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Abstract⎯ This work presents the tuning of an adaptive controller using reinforcement learning and neural networks in order 

to deal with black-box time-variant nonlinear systems. To evaluate the controller’s limitations, a fourth-order fluid level 
system was chosen because of its wide range of time constants and non-linearities.  Implementation was made on a computer 

running MatLab® connected to an Arduino as interface to the sensor and actuator. The controller was tested with different 

sample times and different learning rates and, afterwards, was compared to a PI controller. The controller was able to perform 
inside specific learning and sample rate margins and if given time, shows adaptive and optimizing features that causes it to perform 

better than the PI. 
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Resumo⎯ Este trabalho apresente o processo de ajuste de um controlador adaptativo com aprendizado por reforço e redes neurais 

utilizado para lidar com sistemas caixa-preta e variantes no tempo. Para avaliar as liitações do controlador um sistema de nível de 

líquidos de quatro tanques foi escolhido por possuir grande variedade de constantes de tempo, não linearidades e atraso 
considerável. A implementação foi feita em MatLab® utilizando-se um Arduino como interface entre o computador e o sensor e o 

atuador. O controlle foi submetido a testes de variação de taxa de amostragem e de aprendizado e em seguida foi comparado com 

um controlador PI. O controlador desenvolvido atuou de maneira estável se dentro de faizes definidas de taxas de aprendizado e 
amostragem e dado tempo suficiente demonstra características adaptativas e de otimização demonstrando performance superior à 

do PI.  

Palavras-chave⎯ Aprendizado por Reforço, Redes Neurais, Controle Adaptativo,  Sistema de Nível de Líquidos.

1    Introduction 

Time-variant systems are usual and can be found in 

several day-to-day applications. An aircraft that 

changes weight with fuel consumption is an example. 

Also, information on system dynamics is not always 

available, thus, solutions for this sort of systems 

should be studied and developed. 

One way of dealing with black box time-variant 

system is to use adaptive control. The main goal of 

Adaptive controllers is to deal with lack of knowledge 

on the system being controlled and with parameter 

variation. This is time variance. This work’s goal is to 

develop an adaptive controller that can be used on real 

systems dealing with its limitations and difficulties. 

Reinforcement Learning is, in its essence, adap-

tive. It is a form of learning based on trial and error. 

Also, as pointed by Sutton et al. (1991) and Vrabie et 

al. (2014), reinforcement learning has its mathemati-

cal roots in optimal control. This means that Rein-

forcement Learning is an adaptive algorithm that also 

has optimizing features, even though it does not need 

information on the system to perform.   

Reinforcement Learning usage for adaptive con-

trol dates back to the 80’s, but works from Cui et al. 

(2017), Hwangbo et al. (2017), Lilicrap et al. (2016), 

Noel and Pandian (2014), Papierok et al. (2008), Ra-

manathan et al. (2018) and Rao et al. (2018) show that 

it is still a trend. Such works show that there is yet 

much to be developed.  

As detailed in Section 2, estimating some func-

tions is needed to use reinforcement learning and 

some of its methods. This work uses neural networks 

to approximate these functions. One of the main goals 

of neural networks lies in function approximation and 

in this case, they are particularly useful since no infor-

mation on the system is available as described by 

Aguirre (2015). A multilayer perceptron was used to 

estimate the system dynamics in order to predict fu-

ture outputs and bypass delay and radial basis neural 

networks were used to approximate the reinforcement 

learning functions. The estimation of functions with 

neural networks can be seen in work by Esfe (2017), 

Ferrari and Stengel (2005) and Yu et al. (2014). 

A four-tank fluid level system was chosen as the 

experimental environment. The system has challeng-

ing dynamic features, such as great range of time con-

stants, non-linearities and delay, besides, although of-

ten for more simple applications, fluid level control is 



widely performed in industrial environment, thus, 

such systems could benefit from this study. 

Results show that the controller, when inside spe-

cific margins for sample and learning rates, can per-

form stably. Regarding adaptivity, the controller can 

perform with no information whatsoever on the sys-

tem, apart from the average delay. The controller 

shows clear signs of learning and optimizing features. 

