
REINSURANCE ANALYTICS USING SERIAL AND PARALLEL COMPUTATION
ON THE MULTIOBJECTIVE EVOLUTIONARY ALGORITHM SPEA2

Omar Andres Carmona Cortes∗, Andrew Rau-Chaplin†

∗Departamento de Computação
Instituto Federal do Maranhão

São Luis, MA, Brazil

†Faculty of Computer Science
Dalhousie University
Halifax, NS, Canada

Emails: omar@ifma.edu.br, arc@cs.dal.ca

Abstract— This paper presents a novel and efficient application of the SPEA2 on reinsurance contract op-
timization considering the perspective from an insurance company. The reinsurance operation aims to transfer
the risk taken by an insurance company, usually against natural catastrophes, to a bigger corporation. The
process of reinsurance is similar to that one where a client wants to insure his properties upon the payment of a
premium. Then, the insurance company sells his portfolio using the reinsurance market aiming to maximize the
expected return and, at the same time, to maximize the risk hedged to the reinsurance company. This problem
is naturally multi-objective; consequently, the SPEA2 algorithm appears as an attractive approach to tackle
the problem. Results show that the SPEA2 can obtain better outcomes than a sophisticated algorithm called
enhanced MO-PBIL in terms of hypervolume. A parallel version based on the master-slave model showed that a
speedup of 2.44 can be reached using eight cores and 500 iterations in a 15 layered problem, and 3.22 using eight
cores and 500 iterations in a 30 layered problem, with little effort to parallelize the application.
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1 Introduction

The reinsurance contract optimization is a com-
mon problem in the reinsurance market, in which
an insurance company wants to hedge its risk
against massive claims to a more prominent com-
pany. The process is similar to that one where a
client wishes to insure his property against natural
disasters such as hurricanes and earthquakes. Fig-
ure 1 depicts how the flow between clients, insur-
ance companies, and reinsurance companies hap-
pens.

Figure 1: Reinsurance flow

A reinsurance contract is devised in term of
layers, which are composed of limits, deductible,
and shares (also known as placements). The limit
is the maximum value that is paid in case of a
claim. The deductible is the minimum financial
damage that the insurance company has to afford
to receive the payment. Shares are the percentage
of losses that a layer will cover. Figure 2 illustrates
how these concepts are represented in a contract.

Usually, a contract is devised by multiple lay-
ers transforming the optimization process into a
considerably more complex problem. When ready,
the contract can be negotiated in the reinsurance

Figure 2: Layer example

market aiming to maximize the expected return
(claims) and, at the same time, to maximize the
risk hedge to the reinsurance company. Typi-
cally, the risk measures are computed using ei-
ther the value at risk (VaR) or tail-value at risk
(TVar) (Cai et al., 2008). In this work, we are
going to use VaR as a metric of risk.

The problem is then to select the amount of
shares or placements on each layer. Due to market
constraints, shares are discretized in terms of per-
centages between 0 and 1. For instance, a contract
discretized by 10% leads to a set of eleven possi-
ble shares as follows: S = {0, 0.1, 0.2, 0.3, ..., 1}. If
we increase the precision to 5%, the possibilities
grow to a set of 21 shares. In other words, the
bigger the accuracy, the bigger the search space.



An estimative of solving this kind of problem us-
ing an enumerative approach is shown in (Cortes
et al., 2013), in which a problem with 10% of dis-
cretization and 7 layers takes more than a week
in R language. Thus, problems with many layers
and high level of discretization cannot be solved
by an enumerative algorithm in reasonable time
even using parallel computation. Thus, evolution-
ary algorithms (EAs) represent an interesting so-
lution for this kind of problem, especially those
ones called Multi-Objective Evolutionary Algo-
rithms (MOEAs).

The first work to tackle this problem using
a single objective EA was (Cortes et al., 2013).
The main drawback of this solution is that the
user must know the expected return previously
to the execution. Then a multi-objective ap-
proach was introduced in (Brown et al., 2014), in
which a Pareto-based algorithm was proposed us-
ing Population-Based Incremental Learning (MO-
PBIL). The MO-PBIL is a sophisticated algo-
rithm; however, some drawbacks can be pointed
out, such as: (i) the parallel version increases the
numbers of individuals, thus, it is tough to obtain
speedup; and, (ii) the algorithm tends to move
away from bad solutions“genes”, even though, bad
and good genes can co-exist in the same individ-
ual, forcing the algorithm to go away from possible
good solutions. Those MO-PBIL problems were
solved in (Cortes and Rau-Chaplin, 2016) gaining
in both hypervolume and coverage.

