
A COMPARATIVE STUDY ON EMBEDDED MPC FOR INDUSTRIAL PROCESSES

Adriano Silva Martins Brandão∗, Daniel Martins Lima†, Marcus V. Americano da Costa
Fo‡, Julio Elias Normey-Rico∗

∗Dep. de Automação e Sistemas, Caixa Postal 476, CEP 88040-900
Universidade Federal de Santa Catarina

Florianópolis, SC, Brasil

†Departamento de Engenharias
Universidade Federal de Santa Catarina

Blumenau, SC, Brasil

‡Departamento de Engenharia Qúımica
Universidade Federal da Bahia

Salvador, BA, Brasil

Emails: adriano.brandao@posgrad.ufsc.br, daniel.lima@ufsc.br,

marcus.americano@ufba.br, julio.normey@ufsc.br

Abstract— Predictive control algorithms have great acceptance in the process industry because of its ability to
handle multivariable and constrained systems. The presence of constraints greatly increases the computational
cost of solving these problems, which has motivated many works in recent years to develop automatic code
generation tools for MPC applications. These developments enable the execution of advanced controllers in
low-cost embedded systems, which are increasingly applicable to industrial processes due to advances in the
development of Internet of Things (IoT) devices. Although several libraries that implement embedded MPC
exist, there are not many comparative studies, which makes it difficult to choose among them. The present work
aims to compare three of these tools (CVXGEN, FalcOpt and muAO-MPC), to list advantages and disadvantages
of some of these tools, to test the performance on an embedded system and to present suggestions of uses and
restrictions for applications.

Keywords— Model Predictive Control, embedded hardware, code-generation.

Resumo— Os algoritmos de controle preditivo têm uma grande aceitação na indústria de processos devido à
capacidade de lidar com sistemas multivariados e com restrições. A presença de restirções eleva muito o custo
computacional da resolução destes problemas, o que motivou muitos trabalhos nos últimos anos a elaborar ferra-
mentas de geração automática de código para aplicações MPC. Esses desenvolvimentos possibilitam a execução
de controladores avançados em sistemas embarcados de baixo custo, que são cada vez mais aplicáveis a processos
industriais devido aos avanços no desenvolvimento dos dispositivos da Internet das Coisas (IoT). Apesar de várias
bibliotecas para a implementação de MPC embarcado existirem, não existem muitos estudos comparativos, o que
dificulta a escolha. O presente trabalho visa comparar três desses trabalhos (CVXGEN, FalcOpt e muAO-MPC),
citar vantagens e desvantagens de algumas dessas ferramentas, testar num sistema embarcado o desempenho de
cada uma e apesentar sugestões de usos e restrições para aplicações.

Palavras-chave— Controle Preditivo, hardware embarcado, geração de código

1 Introduction

Development of IoT (Internet of Things) devices
enables the fulfillment of Industry 4.0 standards
with distributed connected systems and special-
ized equipments in the productive process (Brettel
et al., 2014). As such, the possibility of us-
ing embedded hardware in the process industry,
especially in advanced control, is interesting as
cheap, efficient and industrial-grade algorithms
such as Model Predictive Control (MPC) allows
for better performance on resource-constrained in-
dustrial processes (Xu et al., 2018). These con-
trollers were developed considering concepts of
prediction and calculation of the control signal
through the minimization of a certain objective
function (Camacho and Bordons, 2002). There are
different approaches for improving the efficiency
of MPC in the literature such as using interior-
point algorithms to solve the optimization (Ding

et al., 2016), adapting existing solvers for large-
scale problems (Bartlett et al., 2002), using fixed-
point arithmetics (Guiggiani et al., 2014) and us-
ing Field-Gate Programmable Arays (FPGA) to
implement the controller (Xu et al., 2018). This
work will focus on code-generation tools that allow
the implementation of MPC on embedded hard-
ware.