It enhances performance over time lowering over-

shoot and time of oscillation in the vicinity of the ref-

erence value. When compared to the chosen PI, the 

controller performs poorly at the beginning, but, given 

time, its performance surpasses that of the PI.   

In section 2 there is information on the concepts of 

reinforcement learning, the actor-critic method and 

the SARSA algorithm that is needed and sufficient to 

understand the following implementation. Section 3 

presents the experimental environment and implemen-

tation details and section 4 the controller structure and 

the development of the algorithm used. Section 5 pre-

sents and analyzes the obtained results and finally, 

section 6 contains the conclusions and propositions for 

future work.  

2    Reinforcement Learning 

2.1 Concept and Elements 

The Reinforcement Learning (RL) problem is 

formulated as an Agent or Individual interacting with 

a specific environment through actions defined 

according to an action policy. The environment is 

represented by states, which, for the RL problem, are 

the set of information available to the agent in a given 

moment. The actions chosen by the agent (through the 

action policy) will depend on such information.   

By definition the RL state must have the 

Markovian Property which states that the information 

given in current time must contain all previous 

relevant information. This means the agent must be 

able to define an action to take using only current 

information.  

Formally, the Markov Property states that the com-

plete probability distribution for reaching a state s and 

reward r, given by 

𝐏𝐫{r𝒕+𝟏 = r, s𝒕+𝟏 = s|s0, a0, r0, … , st, at, rt}    (1)  

where 𝑠𝑡 , 𝑎𝑡  𝑎𝑛𝑑 𝑟𝑡 are respectively the state, the 

action taken and the reward received in time t, can be 

written as 

𝐏𝐫{r𝒕+𝟏 = r, s𝒕+𝟏 = s | st, at, rt}.              (2) 

The environment’s response to the action is called 

reward and it defines the immediate quality of an 

action. Usually it shows somehow if the agent got 

closer or further from its goal. Although high value 

rewards are accounted for, they represent an 

immediate response to the agent’s actions, but the 

objective of the RL problem is to achieve maximum 

accumulated reward over time. This means the RL 

focus in achieve greater expected rewards from given 

state 𝑠𝑡.  This is called the state’s value or the 

obtainable return from that state defined as follows: 

𝑉(𝑠𝑡) =  ∑ 𝛾𝑖−1𝑟𝑡+𝑖                          (3)

∞

𝑖=1

 

which is the Bellman Equation of the reward with γ 

being the discount factor. γ determines that rewards 

that are obtained in further states are less important 

than those obtained in closer states. This equation 

defines how good it is for the agent to visit a given 

state in a long-term sense showing the reward 

expectation for the current state   

Expansion of (3) gives: 

𝑉(𝑠𝑡) = 𝑟𝑡+1 +  𝛾 ∑ 𝛾𝑖𝑟𝑡+𝑖+1                  (4)

∞

𝑖=1

 

that can be written as, 

𝑉(𝑠𝑡) = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1)                     (5) 

which states that the sum of the discounted estimate of 

the next state value and the next state reward is the 

target to the actual estimate, as seen in Sutton and 

Barto (1998). 

In practice the values of the states are not the real 

ones, but estimates. The difference between the target 

and the estimate of the value function is known as the 

Temporal Difference Error (𝛿𝑡𝑑), given by:  

𝛿𝑡𝑑 = 𝑟𝑡+1 + 𝛾𝑉̅(𝑠𝑡+1) − 𝑉̅(𝑠𝑡).             (6) 

The 𝛿𝑡𝑑 will be used as parameter for updating the 
value function and the action policy function which are 
approximated by neural networks. Also, the objective 
is to minimize 𝛿𝑡𝑑 over time as the cost function of the 
RL problem. 

2.2 The Actor-Critic Method 

 

Figure 1. The Actor-Critic Structure  



The Actor-Critic is a Temporal Difference (TD) 

method that has separated structures for the action pol-

icy, known as the Actor, and the value function esti-

mator, known as the Critic. The Actor is the structure 

that defines which actions will be taken. In the control 

problem studied in this work it is the neural networks 

that generates the control signal. The critic is the struc-

ture that evaluates the actor’s decisions. In this spe-

cific case, it bootstraps the value function using the 

reward to generate the 𝛿𝑡𝑑 which will be responsible 

for updating both neural networks. This procedure is 

depicted in Figure 1. 