In this work, we propose to solve the
reinsurance contract problem using the MOEA
called Strength Pareto Evolutionary Algorithm 2
(SPEA2), then the results are compared against
the Enhanced MO-PBIL. The remaining of this
paper is divided as follows: Section 2 explains
the basics of Pareto-based multi-objective opti-
mization and describes shortly the problem be-
ing solved; Section 3 presents how the algorithm
works; Section 4 shows the results of the SPEA2
simulation and compares the results against de en-
hanced MO-PBIL; finally, Section 5 presents the
conclusions of this work and future work.

2 Multiobjective Basics

A multiobjective optimization problem has to
deal with two or more conflicting objective func-
tion (Deb, 2001) at the same time. These func-
tions must conflict with each other to build a
Pareto frontier, in which there are no solutions
better than others; otherwise, the answer to the
problem would be only one point in the search
space.

Thus, assuming that a solution to a MOP is
a vector in a search space X with m elements. A
function f : X → Y evaluates the quality of a so-
lution mapping it into an objective space. There-
fore, a multi-objective problem is defined as pre-

sented in Equation 1, where f is a vector of objec-
tive functions, m is the dimension of the problem
and n the number of objective functions.

Max y = f(x) = (f1(x1, ..., xm), ..., fn(x1, ..., xm))
(1)

In order to determine whether a solution be-
longs to the Pareto frontier or not, we need the
concept of optimality, which state that given two
vectors x, x∗ ∈ < and x 6= x∗, x dominates x∗
(denoted by x � x∗) if fi(x) is not worse than
fi(x∗),∀ i and ∃ at least one i where fi(x) >
fi(x∗) in maximization cases and fi(x) < fi(x∗)
otherwise. Hence, a solution x is said Pareto op-
timal if there is no solution that dominates x,
in such case, x is called non-dominated solution.
Mathematically, assuming a set of non-dominated
solutions ℘, a Pareto frontier(pf) is represented
as pf = {fi(x) ∈ <|x ∈ ℘}

2.1 The RCO Problem

The reinsurance process consists of hedging risk
from the insurance company to a bigger one, called
reinsurance company. The main purpose of doing
so is to survive in case of massive claims mainly
caused by natural catastrophes. The reinsurance
contract optimization problem consists of given a
treaty structure to figure out the best combination
of placements or shares in order to transfer the
maximum of risk, and at the same time, to receive
the maximum return when facing massive claims.
Therefore, the main purpose of a RCO problem
is to find out the best combination of shares or
placements which maximize both the transfered
risk and the expected return.

The Equation 2 represents the RCO in terms
of an optimization problem, where V aR is a risk
metric, R is a function based on a combination
of shares pi, and E is the expected value. For
further details about the problem refer to (Cortes
et al., 2013) and (Cai et al., 2008).

maximize f1(x) = V aRα(R(π))
maximize f2(x) = E[R(π)]

(2)

3 SPEA2

The first version of the SPEA for finding approx-
imations of the optimal Pareto set was proposed
by Zitzler and Thiele (1998) in a report in 1998,
then published in 1999 (Zitzler and Thiele, 1999).
At that time, the new algorithm presented good
results in comparison against other multiobjective
evolutionary algorithms. The new version, called
SPEA2 (Zitzler et al., 2001), was proposed in 2001
by the same authors and some modifications were
added. In order to save memory, the size of the
archive containing the Pareto set is narrowed and



archive size← input size(n)
archive← ∅
pop← init population(funk, pop size, dim)
archive < −non dominated sol(pop)
for (i=1 to max it) do

Rt← mix(pop, archive)
s← compute s(Rt)
raw ← compute raw(s)
d← compute density(Rt)
fitness← raw + d
indexes← (fitness < 1)
archive tmp← Rt[indexes, ]
if (#non dom == archive size) then

archive← archive tmp
else if (#non dom < archive size) then

archive← archive tmp
archive← fill()

else
archive← clustering()

end if
pop← gen operators()

end for

Figure 3: SPEA2 Algorithm

it is always filled up whether there are enough non-
dominated points or not. Aiming to fill up the
archive using dominated points, the selection pro-
cess was modified in order to classify the impor-
tance of dominated solutions; therefore, the most
significant points are chosen. The Figure 3 out-
lines how the SPEA2 works.