The number of code-generation tools has been
increasing as they can offer execution efficiency
and some degree of determinism to the controller.
Also, interest on embedded control is rising with
the availability of cheap and capable hardware
such as the BeagleBone R© and Rasberry Pi R©,
among others. As each tool uses specific formu-
lations of the control problem and offer different
capabilities, selection of an appropriate library for
implementation of MPC can be hard. The goals of
this paper are performing an efficiency comparison
of different MPC code-generation libraries using



embedded hardware and providing information to
help on the selection of these tools. The tools
analyzed by this work are: CVXGEN, a convex
quadratic programming solver that provides flex-
ibility on the problem formulation; muAO-MPC,
a micro-controller targeted MPC code generation
tool that and FalcOpt, an nonlinear predictive
control library.

The rest of this paper is divided as follows.
In section 2, the predictive controller formulation
used in this paper is presented. In section 3, the
code-generation libraries and their particularities
are described. Simulation results and analysis are
in section 4. Finally, the conclusions of this work
are in section 5.

1.1 Embedded platform description

The hardware used for the computations pre-
sented in this work is a BeagleBone Black Rev-C, a
low-power open-source single-board computer de-
signed with open source development in mind. It
embeds an 1 GHz ARM processor with 512 MB of
DDR3L RAM, 4 GB of eMMC storage and ports
such as USB and ethernet. The embedded oper-
ating system used on the platform is Debian 9.3,
which is provided by the BeagleBoard organiza-
tion.

2 Model Predicitive Control

One of the most studied predictive control tech-
niques, MPC is a set of advanced control strate-
gies fit for multi-variable constrained processes
(Garćıa et al., 1989). These techniques solve an
optimization problem that minimizes a cost func-
tion associated with the predicted behavior of the
controlled process (Camacho and Bordons, 2002).
Various types of models can be used for the pre-
dictions, such as step response and state-space. A
generic representation of the problem solved by a
linear state-space MPC can be seen in (1) :

min
U

N∑
i=1

∣∣∣∣X(k + i)−Xref (k + i)
∣∣∣∣2

Q
+

Nc−1∑
i=0

∣∣∣∣U(k + i)− Uref (k + i)
∣∣∣∣2

R

s.t.

X(k + 1) = AX(k) +BU(k), k = 0, . . . , N − 1

X(k) ≥ Xmin, k = 0, . . . , N − 1

X(k) ≤ Xmax, k = 0, . . . , N − 1

U(k) ≥ Umin, k = 0, . . . , Nc − 1

U(k) ≤ Umax, k = 0, . . . , Nc − 1

(1)

Where X(k) and U(k) represent the predicted
value of the states and proposed inputs on instant
k respectively, the prediction and control horizons

are given by N and Nc. The constrains consist of
limits to the values of X(k) and U(k) over the pre-
diction horizon and one equality constraint impos-
ing the discrete state-space model dynamics given
by the matrices A and B of the model.

The objective function of MPC can be altered
in a number of ways to accommodate new con-
trol objectives such as economic goals or add ro-
bustness to the controller. One of the most used
formulations is the one presented in (2), which
minimizes the control movements over the hori-
zon instead of the absolute values of the control
action.

min
∆U

N∑
i=1

∣∣∣∣X(k + i) −Xref (k + i)
∣∣∣∣2
Q

+

Nc−1∑
i=0

∣∣∣∣∆U(k + i)
∣∣∣∣2
R

(2)

This formulation can be used on a tool that only
accepts the problem defined in (1) with an aug-
mented prediction model. In this case, a num-
ber of states equal to the number of manipulated
variables is added to the prediction model. The
augmented model is given by the following:

Ā =

[
A B
0 I

]
, B̄ =

[
B
I

]
(3)

Where 0 is a matrix of zeros with number
of manipulated variables and number of states as
number of rows and columns respectively, and I is
a square identity matrix and it’s size is given by
the number of manipulated variables.

The unconstrained linear MPC problem has
a global solution that can be computed alge-
braically, but the use of explicit constraints is
one of the main advantages of these controllers
as they are critical to most processes. Solving the
constrained problem requires the use of a itera-
tive solver, which involves much higher compu-
tational costs than those involved on the uncon-
strained case. This is the main concern when us-
ing MPC on embedded systems as computational
power available is usually low and the issue that
the libraries analyzed on this paper are intended
to solve.

