifying the derivations made subsequently. Singular controls
are ruled out by the other assumption, which guarantees non trivial
penalization to every control action.



Problem 1 (Jump linear quadratic (JLQ)) Find a
control ū that satisfies

J(θ 0,x0, û)≤ J(θ 0,x0,u), ∀u. (9)

for system (6), and has the form (5). O

For mean square stabilizing controls of the form
(5), the next lemma shows that an algebraic character-
ization of the closed-loop cost is possible.

Lemma 1 If system (6) is stabilized in the mean
square sense by a given controller u of the form (5),
then the corresponding cost in (7) is obtained by

J(θ 0,x0,u) = x0′Xθ 0 x0, (10)

with Hn+
N 3X =(X1, . . . ,XN) being the unique solution

of the following Lyapunov-like equation

Xi = A′iEi(X)Ai +Gi, i ∈ S, (11)

where
Gi , C′iCi, i ∈ S. (12)

Proof: See [5, Chapter 4]. 2

By Lemma 1, it is clear that, in order to solve
Problem 1, we must be able to find control gains

F , (F1, . . . ,FN), (13)

which give us a control with the form (5), that min-
imize (10), under the constraint (11), for each i ∈ S.
Nonetheless, two severe complications clearly arise
by a quick examination of this setup, and will be ad-
dressed in the sequel:

(i) The minimization of (10) subject to (11), that un-
derlies the optimization problem carries a great
deal of implicit dependence upon the controller
gains;

(ii) The direct solution of (11) demands the knowl-
edge of the transition probabilities in (1).

2.2 Maximum-likelihood estimation of transition pa-
rameters

In this section we present the key concepts applied by
the MLEalg algorithm [18] to approximate the transi-
tion model by means of maximum-likelihood estima-
tion using the sampled transition data. First notice that
the probability of a Markov chain visiting a given se-
quence of Markov states {θ 0 = i0,θ 1 = i1, . . . ,θ k =
ik}, corresponds to

P
(
θ

0 = i0, . . . ,θ k = ik
)
= νi0

k−1

∏
t=0

pit it+1 . (14)

For the scenario where the transition parameters are
unknown, a sensible approximation scheme would in-
volve applying the observed outcome to find the tran-
sition parameters that maximize a likelihood func-
tion of the form Q 7→ f (Q; i0, . . . , ik), νi0 ∏

k−1
t=0 qit it+1 ,

which is subject to the constraints qi j ≥ 0, ∑
N
j=1 qi j =

1. Bearing in mind that, by taking the logarithm of
the above expression, the essence of the underlying
optimization problem suffers no change, besides con-
verting the product into a sum, and by also discarding
a constant term that is not related to the transition pa-
rameters, we end up with the log-likelihood objective
function:

L(Q; i1, . . . , ik),
k−1

∑
t=0

log
(
qit it+1

)
. (15)

Hence, it is not difficult to see that, if the process just
described should not sample transitions from some
state ı̂, (i.e., ı̂ 6= it for all t = 0, . . . ,k− 1), then the
resulting log-likelihood function is independent of the
transition parameters of the ı̂th row of the transition
model (i.e., (15) does not depend upon qı̂ j for ei-
ther j ∈ S). For this specific case, the arbitrary “flat
prior” choice q(k)ı̂ j ≡ 1/N shall be made for the cor-
reponding lines of the maximum-likelihood estimate
Q(k) ∈ argmax{L(Q; i1, . . . , ik); Q ∈Π}.