Considering the algorithm, the SPEA2 starts
initializing an empty archive of size n and a ran-
dom population for k objective functions (k ≥ 2).
Then the first set of non-dominated solutions is
determined and assigned to the variable archive.
After that, a temporary population called Rt is
made by combining the current population and
archive. In fact this combination will have an ef-
fect on the algorithms only from the second it-
eration forward because both tend to be differ-
ent after that. Afterwards, the algorithm needs
to compute the s vector according to Equation 3,
which means the cardinality of a point i in terms
of dominance, i.e., the cardinality represents how
many solutions i dominates in Rt.

s(i) = |{j|j ∈ Rt ∧ i � j}| (3)

The next step is to calculate the raw vector
which represents the strengths of each dominator
as presented in Equation 4. In other words, if a
solution i is dominated by solutions j1, j2 and j3,
its raw would be raw = s[j1]+s[j2]+s[j3]. There-
fore, all non-dominated solutions present raw = 0.
On the other hand, a high raw[i] value means to
be dominated by many individuals.

raw[i] =
∑

j∈Rt,j≺i
s(j) (4)

Although the raw fitness assignment provides
a sort of niching mechanism based on the concept
of Pareto dominance, it may fail when most in-
dividuals do not dominate each other. Therefore,
additional density information is incorporated to
discriminate between individuals having identical
raw fitness values (Zitzler et al., 2001) as shown in
Equation 5, where σ is the distance to the kth indi-
vidual, where the population has been ordered by
their Euclidean distance. Usually, k is calculated
according to k = |

√
pop size|.

d(i) =
1

σki + 2
(5)

Thus, the final Rt fitness is equivalent to
fitness = raw + d. Being d < 1 and raw = 0
in all non-dominated solutions, therefore all non-
dominated solutions will present fitness < 1.
Then a temporary archive is formed considering
only non-dominated solutions. If the number of
non-dominated points is equal to the archive size,
then the temporary archive replaces the old one.
If the length of the temporary archive is less than
the archive size, the new archive has to be filled
up with non-dominated solutions chosen from the
smallest ordered fitnesses. Otherwise, the non-
dominated solutions have to be clustered, where
the closer the solutions, the bigger the probabili-
ties of being eliminated, thus maintaining the di-
versity within the archive.

Finally, the population undergoes genetic op-
erators, aiming to move along the search space.
Typically, these operators are crossover and muta-
tion, and therefore the same ones originated from
genetic algorithms can be applied.

4 Computer Simulations

4.1 Experiment Setup

The experiment was conducted in a Cento OS
Linux 6.7, 64 bits, with 2 Intel Xeon ES-2650 pro-
cessor 2 GHz, each one with 8 cores and hyper-
threading, and 256 GB of RAM. We present the
Pareto frontier and use the hypervolume as a met-
ric. The code was developed in R 64 bits version
3.3.3. We use 30 trials in order to use statistical
parametric tests such as a t-test (Montgomery and
Runger, 2006).

Regarding the SPEA2, the evaluation metric
is the hypervolume presented in Equation 6, which
is the area of the dominated points in the Pareto
frontier; therefore, the higher the hypervolume,
the better the Pareto frontier.

hv = volume(

|Q|⋃
i=1

vi) (6)



In the SPEA2 algorithm, use used the follow-
ing operators: selection - tournament between 4
individuals, simple crossover in all selected indi-
viduals and probability of mutation equals to 5%;
the archive size is equal to 100, and the population
size is equal to 50.