3 Code-generation MPC libraries

The use of code-generation tools allows for fast
implementation of practical predictive controllers
as the low-level aspects of the implementation are
mostly handled by the tool and the user can di-
rect its effort on engineering tasks such as design
and tuning of the controllers. Using these tools
also makes the implementation process less prone
to coding errors as the generated code can be as-
sumed to be correct for the given specification of
the problem. The code generation libraries cre-
ate code for solving the MPC optimization prob-
lem with various particularities depending on the
goals of the library: using static memory alloca-
tion to prevent memory leaks; use of only basic



math operations to diminish computation time;
taking advantage of sparsity patterns on the ma-
trices to avoid trivial operations, etc.

The use of these tools consists of three phases:
Problem specification, on which the MPC problem
is defined and usually the numeric values of matri-
ces, constraints and horizons are specified; Code
generation, where the tool will use the specified
problem to generate code for solving the prob-
lem; Code usage, where the generated code is in-
tegrated on the desired application, the necessary
variables are allocated and the code is compiled
and used. All tools analyzed on this work gener-
ate C code, which is usually the language used in
code-generation as it provides good performance.

The following sections describe the libraries
selected for this comparative study. They were
chosen considering diversity of scopes (generic
purpose, linear and nonlinear MPC), free avail-
ably and existence of documentation on how to
use the generated code.

3.1 muAO-MPC

Developed in the Laboratory for Systems Theory
and Automatic Control of the Otto-von-Guericke
University from Germany, this package allows for
design, simulation and code generation of MPC
controllers with a fixed structure, similar to the
one presented in (1) using a combination of aug-
mented Lagrangian with fast gradient methods to
solve the optimization. The generated code is fully
compatible with the ISO C89/C90 standard and
is platform independent (Zometa et al., 2013). It
was developed targeting embedded hardware and
its controllers have a small footprint in code size
and memory usage. The software is free and re-
leased under the terms of the three-clause BSD
License.

When using this tool the user needs to fol-
low the pattern described in the beginning of the
section. To define the model, horizons and con-
straints, a script must be prepared providing these
informations to specifically named variables de-
scribed on the documentation. The model can be
given in discrete or continuous form, the inequal-
ity constraints can contain linear combinations of
inputs and controls and the control horizon is al-
ways equal to the prediction horizon. The code
generation is performed using one simple com-
mand and this process also generates a make-
file for compiling the C code. To use the gen-
erated code in an application, it is necessary to
include the headers provided on the mpc.h header
file, allocate a specific structure and set the num-
ber of iterations of the algorithm. The controller
is called using the mpc ctl solve problem function
that needs the measurements and the previously
allocated structure as inputs, and all matrices are
handled in column-major form.

3.2 FalcOpt

This library consists of an implementation of an
Projected Gradient Descent method for solving
convex nonlinear Model Predictive Control prob-
lems and was developed at the Automatic Control
Laboratory, ETH Zurich, Switzerland. This algo-
rithm does not support constraints on the states
over the prediction horizon, only allowing for
quadratic terminal constraint on the states. The
manipulated variables can have box constraints
and the process model can be nonlinear, although
this paper will only consider linear models. The
objective function is also customizable, with the
only limitation being that it must be a convex
function.

Different from the other libraries used in the
paper, FalcOpt requires the use of Matlab at the
problem definition phase as the model and con-
troller parameters are defined in a Matlab script.
The generated code has a Mex interface that al-
lows for use of the controller in Matlab and can
be used as a guideline for allocating the necessary
memory if used on embedded context. The library
requires allocation of numerous data structures for
it to be used and does not provide functions for
performing the allocations, as muAO-MPC does.
The generated code consists of two files that are
easy to compile, but it does not provide the nec-
essary header to include the controller in a C pro-
gram. The header provides an interface to the
controller code so the user must build a header
based on the necessary functions of the generated
code in order to use this library. The controller is
called using the function proposed algorithm and
the numerous allocated variables must be passed
to it at every call.