Focusing now on the states i ∈ S that were vis-
ited during the sample trajectory {θ 0 = i0,θ 1 =
i1, . . . ,θ k = ik}, i.e., those which

v(k)i ,
k−1

∑
t=0

1{θ(t)=i} > 0, (16a)

we have the well-known result (see e.g. [23, Section
1.10]) that establishes the maximum-likelihood esti-
mate given by an empirical mean with the form

q(k)i j =
r(k)i j

v(k)i

, r(k)i j ,
k−1

∑
t=0

1{θ(t)=i,θ(t+1)= j}, (16b)

corresponding to the ratio between the number of
transitions i → j and the total count of visits to i.
Therefore, in face of the sampled data {θ 0 = i0,θ 1 =
i1, . . . ,θ k = ik} the most likely transition model, ac-
cording to the log-likelihood criterion (15), is given
by the N-by-N row-stochastic matrix Q(k) = [q(k)i j ]:

q(k)i j =

{
N−1, if i /∈ {i1, . . . , ik},
r(k)i j /v(k)i as in (16), otherwise.

(17)
Concerning the consistency of this maximum-
likelihood estimation setup, we have the following
well-known result (proved in [23, Section 1.10]): if
the Markov state i ∈ S is visited infinitely often (i.e.,
v(k)i → ∞), then the empirical means in (16b) will al-
most surely converge to the (true) probability distribu-
tion (pi1, . . . , piN).

Lemma 2 The random variables in (16) satisfy, with
probability one,

v(k)i → ∞ ⇒ q(k)i j → pi j ∀ j ∈ S. (18)



3 Algorithms

In this section we describe the algorithms that are anal-
ysed in this work. We start by presenting MLEalg [18],
in Section 3.1, a model-based technique that applies
maximum likelihood estimation to approximate the
transition model using sampled transition data. In
Section 3.2, we present Online TD(λ ), a model-free
technique that, besides prescinding from the transition
model altogether, may immediately apply the sampled
transition data to improve the policy.

Before introducing the solution techniques, we
first formalize the problem being solved. We consider
a variant of the JLQ control problem, defined in Sec-
tion 2, where the transition probabilities P = [pi j] ∈Π

are unknown, hence, the optimal control ū cannot be
computed, in principle. We apply MLEalg and Online
TD(λ ) to calculate the optimal control ū, under the
following assumption.

Assumption 1 Regarding system (6), we assume that:

(A1) The transition probability matrix P is unknown,
but all the other system parameters are perfectly
known.

(A2) The conditions of Lemma 1 are satisfied, thus
there exists a stabilizing solution to (11).

(A3) For each k = 0,1, . . ., a sample path obeying
the transition matrix P = [pi j] of Markov states
{θ 0 = i0,θ 1 = i1, . . . ,θ k = ik} is available.

(A4) P is irreducible. O

Remark 1 Condition (A1) guarantees that the control
problem is, except from the fact that P cannot be di-
rectly used for design purposes, exactly the one treated
in Lemma 1. The existence of a solution to the con-
trol problem we are interested in, on the other hand,
is ensured by condition (A2), so it makes sense to seek
the corresponding approximation. Availability, at any
time instant, of all the past trajectory of the Markov
chain, is guaranteed by (A3) (even if represented by
access to an accurate “simulator” of it, e.g., in an ex-
perimental setup). Finally, (A4) ensures with proba-
bility one that, regardless of the initial distribution ν

of the Markov chain, for all i ∈ S, the number of visits
to i tends to infinity as k→ ∞. O

3.1 MLEalg

We first introduce the algorithm MLEalg [18], a
model-based algorithm that applies sampled transition
data to build the model, which is then used to calcu-
late improving versions of the control policy. One of
the features presented by MLEalg is being able to deal
with two distinct scenarios involving the prior knowl-
edge of P: it might be entirely unknown, or there may
be available some prior estimate P̄0 of P, in which case
it may be included in the computation, as formalized
in (19).

