
TUNING OF A REINFORCEMENT LEARNING BASED CONTROLLER FOR A FOURTH ORDER

FLUID LEVEL SYSTEM

L., MATOS G.

Laboratório de Automação e Robótica, Departamento de Engenharia Elétrica, Universidade de Brasília

L3 Norte, SG-11 – UnB Área 1, DF, 70919-970

E-mails: lguilhem.matos@gmail.com

A.,BAUCHSPIESS

Laboratório de Automação e Robótica, Departamento de Engenharia Elétrica, Universidade de Brasília

Faculdade de Tecnologica, Departamento de Engenharia Elétrica, UnB, DF, 70910-900

E-mails: adolfobs@unb.br

Abstract⎯ This work presents the tuning of an adaptive controller using reinforcement learning and neural networks in order

to deal with black-box time-variant nonlinear systems. To evaluate the controller’s limitations, a fourth-order fluid level
system was chosen because of its wide range of time constants and non-linearities. Implementation was made on a computer

running MatLab® connected to an Arduino as interface to the sensor and actuator. The controller was tested with different

sample times and different learning rates and, afterwards, was compared to a PI controller. The controller was able to perform
inside specific learning and sample rate margins and if given time, shows adaptive and optimizing features that causes it to perform

better than the PI.

Keywords⎯ Reinforcement Learning, Neural Networks, Adaptive Control, Fluid Level System

Resumo⎯ Este trabalho apresente o processo de ajuste de um controlador adaptativo com aprendizado por reforço e redes neurais

utilizado para lidar com sistemas caixa-preta e variantes no tempo. Para avaliar as liitações do controlador um sistema de nível de

líquidos de quatro tanques foi escolhido por possuir grande variedade de constantes de tempo, não linearidades e atraso
considerável. A implementação foi feita em MatLab® utilizando-se um Arduino como interface entre o computador e o sensor e o

atuador. O controlle foi submetido a testes de variação de taxa de amostragem e de aprendizado e em seguida foi comparado com

um controlador PI. O controlador desenvolvido atuou de maneira estável se dentro de faizes definidas de taxas de aprendizado e
amostragem e dado tempo suficiente demonstra características adaptativas e de otimização demonstrando performance superior à

do PI.

Palavras-chave⎯ Aprendizado por Reforço, Redes Neurais, Controle Adaptativo, Sistema de Nível de Líquidos.

1 Introduction

Time-variant systems are usual and can be found in

several day-to-day applications. An aircraft that

changes weight with fuel consumption is an example.

Also, information on system dynamics is not always

available, thus, solutions for this sort of systems

should be studied and developed.

One way of dealing with black box time-variant

system is to use adaptive control. The main goal of

Adaptive controllers is to deal with lack of knowledge

on the system being controlled and with parameter

variation. This is time variance. This work’s goal is to

develop an adaptive controller that can be used on real

systems dealing with its limitations and difficulties.

Reinforcement Learning is, in its essence, adap-

tive. It is a form of learning based on trial and error.

Also, as pointed by Sutton et al. (1991) and Vrabie et

al. (2014), reinforcement learning has its mathemati-

cal roots in optimal control. This means that Rein-

forcement Learning is an adaptive algorithm that also

has optimizing features, even though it does not need

information on the system to perform.

Reinforcement Learning usage for adaptive con-

trol dates back to the 80’s, but works from Cui et al.

(2017), Hwangbo et al. (2017), Lilicrap et al. (2016),

Noel and Pandian (2014), Papierok et al. (2008), Ra-

manathan et al. (2018) and Rao et al. (2018) show that

it is still a trend. Such works show that there is yet

much to be developed.

As detailed in Section 2, estimating some func-

tions is needed to use reinforcement learning and

some of its methods. This work uses neural networks

to approximate these functions. One of the main goals

of neural networks lies in function approximation and

in this case, they are particularly useful since no infor-

mation on the system is available as described by

Aguirre (2015). A multilayer perceptron was used to

estimate the system dynamics in order to predict fu-

ture outputs and bypass delay and radial basis neural

networks were used to approximate the reinforcement

learning functions. The estimation of functions with

neural networks can be seen in work by Esfe (2017),

Ferrari and Stengel (2005) and Yu et al. (2014).