4.2 A real data experiment

The first experiment involves a real contract with
7 layers of an anonymized dataset. Figure 4 shows
the final Pareto frontier with 7 layers using 100,
250, and 500 iterations. As we can notice, visually
the differences between iterations are not remark-
able. However, Figure 5 shows that the hypervol-
ume increases as we increase the iteration count,
especially when we change from 100 iterations to
250 iterations. The difference is not so impressive
if we compare the mean hypervolume between 250
and 500 iterations. Indeed, a bi-caudal t-test with
95% of significance shows that the differences be-
tween 100 and 250 iterations in the hypervolume
are meaningful (t = 6.507). On the other hand, a
t-test between 250 and 500 iterations (t = 1.388)
it is not significant. In this context, if we zoom
in some part of the Pareto Frontier as depicted in
Figure 6, we can see that the difference exists.

Figure 4: Pareto frontier with 7 layers: 100, 250,
and 500 iterations

Figure 5: Mean hypervolume as we increase the
iteration count

Regarding time, Figure 7 presents the execu-
tion time as we increase the iteration count. As

Figure 6: Zooming in an excerpt of the Pareto
frontier

we can see, the progression as the number of iter-
ations increase is almost linear.

Figure 7: Execution time with 100, 250, and 500
iterations

A comparison between the Pareto frontiers of
the SPEA2 and the E-MOPBIL (Cortes and Rau-
Chaplin, 2016) with 250 and 500 iterations, re-
spectively, is presented in Figure 8. Visually, we
can notice that SPEA2 produces a better Pareto
frontier. In order to assure that SPEA2 presents
better results, Table 1 shows the hypervolume and
the number of solutions on each frontier. In both
cases, the hypervolume is better for SPEA2. The
number of solutions on the Pareto frontier is also
higher in the SPEA2. A bi-caudal t-test with 95%
of confidence (α = 0.05) indicates that the differ-
ences between hypervolumes are meaningful.

4.3 Pushing the Envelope

In order to explore the limits of the SPEA2, we
execute the algorithm using 15 and a discretiza-
tion of 5%. The data was created expanding that
one from the real case (7 layers). Because us-
ing more layers is computationally intensive, we
leverage the situation using parallel computing.
To assess the results we used the orthodox weak
speedup (Luque and Alba, 2013), in which the
same code is executed regardless the number of
threads, as shown in Equation 7, where T1 repre-
sent the execution time using one core or thread,



Figure 8: Comparison between SPEA2 and E-
MOPBIL with 250 and 500 iterations

Table 1: Hypervolume and number of solutions:
SPEA2 vs E-MOPBIL

250 iterations
Hypervolume #Solutions t

SPEA2 2.1816E+15
286

7.7
Std. Dev. 8.3141E+13
E-MOPBIL 1.79E+15

218
Std. Dev. 2.66E+14

500 iterations
Hypervolume #Solutions t

SPEA2 2.21E+15
310

7.57
Std. Dev. 8.22E+13
E-MOPBIL 1.901E+15

213
Std. Dev. 2.0305E+14

and Tp is the time using p cores or threads.

Sp =
T1
Tp

(7)

The parallelization have been done using the
master-slave model in which slaves assume some
tasks. In our case, the slaves compute the eval-
uation functions, which use matrices of dimen-
sion of 50,000 x 30. Also, we used the parallel
package from R that allows us to call the instruc-
tion parApply(cluster, margin, fun) that executes
a function (fun) in a matrix by row (margin = 1)
in a cluster made by 1 or more execution processes
(cores). An important detail is to create the clus-
ter using the function makeCluster(number cores,
“FORK”). The “FORK” parameter indicates to

start threads using the fork model, which is faster
in multi-cores architectures than the parameter
“SOCK”; however the “FORK” parameter is avail-
able only on Unix-like platform. Then, we use
the R function parApply(), in which the tasks
are automatically distributed between the partic-
ipant cores (threads) created previously using the
makeCluster() as follows:

ncores = number_of_cores

clus = makeClusetr(ncores, "FORK")

...

parApply(clus, 1, function)

...