P̄ t = (1−αt)P̄ t−1 +αtQt . (19)

Algorithm 1: MLEalg (adapted from [18])
Require: F t is stabilizing, t = 0, . . . ,τ

1: k← 0
2: for t = 0,1,2, . . . ,τ do
3: if k ∈ Ξ then
4: θ k← θ 0, xk← x0

5: end if
6: repeat
7: Perform uk ≡ F t

θ k xk; observe θ k→ θ k+1

8: Compute Qk+1 as in (16)
9: k← k+1

10: until k = kt

11: αt = min
{

k
ks
,1
}

12: Qt ← Qkt

13: Compute P̄ t as in (19)
14: if (11) can be solved applying P̄ t then
15: F t+1

i ←−
(
B′iE

t
i(X

t)Bi +D′iDi
)−1B′iE

t
i(X

t)Ai

16: else
17: F t+1

i ← F t
i

18: end if
19: end for
Ensure: Fτ ≈ F

In this case, the current transition model P̄ t is a com-
position involving the maximum-likelihood estimate
(16) and the preceding transition model. The non-
negative parameter αt = min{k/kt ,1} may be viewed
as determining how much “credit” should be attributed
to each of P̄ and Q. For small values of t (correspond-
ing to situations where yet few samples of θ are avail-
able), the parameter αt diminishes the importance of
the maximum likelihood estimation P̄, favoring P̄0,
which was provided as a reasonable estimate of P.
This may make sense, as one ponders that, for yet a
few samples (i.e., small values of t), P̄ t is likely not
to be an accurate estimate of the true transition matrix
P. With the increase in t, the model’s belief will pro-
gressively nudge towards the maximum-likelihood es-
timates {Qt ; t = 1,2, . . .}. At the time instant kt = ks,
it is expected that the MLEalg will represent a “fairly
good” model by then, as αt will be equal to one, ceas-
ing this process from that moment on. In this work,
ks is referred to as a bootstrapping horizon, because
it determines the time steps needed for the maximum
likelihood estimation to be fully trustable (also consid-
ering the possibility of imprecision). Considering the
case where P is entirely unknown and there is no prior,
ks is set to 1, thus the transition models coincides with
the maximum likelihood estimation for all steps. As
noted by the authors in [18], this structure may be ade-
quate in situations where the transition parameters are
accurate at the start of operation, becoming increas-
ingly inaccurate as time progresses. MLEalg is pre-
sented in pseudocode in Algorithm 1.

Notice that the hypothesis of the Markov chain
being irreducible ensures that every state is visited in-



finitely often, regardless of its initial distribution ν .
For absorbing chains, however, the counting proce-
dure (16) should yield, to all states, a finite number
of visits, with the exception of those present in the
recurrent class that eventually absorbs the process in
that particular run. Therefore, the algorithm must be
able to deal with the possibility of “getting stuck” in
some absorbing class, thus ensuring that, in any par-
ticular run, all states were visited infinitely often. One
way this may be done is by imposing, at prespeci-
fied time instants, resets to both the Markov and the
continuous states. Algorithm 1 depicts this episodic
version of MLEalg, which, for a set of time instants
Ξ ⊆ {k0,k1, . . . ,kτ}, for each ξ ∈ Ξ, the Markov and
the continuous states may be reset (i.e., x(ξ ) = x0,
θ(ξ ) = θ 0), which is exemplified in the case where
an experimental task is repeated multiple times.

3.2 Online TD(λ )

We now present Online TD(λ ) [21], an algorithm that
is able to solve the JLQ problem in a model-free basis,
thus prescinding completely from the transition model
P. Online TD(λ ) applies policy iteration to refine an
approximation of E(X), with Hn+

N 3 X = (X1, . . . ,XN)
corresponding to the unique solution of (11), then us-
ing this approximation to calculate a better policy. The
approximation sequence {Ȳ t ; t = 1,2, . . .} is com-
posed by elements Ȳ t calculated by

Ȳ t+1
i = Ȳ t

i + γt

∞

∑
k=0

e t,k
i D

t,k
i (Ȳ t,k), (20)

whose incremental form is given by

Ȳ t,k+1
i = Ȳ t,k

i + γte
t,k
i D

t,k
i (Ȳ t,k), (21a)

with Ȳ t,0
i = Ȳ t

i , Ȳ t+1
i = Ȳ t,Nt

i , (21b)

where Nt is the episode length2, the stepsize γt is as-
sumed to satisfy the usual conditions