A four-tank fluid level system was chosen as the

experimental environment. The system has challeng-

ing dynamic features, such as great range of time con-

stants, non-linearities and delay, besides, although of-

ten for more simple applications, fluid level control is

widely performed in industrial environment, thus,

such systems could benefit from this study.

Results show that the controller, when inside spe-

cific margins for sample and learning rates, can per-

form stably. Regarding adaptivity, the controller can

perform with no information whatsoever on the sys-

tem, apart from the average delay. The controller

shows clear signs of learning and optimizing features.

It enhances performance over time lowering over-

shoot and time of oscillation in the vicinity of the ref-

erence value. When compared to the chosen PI, the

controller performs poorly at the beginning, but, given

time, its performance surpasses that of the PI.

In section 2 there is information on the concepts of

reinforcement learning, the actor-critic method and

the SARSA algorithm that is needed and sufficient to

understand the following implementation. Section 3

presents the experimental environment and implemen-

tation details and section 4 the controller structure and

the development of the algorithm used. Section 5 pre-

sents and analyzes the obtained results and finally,

section 6 contains the conclusions and propositions for

future work.

2 Reinforcement Learning

2.1 Concept and Elements

The Reinforcement Learning (RL) problem is

formulated as an Agent or Individual interacting with

a specific environment through actions defined

according to an action policy. The environment is

represented by states, which, for the RL problem, are

the set of information available to the agent in a given

moment. The actions chosen by the agent (through the

action policy) will depend on such information.

By definition the RL state must have the

Markovian Property which states that the information

given in current time must contain all previous

relevant information. This means the agent must be

able to define an action to take using only current

information.

Formally, the Markov Property states that the com-

plete probability distribution for reaching a state s and

reward r, given by

𝐏𝐫{r𝒕+𝟏 = r, s𝒕+𝟏 = s|s0, a0, r0, … , st, at, rt} (1)

where 𝑠𝑡 , 𝑎𝑡 𝑎𝑛𝑑 𝑟𝑡 are respectively the state, the

action taken and the reward received in time t, can be

written as

𝐏𝐫{r𝒕+𝟏 = r, s𝒕+𝟏 = s | st, at, rt}. (2)

The environment’s response to the action is called

reward and it defines the immediate quality of an

action. Usually it shows somehow if the agent got

closer or further from its goal. Although high value

rewards are accounted for, they represent an

immediate response to the agent’s actions, but the

objective of the RL problem is to achieve maximum

accumulated reward over time. This means the RL

focus in achieve greater expected rewards from given

state 𝑠𝑡. This is called the state’s value or the

obtainable return from that state defined as follows:

𝑉(𝑠𝑡) = ∑ 𝛾𝑖−1𝑟𝑡+𝑖 (3)

∞

𝑖=1

which is the Bellman Equation of the reward with γ

being the discount factor. γ determines that rewards

that are obtained in further states are less important

than those obtained in closer states. This equation

defines how good it is for the agent to visit a given

state in a long-term sense showing the reward

expectation for the current state

Expansion of (3) gives:

𝑉(𝑠𝑡) = 𝑟𝑡+1 + 𝛾 ∑ 𝛾𝑖𝑟𝑡+𝑖+1 (4)

∞

𝑖=1

that can be written as,

𝑉(𝑠𝑡) = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) (5)

which states that the sum of the discounted estimate of

the next state value and the next state reward is the

target to the actual estimate, as seen in Sutton and

Barto (1998).

In practice the values of the states are not the real

ones, but estimates. The difference between the target

and the estimate of the value function is known as the

Temporal Difference Error (𝛿𝑡𝑑), given by:

𝛿𝑡𝑑 = 𝑟𝑡+1 + 𝛾𝑉̅(𝑠𝑡+1) − 𝑉̅(𝑠𝑡). (6)

The 𝛿𝑡𝑑 will be used as parameter for updating the
value function and the action policy function which are
approximated by neural networks. Also, the objective
is to minimize 𝛿𝑡𝑑 over time as the cost function of the
RL problem.