We tested the algorithm using 2, 4, and 8 pro-
cesses with 15 layers. In fact, we also tried 16 pro-
cesses; however, the performance was poor due to
the excess of fork instruction. Table 2 shows the
execution time, speedup, and efficiency using 15
layers as we increase the number of cores with 100,
250, and 500 iterations. As we can see, the best
trade-off is obtained using 4 cores with 100 and
500 iterations, even though the efficiency is not
impressive we still saving time. Regarding 250
iterations, the best speedup is 1.85; nevertheless,
the best trade-off is achieved using 4 cores because
the time is similar but uses less computational re-
sources.

Table 2: Time and speedup as we increase the
number of cores

100 iterations
1 core 2 cores 4 cores 8 cores

Time (s) 203.69 135.85 129.45 134.77
Speedup - 1.50 1.57 1.51
Efficiency - 0.75 0.39 0.19

250 iterations
1 core 2 cores 4 cores 8 cores

Time (s) 508.36 347.90 293.04 274.95
Speedup - 1.46 1.73 1.85
Efficiency - 0.73 0.43 0.23

500 iterations
1 core 2 cores 4 cores 8 cores

Time 1017.45 698.80 557.50 576.01
Speedup - 1.46 1.83 1.77
Efficiency - 0.73 0.46 0.22

Because the parallelization has been done us-
ing the master-slave model the quality of solu-
tions is not affected. Therefore, it is critical to
guarantee that the evaluation functions perform
intense computational tasks. In this context, we
conducted a new experiment to verify if a bigger
population increases the speedup. Thus, we exe-
cute the application with a population size equals
to 100 as depicted in Table 3. As we can notice
in the referred table, the speed up increases to
2.44 using eight cores and 500 iterations. Hence,
the speedup tends to increase as we expand the
population size and the number of iterations.



Table 3: Time and speedup as we increase the
number of cores with population size = 100 and
layers = 15

100 iterations
1 core 2 cores 4 cores 8 cores

Time (s) 389.48 257.00 207.02 183.22
Speedup - 1.52 1.88 2.13
Efficiency - 0.76 0.47 0.27

250 iterations
1 core 2 cores 4 cores 8 cores

Time (s) 979.51 665.64 527.30 450.04
Speedup - 1.47 1.86 2.18
Efficiency - 0.74 0.46 0.27

500 iterations
1 core 2 cores 4 cores 8 cores

Time (s) 2064.52 1279.69 932.89 846.58
Speedup - 1.61 2.21 2.44
Efficiency - 0.81 0.55 0.30

Knowing that the larger the task, the better
the speedup, we conducted an experiment using
a population size equals to 100 and 30 layers as
presented in Table 4 . Due to time constraints,
we executed the SPEA 2 only with 100 and 250
iterations.

Table 4: Time and speedup as we increase the
number of cores with population size = 100 and
layers = 30

100 iterations
1 core 2 cores 4 cores 8 cores

Time (s) 933.19 580.17 354.59 289.67
Speedup - 1.61 2.63 3.22
Efficiency - 0.80 0.66 0.40

250 iterations
1 core 2 cores 4 cores 8 cores

Time (s) 2206.85 1510.55 1031.40 866.54
Speedup - 1.46 2.14 2.55
Efficiency - 0.73 0.53 0.32

As we can see in Table 4, increasing the num-
ber of layers improves the speedup because the
granularity of the task is bigger as well, reaching
a speedup of 3.22 using eight cores and 100 itera-
tions.

5 Conclusions

This paper presented a new application of the
multiobjective algorithm called SPEA2. Results
showed that SPEA2 produces better Pareto fron-
tiers as we increase the iteration count. A com-
parison between E-MOPBIL and SPEA2 was pre-
sented as well, indicating that SPEA2 can dis-
cover better frontiers than the E-MOPBIL. Also,
a parallel version using the master-slave model
showed that a good trade-off between speedup

and computational resources could be achieved
with four cores and a population size equals to
50 with seven layers; and, a reasonable trade-off
using eight cores, a population size of 100, and 15
layers. Thus, if we increase the population size
and the iterations count, we tend to increase the
speedup, as well.

Future work includes implementing new mul-
tiobjective algorithms such as NSGA-III (Deb and
Jain, 2014) and MOEA/D (Zhang and Li, 2007),
hybridizing multiobjective algorithms for solving
larger contracts, and parallelization using General
Purpose GPUs.
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