3.3 CVXGEN

CVXGEN is a web based code generation tool for
solving convex quadratic optimization problems
(Mattingley and Boyd, 2012) and was developed
at Stanford University. It uses a high-level lan-
guage for stating the optimization problem and
generates self-contained C code that implements
a tailored solver. The high-level language allows
for easy definition of the prediction model, auxil-
iary variables, constraints and objective function.
At the problem definition phase no numeric values
must be provided for the parameters, instead only
the sizes are defined off-line, and the inputs passed
to the generated code when used. CVXGEN is not
specific for MPC, therefore requires the user to as-
semble the whole optimization problem, which is
not required by the other tools presented in this
paper. This aspect of the tool makes it more flex-
ible to changes on the formulation of MPC, but
the code generation process does not work well
for systems with a high number of constraints or
long horizons as the permutations performed by



the web code generator become increasingly com-
plex. The web interface warns the user if the prob-
lem is too complex and may not be possible to
generate the code.

Different from the other libraries presented in
this work, CVXGEN requires four general steps
for using its code: Problem definition, code gen-
eration, parametrization and call to the controller.
The problem definition is done on an web inter-
face, in which the sizes of parameters such as the
model matrices and number of states are defined,
then the user must also define the objective func-
tion and its constraints. The code generation is
also performed on the web interface and can take
a few minutes depending on the problem size.
The generated code consists of numerous files that
can be compiled using the provided makefile. To
call the controller, it is necessary to include some
headers and declare some specific variables from
the solver. Then, the values of weight matrices,
model matrices, box constraints and other param-
eters must be defined. The controller the can be
called using the solve function, which takes no in-
puts as the parameters of the solver are all defined
as global variables.

3.4 Qualitative analysis

The problem statement on each tool is done on
different ways: CVXGEN provides easy formula-
tion of the problem with a flexible high-level in-
terface but requiring most of the parameters to
be given at runtime; muAO requires the use of
python to provide the problem parameters; Fal-
cOpt uses Matlab, allowing easy matrix manip-
ulations and formulation of the problem. Both
muAO and FalcOpt natively provide the use of fu-
ture reference values on the controller, but need all
the references to be passed for all of the prediction
horizon even when the use of a constant reference
is intended. However, the flexibility of CVXGEN
formulations enables the use of future and con-
stant references, without needing references to be
passed for the whole prediction horizon when fixed
references are intended. The limited constraints of
FalcOpt makes the use of this library unpractical
on various cases, but the possibility of using fast
nonlinear control is an interesting unique feature
among the analyzed tools. The generated code
form CVXGEN and muAO creates numerous files,
but the provided makefiles and headers aid when
compiling the code. FalcOpt does not provide a
header, but it is simple to create and compiling
the generated files are simple to compile.

4 Simulations

The goal of the simulations is to evaluate de per-
formance of the controllers considering the pro-
cess response and time taken to compute the con-

trol action, as the latter is an indicative of imple-
mentation efficiency. As such, simulations were
implemented on the BeagleBone Black and re-
peated for 1000 times at each simulated case and
for each studied library. The simulation cases are
described as the following:

• Case 1: The objective function presented in
(1) is used and the states have initial condi-
tions different from the initial reference and
references constant over the prediction hori-
zon;

• Case 2: The objective function presented in
(1) is used and the states have initial condi-
tions different from the initial reference and
future references are passed to the controllers;

• Case 3: The objective function presented in
(2) is used, the states have initial conditions
different from the initial reference and refer-
ences constant over the prediction horizon.

All the simulations were performed for 100 it-
erations with reference changes at time k = 40.
Off-line and on-line indicators were used as evalu-
ation criteria: size of the generated code and the
time needed by the controllers to perform the cal-
culations. All the controllers were tuned with the
same parameters: prediction horizonN = 20, con-
trol horizon Nc = 3 when possible to use, and
weighting matrices Q and R equal to identity ma-
trices of appropriate size.