2.3 SARSA Algorithm 

SARSA stands for ‘state-action-reward-state-

action’ and is an TD algorithm. SARSA states that the 

state’s value depends not only in the state variables, 

but also in the action chosen in said state. This means 

the estimate is the sum of expected future rewards 

after taking a specific action in a given state. Instead 

of using the function 𝑉(𝑠𝑘), the Algorithm uses the 

function 𝑄(𝑠𝑘 , 𝑎𝑘) as the value function for the Critic. 

In this case, the 𝛿𝑡𝑑 defined in (4) becomes 

𝛿𝑡𝑑 = 𝑟𝑡+1 + 𝛾𝑄̅(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄̅(𝑠𝑡 , 𝑎𝑡).      (7) 

This is needed because the action taken will be also 

used to calculate the reward so it must be included as 

an input to the value function being approximated, 

otherwise, part of the reward’s behavior will be 

uncorrelated to the value function, and so, the 

estimation would most likely fail.  

3    Experimental Environment  

To experiment on the controller’s performance a 

fourth-order fluid level system with sequenced tanks 

and regulable fluid passage between each pair of tank 

was chosen. The fluid input is located on the bottom 

of the first, or far left tank illustrated as H1 in Figure 

2 and the controlled level is the level of the fourth, or 

the far right tank illustrated as H4 in Figure 2. The 

connection between any two tanks is made by a 

regulable gate valve and the level measurement is 

made with a level sensor based on pressure with a tube 

to the bottom of the tank. The Set-Up uses an Arduino 

as interface between the computer running the 

controller and the actuator and sensor. Figure 2 shows 

the full process set-up.  

This system was instrumented by Bernardes et al 

(2006) and was developed to have a wide range of 

time constants. This makes the control task more 

challenging. Other interesting feature of this system is 

the high input delay. Also dead zones and saturation 

poses challenge to the RL algorithm. Finally, the 

system has a non-linearity that is square root, and 

altough it is a smooth non-linearity, also enhances the 

difficulty of the controll problem.  

 

 

Figure 2. Experimental Set-Up 

4    Controller Algorithm Development 

4.1 Defining Used Neural Networks 

The system dynamic was approximated on the run 

by a Multilayer Perceptron (MLP) with the backprop-

agation algorithm in a supervised manner as described 

in Haykin (2009) and Orr (1996). The objective was 

to identify a dynamic model of the system in order to 

predict future outputs. This was necessary because in 

RL the reward is an immediate response of the envi-

ronment to an action taken by the agent, but since the 

system has high valued delay, the reward would not 

represent instant response of given action, thus, a pre-

dictor was used to estimate the future response and 

then calculate the reward. 

There were two functions that needed to be ap-

proximated; the value function and the action policy 

function to be used in the Actor-Critic method. Both 

were approximated by Radial Basis Neural Networks 

(RBN) and were trained using backpropagation for the 

weights, as seen in Wang et al. (2007).  The parameter 

of correction was defined by the TD error. The centers 

were distributed uniformly through the input space 

and remained the same throughout the process. The 

activation function of the RBN was chosen to be the 

Gaussian function.  

From Haykin (2009), the output of the RBN is: 

𝑦 =  ∑ 𝑤𝑗 𝜌 (||𝒙 − µ𝒋||),                        (8)

𝑁

𝑗=1

 

where 𝑤𝑗  is the weight connected to neuron 𝑗, and  

𝜌 (||𝒙 − µ𝒋||) is the activation function. The activa-

tion function is a radial basis function that depends on 

the distance to a center parameter µ𝒋 which is the cen-

ter parameter for neuron 𝑗. 

As seen in Wang et al. (2007), using the quadratic 

TD error as the cost function to be minimized, the 

backpropagation for the weights yields 

𝑤𝑗(𝑘 + 1) = 𝑤𝑗(𝑘) +  𝜂𝑎𝛿𝑡𝑑𝜌 (||𝒙 − 𝒄𝒋||),     (9) 

where 𝜂𝑎 is the learning rate. 