∞

∑
t=0

γt = ∞ and
∞

∑
t=0

γt
2 < ∞, (22)

whereas Dt,k
i (·), the temporal difference, is given by

D
t,k
i (·)=ϒ

′ t,k
i (G

θ
k+1
t

+A′
θ

k+1
t

(·)
θ

k+1
t

A
θ

k+1
t
−(·)

θ k
t
)ϒ t,k

i ,

with

ϒ
t,k
i =

{
I, if k = 0,
A

θ k
t
ϒ

t,k−1
i , if k > 0,

(23)

the cost is given by

Gi , C′iCi, i ∈ S, (24)

and the eligibility coefficients by

e t,k
i =

{
0, k < k t

i ,

λ k−k t
i , k ≥ k t

i ,
(25)

2For instance, Nt could correspond to the length of the trajectory
θ t , or a limit in the number of iterations for the algorithm.

Algorithm 2: Online TD(λ ) (adapted from [21])
Require: F is stabilizing

1: for `= 1, . . . ,L do
2: for t = 1, . . . ,T do
3: Initialize θ 0

4: e← 0e
5: for k = 1, . . . ,K do
6: Perform uk ≡ F

θ k xk; observe θ k→ θ k+1

7: if e
θ k = 0 then

8: e
θ k ← 1

9: end if
10: Ȳi← Ȳi + γteiD

t,k
i (Ȳ ), ∀i ∈ S

11: e← λe
12: (F ← F(Ȳ )) . K-TD(λ ) variation
13: end for
14: (F ← F(Ȳ )) . T -TD(λ ) variation
15: end for
16: (F ← F(Ȳ )) . L-TD(λ ) variation
17: end for
Ensure: Ȳ ≈ E(X)

where k t
i is the first time that state i is visited in trajec-

tory t, i.e.,

k t
i = inf

k
{θ k

t = i}, i ∈ S. (26)

A new policy F is calculated at the policy im-
provement step, when the current approximation Ȳ of
E(X) is applied in

Fi = F(Ȳ ),−
(
B′iȲiBi +D′iDi

)−1B′iȲiAi, i ∈ S.

The original algorithm [21] calculates the new policy
at the end of each “`-cycle”, represented by Line 16
in Algorithm 2, and is referred to by the “L-TD(λ )”
variation. A natural question that could arise about
which cycle the policy is updated at would be “what
impact on the algorithm’s performance would chang-
ing the cycle where the policy is updated have?” To
answer this question, we analyse two variants of On-
line TD(λ ), that update the policy either at the end
of the “k-cycle” (Line 12) (denominated “K-TD(λ )”),
or at the end of the “t-cycle” (Line 14) (denominated
“T-TD(λ )”), instead of updating it at the end of the
“`-cycle” (Line 16).

One of the main distinctions between the algo-
rithms presented in this section is that while MLEalg,
by being model-based, has to construct (and, thus, pre-
serve in memory) an approximation of the model, On-
line TD(λ ) does not approximate the model, thus be-
ing free from the corresponding memory complexity
burden. This characteristic may present itself advanta-
geous in scenarios where memory limitation is a con-
cern. In the next section, we present experimental re-
sults from the application of both techniques in a sim-
ulator to control an underactuated robotic arm subject
to actuator failure.
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Figure 1: Evolution of the joint positions of the robotic
manipulator’s arm throughout time for the MLEalg al-
gorithm (A), along with the three variants of TD(λ )
(B, C, and D). The collective analysis of these results
suggest a comparable performance presented by both
the model-based (MLEalg), and model-free (TD(λ )
variants) techniques.

4 Experiments

We analysed MLEalg [18] and Online TD(λ ) [21] in a
robotic manipulator simulator of an arm with 3 joints,
each containing an actuator and a brake, the Robust
and Fault Tolerant Control Environment for Robots
(CERob) [24]. In the simulator, the status of each actu-
ator may be active or passive, the former correspond-
ing to the situation where the motor responds infalli-
bly to control. However, when the actuator is in the
passive status, it does not respond to control, remain-
ing on or off, with this situation being considered of
fault. The arm’s task consists of moving the arm from
an initial set of joint angles to a final one, where this
is accomplished by using the actuators to apply torque
to the joints, considering the possibility of failure.