Figure 1: Schematic diagram of the process show-
ing the two pumps (manipulated variables) and
the tank levels. Adapted from (Johansson, 2000).

4.1 The process model

The quadruple tank process is a process designed
for evaluation of multi-variable control techniques.
One of most interesting features is the presence of
an adjustable multi-variable zero, allowing for di-
versity of behaviors on a simple laboratory setup.



Table 1: Summary of characteristics of the libraries.
Obj. Func. Constraints Future reference Control horizon Code complexity

CVXGEN Flexible Flexible
Dependent on
formulation

Adjustable
Multiple files,
provides Makefile
and headers

FalcOpt Fixed Only on controls Yes
Equal to prediction
horizon

Two files, does not
provide headers

muAO Fixed
States, controls
and combiantions

Yes
Equal to prediction
horizon

Multiple files,
provides Makefile
and headers

The process consists of four interconnected tanks
with two pumps that can be used to regulate the
inlet flow for the tanks, as shown in Figure 1. The
nonlinear model for this process is presented by
(Johansson, 2000), but this work will use a dis-
crete linearized state-space model with sampling
time of Ts = 15s. The matrices of the model, op-
erating point (X0, U0) and the operational limits
that were used are as follows:

A =


0.7887 0 0.2820 0

0 0.8486 0 0.2155
0 0 0.6808 0
0 0 0 0.7654



B =


0.6439 0.1823
0.0973 0.4836

0 0.9657
0.7362 0


Xmin =

[
−11.3400 −11.7000 −4.3200 −4.4100

]T
Xmax =

[
12.6000 13.0000 4.8000 4.9000

]T
Umin =

[
−2.8350 −2.8350

]T
Umax =

[
3.1500 3.1500

]T
X0 =

[
12.6 13.0 4.80 4.90

]T
U0 =

[
3.1500 3.1500

]T
4.2 Results

The data from the simulations is presented in
three types of graphics: histograms showing the
distribution of the run times of the controllers ob-
tained from the 1000 repetitions of each case; a
time trend showing the behavior of the run times
of the controllers in one simulation over the sim-
ulation time and; graphics showing the temporal
behavior of the average level of tank 1 (X1) and
the two manipulated variables (U1 and U2) over
the simulation time.

Observing the histogram and time trend pre-
sented in Figure 2, it is evident that FalcOpt
presents a less consistent behavior when compared
with the other libraries. At the time of the ref-
erence change, computing time for FalcOpt in-
creases swiftly for a brief period of time while

CVXGEN and muAO do not show this behav-
ior. It is also noticeable that FalcOpt can com-
pute the control action on a time much smaller
than the other libraries despite being an nonlin-
ear solver, which may be due to the lack of state
constrains in this library. Analyzing the data pre-
sented on 2 the above analysis is reaffirmed as the
standard deviation of the FalcOpt data is more
than ten times the standard deviation of CVX-
GEN and muAO, although having an minimum
time seven times smaller. Considering the closed-
loop response, the behavior of the states and ma-
nipulated variables are very similar when compar-
ing FalcOpt and muAO, but CVXGEN presents
considerable oscillation on the manipulated vari-
ables.

Table 2: Computation time statistics for case 1 in
seconds.

Mean Std.dev. Min Max
CVXGEN 7.60e-3 2.0e-4 7.6e-3 1.2e-2
FalcOpt 0.16e-3 26.0e-4 0.1e-3 1.5e-2
muAO 11.9e-3 0.6e-4 11.8e-3 1.4e-2

The analysis of Case 2 results are presented
in Figure 4, where it can be seen that FalcOpt
increases the computation time as soon as the
change on the reference is perceived on the pre-
diction horizon and remains high until the state
is close to the reference. This behavior is not
present on the other libraries. CVXGEN and
muAO show similar performance to Case 1, al-
though with higher average computation times,
as seen in Table 3. The behavior of states and
inputs is very similar among the controllers, with
CVXGEN not presenting the oscillatory behavior
of Case 1.