4.2 Calculated Observed Reward 

The reward, as said previously in Section 2, is an 

instant measure of an action’s quality. For the control 

problem, it seems logical to use a function of the out-

put error as the reward function. 

Canonically, the environment is the sole responsi-

ble to generate a reward, thus, the reward must be a 

function of the RL state variables. In order to use the 

output error as parameter for the reward function, ei-

ther the error itself must be part of the RL state or the 

output level and the reference signal must together be 

part of the RL state since the error signal can be cal-

culated from the other two. The RL state variables 

were chosen to be the reference signal and the output 

level. 

It is important to notice that the RL state variables 

are not the same as the system’s state variables. In the 

RL problem, the state variables are those enough for 

the agent to understand in what situation it is. Also, 

the state is used to generate the pertinent reward to the 

problem. The chosen information shows where the 

agent is and where it should go.  

The reward function was chosen to be proportional 

to the error itself, as follows 

𝑟𝑘 = −|𝑒(𝑘)|                          (10) 

where 𝑒(𝑘) is the output level error in instant k. The 

reward is symmetric regarding the y-axis because the 

RL can receive information on whether the action was 

good or bad and on how good or bad (hence the mod-

ule function), but it cannot receive information on 

what to do next. This is why the agent should not know 

if the output signal is lower of higher than the refer-

ence signal. The agent has to decide it’s action through 

trial and error. This is the essence of RL.  

4.3 Controller Structure and Algorithm  

With the functions for the TD error, the reward 

function and the updating of the neural networks de-

fined, the iterative algorithm can be developed.  

Figure 3 shows the controller structure. Every 

block is performed by a neural network aside from the 

system itself which is the real environment. The model 

identification is performed by a MLP. The actor and 

critic are performed by a RBN.  

 

Figure 3. The developed controller structures. 

The algorithm used for the controlled is described 

as follows: 

1) Initialize 𝑠𝑘 and constants used by the con-

troller. 

2) Initialize 𝑎𝑘 using the RBN defined for the 

actor. 

3) Initialize 𝑄𝑘 using the RBN defined for the 

critic. 

4) Execute 𝑎𝑘 on the model to predict 𝑠𝑘+1. 

5) Observe 𝑟𝑘+1. 

6) Calculate 𝑎𝑘+1 using the RBN defined for 

the actor. 

7) calculate 𝑄𝑘+1 using the RBN defined for 

the critic. 

8) 8. Calculate 𝛿𝑡𝑑. 

9) Update the Neural Networks 

10) Optional – Update the system model. (The 

model can also be trained offline in batch 

mode) 

11) Perform a new measurement to define a new 

𝑠𝑘. 

12) Calculate a new 𝑎𝑘. 

13) Repeat steps 4 to 13. 

 

The algorithm is based on finding the TD error as 

in Sutton & Barto (1998), but in this case, the TD error 

is used to update the neural networks. It computes in 

a sequential way the values needed for calculating the 

TD error using equation (5) for the SARSA method. 

5    Experiments and Results 

The first task of this work was to identify a dy-

namic model of the system in order to predict future 

outputs. Several network layouts and learning algo-

rithms were tested for batch training with 13 hours of 

training data tested against 4 hours of validation data. 

The best results for each case can be seen in Table 1. 

The multilayer perceptron with two hidden layers was 

the network that performed better when no previous 

training was available. Figure 4 shows the network’s 

on-the-run performance with no previous learning. 

This result is not expected since the multilayer percep-

tron should be a “slow-learner” yet since it shows the 

best results, it was the network chosen for this task. 

 

 

Figure 4. Online identification with multilayer perceptron. 

 



Table 1. Identification Results for the Batch Training 

Network 

Lay-

out/Training 

Algorithm 

Num-

ber of 

Neuron 

in Hid-

den 

Layers 

Number 

of 

Epochs 

to 

Achieve 

Max Fit 

Max 

Fit 

MLP with 2 

hidden layers. 
90-15 37 92.55% 

MLP with 1 

hidden layer. 
5 100 89.67% 

RBN with 

fixed centers 

started ran-

domly. 

30 50 93.05% 

RBN with 

fixed centers 

started uni-

formly. 