It was shown in [25] that computed torque plus
H∞ control is not sufficient to guarantee stability.
In [25] this problem was modeled by a MJLS, with
each state corresponding to the angle and velocity of
each joint, together with the status of its actuator. The
physical model, along with the linearization strategy,
and a detailed description of their methodology can
be found in [25, 26]. We applied for this example a
setup for the simulation where only one of the three
actuators may present a faulty behavior. Due to space
restrictions, we refer the reader to [25], where a de-
tailed description of the simulator-related parameters
can be found.

To solve this problem, we applied Online TD(λ )
with the following parameter values: L = 200, T =
100, K = 10, λ = 0.1, and γk = 0.1/k. We employed
the following parameters for MLEalg: τ = 200, k0 =
0,k1 = 1000,k2 = 2000, . . . ,kτ = 200,000, along with
ks = 1, corresponding to the more challenging sce-
nario, where no prior model is provided, as mentioned
in Section 3.1. For all variants of Online TD(λ ), Ȳ t=0
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Figure 2: Applied torque versus time for the MLEalg
algorithm (A), along with the three variants of TD(λ )
(B, C, and D), corresponding to the angle varia-
tions presented in Figure 1. The collective analysis
of these results corroborates the hypothesis of com-
parable performance presented by the model-based
(MLEalg), along with the model-free (TD(λ ) variants)
algorithms.

was initialized with zeros and for both MLEalg and
Online TD(λ ) variants, F0 and F , respectively, were
initialized with the optimal control gains for the prob-
lem.

Figure 1 shows the evolution of the angles for
each joint corresponding to one task, comprising mov-
ing from the angles [0◦,0◦,0◦] to [20◦,20◦,20◦]. The
graphs A, B, C and D show the performance for the al-
gorithms MLEalg, along with the variants L-TD(λ ), T-
TD(λ ) and K-TD(λ ) of Online TD(λ ). Analysing the
graphs, the corresponding results suggest that MLEalg,
along with the TD(λ ) variants were not only able
to satisfactorily calculate adequate control gains, but
they also presented a qualitatively comparable per-
formance. While these results depict the information
about the joint’s trajectory throughout time, Figure 2
presents the evolution of the torque that was applied at
each joint during the experiment. By analysing the
corresponding graphs, one may see that the results
appear to corroborate the hypothesis of performance
comparability. Together, these results suggest that
MLEalg, along with the variants L-TD(λ ), T-TD(λ ),
and K-TD(λ ), were able to satisfactorily calculate the
control policy for the robotic arm, considering the pos-
sibility of actuator failure, and without prior knowl-
edge of the transition probabilities.

5 Concluding remarks

In this work, we presented a comparative analy-
sis of a model-based and a model-free techniques
to solve the jump linear quadratic optimal con-
trol problem (JLQ) for Markov jump linear sys-
tems (MJLS). The model-based technique was repre-
sented by MLEalg [18], a recently proposed algorithm
that applies sampled transition data to approximate the



corresponding model, which is then used to obtain in-
creasingly improved control policies. The model-free
algorithm corresponded to the also recently proposed
Online TD(λ ) [21], which prescinds from the tran-
sition model altogether, thus being free from the as-
sociated memory complexity. Advantages presented
by model-free techniques include not only situations
where the transition model is difficult to establish in
advance, but also those where the corresponding ap-
proximation cost is considerable, or may be subject
to change throughout time (e.g., non-stationary do-
mains). Both techniques were experimentally applied
to the control of a robotic manipulator arm subject
to actuator failure, and the results suggest compara-
ble qualitative performance. Considering these results,
along with the additional memory complexity needed
by model-based techniques, one could tend to apply
the model-free variant in situations where memory re-
striction is a concern.
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