Table 3: Computation time statistics for case 2 in
seconds.

Mean Std.dev. Min Max
CVXGEN 8.6e-3 0.2e-3 8.3e-3 1.3e-2
FalcOpt 3.2e-3 4.6e-3 0.1e-3 1.9e-2
muAO 12.4e-3 0.7e-4 12.3e-3 1.4e-2

On the last simulation case, the analysis of
Figure 6 shows that the computation time of



Figure 2: Execution time histogram and behavior
over the simulation of case 1.

0 10 20 30 40 50 60 70 80 90 100

Iteration

0

2

4

Le
ve

l /
 c

m

Mean of X
1

Reference
CVXGEN
FalcOpt
MUAO

0 50 100

Iteration

-1

0

1

2

T
en

si
on

 / 
V

Mean of U
1

0 50 100

Iteration

-1

-0.5

0

T
en

si
on

 / 
V

Mean of U
2

Reference
CVXGEN
FalcOpt
MUAO

Figure 3: States and controls behavior of case 1.

CVXGEN is affected by the change in reference,
but in a different manner as the one presented by
FalcOpt on Case 2, the computing time of CVX-
GEN stabilizes very fast when compared with the
latter. Presenting the same behavior of Cases 1
and 2, muAO does not change its computation
time by much. In Table 4 muAO is shown to have
very consistent times, with the smallest standard
deviation. FalcOpt was not able to follow the ref-
erence and computation times observed on this
case were on average more than ten times greater
than the observed on other libraries, as seen on
Table 4. As such, Figure 6 presents the time re-
sults for CVXGEN and muAO only in order to
facilitate visualization.

Table 4: Computation time statistics for case 3 in
seconds.

Mean Std.dev. Min Max
CVXGEN 1.7e-2 2.7e-3 1.5e-2 2.6e-2
FalcOpt 6.4e-1 4.3e-1 0.9e-3 9.6e-1
muAO 1.7e-2 0.9e-4 1.6e-2 1.9e-2

Table 5 shows the size of the generated code
for each library. As FalcOpt and muAO by nature
allow for future references, the size of the gener-

Figure 4: Execution time histogram and behavior
over the simulation of case 2.

0 10 20 30 40 50 60 70 80 90 100

Iteration

0

2

4

Le
ve

l /
 c

m

Mean of X
1

Reference
CVXGEN
FalcOpt
MUAO

0 50 100

Iteration

-1

0

1

T
en

si
on

 / 
V

Mean of U
1

0 50 100

Iteration

-1

-0.5

0

T
en

si
on

 / 
V

Mean of U
2

Reference
CVXGEN
FalcOpt
MUAO

Figure 5: States and controls behavior of case 2.

ated code is the same on Case 1 and 2. It seems
that the formulation affects more the size of CVX-
GEN code than the other libraries as it shows
the biggest and more variable code in size. Fal-
cOpt code is considerably smaller than the other
libraries, being more than ten times smaller on all
cases. It is important to notice that all libraries in
all cases were able to produce an output in times
considerably below the sampling time of the con-
troller.

Table 5: Size of the generated code.
Case 1 Case 2 Case 3

CVXGEN 2.18 MB 2.22 MB 1.68 MB
FalcOpt 100 KB 100 KB 104 KB
muAO 1.24 MB 1.24 MB 1.29 MB

5 Concluding remarks

A performance comparison is presented in this pa-
per, showing differences on computing time, code
size and temporal behavior of three different code
generation libraries for MPC controllers. It is
shown that muAO has a very consistent execution
time when compared to the other libraries, signal-



Figure 6: Execution time histogram and behavior
over the simulation of case 3.