2.2 The Actor-Critic Method

Figure 1. The Actor-Critic Structure

The Actor-Critic is a Temporal Difference (TD)

method that has separated structures for the action pol-

icy, known as the Actor, and the value function esti-

mator, known as the Critic. The Actor is the structure

that defines which actions will be taken. In the control

problem studied in this work it is the neural networks

that generates the control signal. The critic is the struc-

ture that evaluates the actor’s decisions. In this spe-

cific case, it bootstraps the value function using the

reward to generate the 𝛿𝑡𝑑 which will be responsible

for updating both neural networks. This procedure is

depicted in Figure 1.

2.3 SARSA Algorithm

SARSA stands for ‘state-action-reward-state-

action’ and is an TD algorithm. SARSA states that the

state’s value depends not only in the state variables,

but also in the action chosen in said state. This means

the estimate is the sum of expected future rewards

after taking a specific action in a given state. Instead

of using the function 𝑉(𝑠𝑘), the Algorithm uses the

function 𝑄(𝑠𝑘 , 𝑎𝑘) as the value function for the Critic.

In this case, the 𝛿𝑡𝑑 defined in (4) becomes

𝛿𝑡𝑑 = 𝑟𝑡+1 + 𝛾𝑄̅(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄̅(𝑠𝑡 , 𝑎𝑡). (7)

This is needed because the action taken will be also

used to calculate the reward so it must be included as

an input to the value function being approximated,

otherwise, part of the reward’s behavior will be

uncorrelated to the value function, and so, the

estimation would most likely fail.

3 Experimental Environment

To experiment on the controller’s performance a

fourth-order fluid level system with sequenced tanks

and regulable fluid passage between each pair of tank

was chosen. The fluid input is located on the bottom

of the first, or far left tank illustrated as H1 in Figure

2 and the controlled level is the level of the fourth, or

the far right tank illustrated as H4 in Figure 2. The

connection between any two tanks is made by a

regulable gate valve and the level measurement is

made with a level sensor based on pressure with a tube

to the bottom of the tank. The Set-Up uses an Arduino

as interface between the computer running the

controller and the actuator and sensor. Figure 2 shows

the full process set-up.

This system was instrumented by Bernardes et al

(2006) and was developed to have a wide range of

time constants. This makes the control task more

challenging. Other interesting feature of this system is

the high input delay. Also dead zones and saturation

poses challenge to the RL algorithm. Finally, the

system has a non-linearity that is square root, and

altough it is a smooth non-linearity, also enhances the

difficulty of the controll problem.

Figure 2. Experimental Set-Up

4 Controller Algorithm Development

4.1 Defining Used Neural Networks

The system dynamic was approximated on the run

by a Multilayer Perceptron (MLP) with the backprop-

agation algorithm in a supervised manner as described

in Haykin (2009) and Orr (1996). The objective was

to identify a dynamic model of the system in order to

predict future outputs. This was necessary because in

RL the reward is an immediate response of the envi-

ronment to an action taken by the agent, but since the

system has high valued delay, the reward would not

represent instant response of given action, thus, a pre-

dictor was used to estimate the future response and

then calculate the reward.

There were two functions that needed to be ap-

proximated; the value function and the action policy

function to be used in the Actor-Critic method. Both

were approximated by Radial Basis Neural Networks

(RBN) and were trained using backpropagation for the

weights, as seen in Wang et al. (2007). The parameter

of correction was defined by the TD error. The centers

were distributed uniformly through the input space

and remained the same throughout the process. The

activation function of the RBN was chosen to be the

Gaussian function.

From Haykin (2009), the output of the RBN is:

𝑦 = ∑ 𝑤𝑗 𝜌 (||𝒙 − µ𝒋||), (8)

𝑁

𝑗=1

where 𝑤𝑗 is the weight connected to neuron 𝑗, and

𝜌 (||𝒙 − µ𝒋||) is the activation function. The activa-

tion function is a radial basis function that depends on

the distance to a center parameter µ𝒋 which is the cen-

ter parameter for neuron 𝑗.