16 43 96.82% 

RBN with ran-

domly started 

centers and 

Backpropaga-

tion. 

20 26 93.53% 

RBN with Uni-

formly started 

centers and 

Backpropaga-

tion. 

9 18 94.35% 

RBN with ran-

domly started 

centers using 

clusters. 

30 22 93.88% 

RBN with Uni-

formly started 

centers using 

clusters. 

36 50 95.51% 

RBN with 

online creating 

centers but no 

center correc-

tion. 

15 35 67% 

RBN with 

online creating 

centers with 

center correc-

tion. 

15 43 93.28% 

 

The learning rate was varied from 0.001 to 0.05 to 

test the algorithm’s stability margins regarding learn-

ing rate. Figure 5 shows some results of these tests. 

Each graphic has, respectively, learning rate of 0.005, 

0.01, 0.025 and 0.05. Since the learning rate is analo-

gous to a step size, a very small step does not bring the 

controller to its goal in feasible time while a very large 

step renders the controller unstable. The graphics in 

Figure 5 were obtained by simulation. Figure 6 shows 

a real environment performance with the same condi-

tions as the third graphic in Figure 5. This indicates 

that the real environment’s behavior is alike the 

simulated behavior so most of the inferences made 

from the simulated tests can be used for the controller 

tuning.  

 

 

 

Figure 5. Effect of different learning rates. 

 
Figure 6. Real environment test. Learning rate of 0.025. Compare 

to Graphic 3 in Figure 5. 



 

Figure 7. Effect of different sample times. 

Sample rate was also evaluated. The learning rate 

is analogous to a step size and the sample rate is anal-

ogous to number of steps, so a correlation is in order. 

The sample time was varied from 0.1s to 2s and some 

of the results can be seen in Figure 7. Each graphic 

has, respectively, sample time of 0.1s, 0.5s, 1s and 2s. 

A smaller sample rate will make the controller slower 

and unable to reach its goal in feasible time while a 

larger sample rate might make the controller unstable 

or with too much oscillation. The challenge lies in 

finding a good learning rate/sample time couple. 

The chosen sample time for the controller to be 

tested against a comparison was 0.5s and the learning 

rate was chosen to be of 0.008. The controller per-

formed against a PI projected to have least overshot in 

the reference of 15cm. Figure 8 shows the RL control-

ler’s performance against that of the PI controller and 

Figure 9 shows the respective control signals. In the 

beginning of the test, the RL controller performs 

poorly if compared to the PI because it has no infor-

mation on the system, but given time, the developed 

controller shows adaptive and optimizing features. 

This causes the performance to enhance over time and, 

for most reference points, reach it faster than the PI 

and with least oscillation.  

Figure 10 is a simulated result that shows what 

happens when the controller is given enough time to 

learn. It can be seen that the controller learns to lower 

overshoot and to stabilize around the reference value 

faster. From Figures 5 and 6 it can be inferred that this 

behavior will be reproduced by the real environment 

controller. 

 

Figure 8. Comparison against a PI for the test references. 

 

Figure 9. Control signal of the controllers for the first comparison. 

 

Figure 10. Performance overtime. 

Figure 11 shows the comparison between the de-

veloped controller against the same PI from previous 

comparison for random reference signals and Figure 

12 shows the respective control signals. The PI, in 

some cases, never reaches the reference value and 

when it does, is sometimes outperformed by the RL 

controller. Also, the RL controller tends to enhance 

performance over time lowering overshoot for all 

cases while the PI’s behavior will remain the same.  



 
Figure 11. Comparison against a PI for random references. 

 
Figure 12. The developed controller structure. 

6    Conclusion 

This work presented an adaptive controller based 

on reinforcement learning using neural networks. The 

goal of this work was to tune a RL controller for usage 

in a real environment. The controller was able to per-

form when the margins and correlation of learning rate 

and sample rate were respected. It showed learning 

and over time improvement features. With its adaptive 

and optimizing features was able to perform better 

then the PI used for comparison if given time. 

Important future work lies in testing the same 

controller in different systems, with different order 

and dynamics, changing learning and sample rate, to 

evaluate how robust is the algorithm, also, it is im-

portant to test how the controller deals with time vari-

ance, change the valves positions online.  
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