As seen in Wang et al. (2007), using the quadratic

TD error as the cost function to be minimized, the

backpropagation for the weights yields

𝑤𝑗(𝑘 + 1) = 𝑤𝑗(𝑘) + 𝜂𝑎𝛿𝑡𝑑𝜌 (||𝒙 − 𝒄𝒋||), (9)

where 𝜂𝑎 is the learning rate.

4.2 Calculated Observed Reward

The reward, as said previously in Section 2, is an

instant measure of an action’s quality. For the control

problem, it seems logical to use a function of the out-

put error as the reward function.

Canonically, the environment is the sole responsi-

ble to generate a reward, thus, the reward must be a

function of the RL state variables. In order to use the

output error as parameter for the reward function, ei-

ther the error itself must be part of the RL state or the

output level and the reference signal must together be

part of the RL state since the error signal can be cal-

culated from the other two. The RL state variables

were chosen to be the reference signal and the output

level.

It is important to notice that the RL state variables

are not the same as the system’s state variables. In the

RL problem, the state variables are those enough for

the agent to understand in what situation it is. Also,

the state is used to generate the pertinent reward to the

problem. The chosen information shows where the

agent is and where it should go.

The reward function was chosen to be proportional

to the error itself, as follows

𝑟𝑘 = −|𝑒(𝑘)| (10)

where 𝑒(𝑘) is the output level error in instant k. The

reward is symmetric regarding the y-axis because the

RL can receive information on whether the action was

good or bad and on how good or bad (hence the mod-

ule function), but it cannot receive information on

what to do next. This is why the agent should not know

if the output signal is lower of higher than the refer-

ence signal. The agent has to decide it’s action through

trial and error. This is the essence of RL.

4.3 Controller Structure and Algorithm

With the functions for the TD error, the reward

function and the updating of the neural networks de-

fined, the iterative algorithm can be developed.

Figure 3 shows the controller structure. Every

block is performed by a neural network aside from the

system itself which is the real environment. The model

identification is performed by a MLP. The actor and

critic are performed by a RBN.

Figure 3. The developed controller structures.

The algorithm used for the controlled is described

as follows:

1) Initialize 𝑠𝑘 and constants used by the con-

troller.

2) Initialize 𝑎𝑘 using the RBN defined for the

actor.

3) Initialize 𝑄𝑘 using the RBN defined for the

critic.

4) Execute 𝑎𝑘 on the model to predict 𝑠𝑘+1.

5) Observe 𝑟𝑘+1.

6) Calculate 𝑎𝑘+1 using the RBN defined for

the actor.

7) calculate 𝑄𝑘+1 using the RBN defined for

the critic.

8) 8. Calculate 𝛿𝑡𝑑.

9) Update the Neural Networks

10) Optional – Update the system model. (The

model can also be trained offline in batch

mode)

11) Perform a new measurement to define a new

𝑠𝑘.

12) Calculate a new 𝑎𝑘.

13) Repeat steps 4 to 13.

The algorithm is based on finding the TD error as

in Sutton & Barto (1998), but in this case, the TD error

is used to update the neural networks. It computes in

a sequential way the values needed for calculating the

TD error using equation (5) for the SARSA method.

5 Experiments and Results

The first task of this work was to identify a dy-

namic model of the system in order to predict future

outputs. Several network layouts and learning algo-

rithms were tested for batch training with 13 hours of

training data tested against 4 hours of validation data.

The best results for each case can be seen in Table 1.

The multilayer perceptron with two hidden layers was

the network that performed better when no previous

training was available. Figure 4 shows the network’s

on-the-run performance with no previous learning.

This result is not expected since the multilayer percep-

tron should be a “slow-learner” yet since it shows the

best results, it was the network chosen for this task.

Figure 4. Online identification with multilayer perceptron.

Table 1. Identification Results for the Batch Training

Network

Lay-

out/Training

Algorithm

Num-

ber of

Neuron

in Hid-

den

Layers

Number

of

Epochs

to

Achieve

Max Fit

Max

Fit

MLP with 2

hidden layers.
90-15 37 92.55%

MLP with 1

hidden layer.
5 100 89.67%

RBN with

fixed centers

started ran-

domly.

30 50 93.05%

RBN with

fixed centers

started uni-

formly.

16 43 96.82%

RBN with ran-

domly started

centers and

Backpropaga-

tion.

20 26 93.53%

RBN with Uni-

formly started

centers and

Backpropaga-

tion.

9 18 94.35%

RBN with ran-

domly started

centers using

clusters.

30 22 93.88%

RBN with Uni-

formly started

centers using

clusters.

36 50 95.51%

RBN with

online creating

centers but no

center correc-

tion.

15 35 67%

RBN with

online creating

centers with

center correc-

tion.

15 43 93.28%

The learning rate was varied from 0.001 to 0.05 to

test the algorithm’s stability margins regarding learn-

ing rate. Figure 5 shows some results of these tests.

Each graphic has, respectively, learning rate of 0.005,

0.01, 0.025 and 0.05. Since the learning rate is analo-

gous to a step size, a very small step does not bring the

controller to its goal in feasible time while a very large

step renders the controller unstable. The graphics in

Figure 5 were obtained by simulation. Figure 6 shows

a real environment performance with the same condi-

tions as the third graphic in Figure 5. This indicates

that the real environment’s behavior is alike the

simulated behavior so most of the inferences made

from the simulated tests can be used for the controller

tuning.

Figure 5. Effect of different learning rates.

Figure 6. Real environment test. Learning rate of 0.025. Compare

to Graphic 3 in Figure 5.

Figure 7. Effect of different sample times.

Sample rate was also evaluated. The learning rate

is analogous to a step size and the sample rate is anal-

ogous to number of steps, so a correlation is in order.

The sample time was varied from 0.1s to 2s and some

of the results can be seen in Figure 7. Each graphic

has, respectively, sample time of 0.1s, 0.5s, 1s and 2s.

A smaller sample rate will make the controller slower

and unable to reach its goal in feasible time while a

larger sample rate might make the controller unstable

or with too much oscillation. The challenge lies in

finding a good learning rate/sample time couple.

The chosen sample time for the controller to be

tested against a comparison was 0.5s and the learning

rate was chosen to be of 0.008. The controller per-

formed against a PI projected to have least overshot in

the reference of 15cm. Figure 8 shows the RL control-

ler’s performance against that of the PI controller and

Figure 9 shows the respective control signals. In the

beginning of the test, the RL controller performs

poorly if compared to the PI because it has no infor-

mation on the system, but given time, the developed

controller shows adaptive and optimizing features.

This causes the performance to enhance over time and,

for most reference points, reach it faster than the PI

and with least oscillation.

Figure 10 is a simulated result that shows what

happens when the controller is given enough time to

learn. It can be seen that the controller learns to lower

overshoot and to stabilize around the reference value

faster. From Figures 5 and 6 it can be inferred that this

behavior will be reproduced by the real environment

controller.

Figure 8. Comparison against a PI for the test references.

Figure 9. Control signal of the controllers for the first comparison.

Figure 10. Performance overtime.

Figure 11 shows the comparison between the de-

veloped controller against the same PI from previous

comparison for random reference signals and Figure

12 shows the respective control signals. The PI, in

some cases, never reaches the reference value and

when it does, is sometimes outperformed by the RL

controller. Also, the RL controller tends to enhance

performance over time lowering overshoot for all

cases while the PI’s behavior will remain the same.

Figure 11. Comparison against a PI for random references.

Figure 12. The developed controller structure.

6 Conclusion

This work presented an adaptive controller based

on reinforcement learning using neural networks. The

goal of this work was to tune a RL controller for usage

in a real environment. The controller was able to per-

form when the margins and correlation of learning rate

and sample rate were respected. It showed learning

and over time improvement features. With its adaptive

and optimizing features was able to perform better

then the PI used for comparison if given time.

Important future work lies in testing the same

controller in different systems, with different order

and dynamics, changing learning and sample rate, to

evaluate how robust is the algorithm, also, it is im-

portant to test how the controller deals with time vari-

ance, change the valves positions online.

References

Aguirre, L. A. (2015). Introdução à Identificação de

Sistemas, Quarta Edição. Editora UFMG.

Bernardes, M. C., Borges, G. A, G. A. F. Melo, A. A.

Freitas, G. A. Borges, and A. Bauchspiess (2006).

Instrumentação e estimação de parâmetros de um

sistema de nível de líquidos de quatro tanques

interligados. XII Congresso Brasileiro de

Automática, Salvador 2006. pp. 3427-3432.

Cui, R., C. Yang, Y. Li, and S. Sharma (2017, jun).

Adaptive neural network control of AUVs with

control input nonlinearities using reinforcement

learning. IEEE Transactions on Systems, Man, and

Cybernetics: Systems. 47(6), 1019–1029.

Esfe, M. H. (2017). Designing an artificial neural net-

work using radial basis function (rbf-ann) to model

thermal conductivity of ethylene glycolâwater-

based tio2 nanofluids. J Therm anal Calorim.

Ferrari, S. and R. F. Stengel (2005). Smooth function

approximation using neural networks. IEEE

Transactions on Neural Networks, VOL. 16, NO.

1, January 2005.

Haykin, S. S. (2009). Neural Networks and Learning

Machines. Prentice Hall.

Hwangbo, J., I. Sa, R. Siegwart, and M. Hutter (2017,

oct). Control of a quadrotor with reinforcement

learning. IEEE Robotics and Automation Letters

2(4), 2096–2103.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T.

Erez, Y. Tassa, D. Silver, and D.Wierstra (2016).

Continuous control with deep reinforcement learn-

ing. ICLR.

Noel, M. M. and B. J. Pandian (2014, oct). Control of

a nonlinear liquid level system using a new artifi-

cial neural network-based reinforcement learning

approach. Applied Soft Computing 23, 444–451.

Orr, M. J. L. (1996). Introduction to radial basis func-

tion networks.

Papierok, S., A. Noglik, and J. Pauli (2008). Applica-

tion of reinforcement learning in a real environ-

ment using an RBF network. 1st International

Workshop on Evolutionary and Reinforcement

Learning for Autonomous Robot Systems.

Ramanathan, P., K. K. Mangla, and S. Satpathy (2018,

feb). Smart controller for conical tank system us-

ing reinforcement learning algorithm. Measure-

ment 116, 422–428.

Rao, J., H. An, T. Zhang, Y. Chen, and H. Ma (2016,

aug). Single leg operational space control of quad-

ruped robot based on reinforcement learning. In

2016 IEEE Chinese Guidance, Navigation and

Control Conference (CGNCC). IEEE.

Sutton, R. S. and A. G. Barto (1998). Reinforcement

Learning: An Introduction. MIT Press.

Sutton, R., A. Barto, and R. J. Williams (1991). Rein-

forcement learning is direct adaptive optimal con-

trol. American Control Conference.

Vamvoudakis, K. G., M. F. Miranda, and J. P. Hes-

panha (2016, nov). Asymptotically stable adap-

tive–optimal control algorithm with saturating ac-

tuators and relaxed persistence of excitation. IEEE

Transactions on Neural Networks and Learning

Systems 27(11), 2386–2398.

Vrabie, D., Vamvoudakis, K. G. And Lewis, F. L.,

Optimal Adaptive Control and Differential Games

by Reinforcement Learning Principles. The Insti-

tution of Engineering and Technology, London.

Wang, X. S., Y. H. Cheng, and W. Sun (2007, mar).

A proposal of adaptive PID controller based on re-

inforcement learning. Journal of China University

of Mining and Technology 17(1), 40–44.

Yu, H., P. D. Reiner, T. Xie, T. Bartczak, and B. M.

Wilamowski (2014). An incremental design of ra-

dial basis function networks. IEEE Transactions

on Neural Networks and Learning Systems, VOL.

25, NO. 10, October 2014.