0 10 20 30 40 50 60 70 80 90 100

Iteration

0

2

4

Le
ve

l /
 c

m

Mean of X
1

Reference
CVXGEN
FalcOpt
MUAO

0 50 100

Iteration

-1

0

1

T
en

si
on

 / 
V

Mean of U
1

0 50 100

Iteration

-1

-0.5

0

T
en

si
on

 / 
V

Mean of U
2

CVXGEN
FalcOpt
MUAO

Figure 7: States and controls behavior of case 3.

ing that it is a good option for implementations in
which the computing time of the controller is sim-
ilar to the sampling time, as it provides a smaller
possibility of the controller not being able to com-
pute the desired input on time. The integration of
this tool on existing code can be performed with-
out much hassle as it provides the necessary tools
for including and compiling the generated code.
Although having a fixed structure for the MPC
problem, the use of python to define the problem
allows for easy construction of augmented systems
for achieving different formulations. CVXGEN is
shown to have undesirable behavior of the manip-
ulated variables with certain formulation, but pre-
sented a consistent runtime. As this library allows
for changes on the problem online, it certainly can
be used with adaptative algorithms, and as it has
a very flexible interface for problem formulation,
it is an interesting choice when variations of the
standard MPC problem are intended. The use
of the generated code is simple and the compila-
tion process is similar to the used with muAO.
Having very inconsistent computation times, the
use of FalcOpt is not advised when the controller
computing time is similar to the sampling time,
as the computation time can increase to values

grater than the sampling time. Although the in-
consistent performance, this library is an interest-
ing choice for simple nonlinear MPC problems as
it allows for the use of nonlinear models, but the
lack of state constraints can limit the usability of
this controller on real processes. The use of Mat-
lab to formulate the control problem, although
providing easy manipulation of the matrices in-
volved, can limit the use of FalcOpt as Matlab
isn’t free software. Regardless of the tools cho-
sen by the user, considering the results obtained
from this work, all the analyzed libraries are capa-
ble of working with small sampling periods, even
considering limited a limited computing system.
With the above exposed, it is expected that users
are able to select the adequate MPC library with
more ease.

Acknowledgments

The authors recognize the support provided
by the Federal University of Santa Catarina
(UFSC), Brazilian National Council for Scientific
and Technological Development (CNPq), projects
305785/2015-0 and 311024/2015-7; and by the
Human Resources Training Program PRH34-ANP
and PFRH34-Petrobras.

References

Bartlett, R. A., Biegler, L. T., Backstrom, J.
and Gopal, V. (2002). Quadratic program-
ming algorithms for large-scale model pre-
dictive control, Journal of Process Control
12(7): 775–795.

Brettel, M., Friederichsen, N., Keller, M. and
Rosenberg, M. (2014). How-Virtualization-
Decentralization-and-Network-Building-
Change-the-Manufacturing-Landscape–An-
Industry-40-Perspective, 8(1): 37–44.

Camacho, E. F. and Bordons, C. (2002). Model
predictive control, Vol. 1, 2 edn, Springer.

Ding, Y., Xu, Z., Zhao, J., Wang, K. and Shao,
Z. (2016). Embedded MPC Controller Based
on Interior-Point Method with Convergence
Depth Control, Asian Journal of Control
18(6): 2064–2077.

Garćıa, C. E. S. D. C., Prett, D. M. S. D. C. and
Morari, M. (1989). Model predictive control:
Theory and practice-A survey, Automatica
25(3): 335–348.

Guiggiani, A., Patrinos, P. and Bemporad,
A. (2014). Fixed-point implementation
of a proximal newton method for em-
bedded model predictive control, IFAC
Proceedings Volumes (IFAC-PapersOnline)
19(2012): 2921–2926.



Johansson, K. (2000). The quadruple-tank
process: a multivariable laboratory pro-
cess with\nan adjustable zero, IEEE Trans-
actions on Control Systems Technology
8(3): 456–465.

Mattingley, J. and Boyd, S. (2012). CVX-
GEN: A code generator for embedded convex
optimization, Optimization and Engineering
13(1): 1–27.

Xu, Y., Li, D., Xi, Y., Lan, J. and Jiang,
T. (2018). Improved Predictive Controller
on FPGA by Hardware Matrix Inversion,
IEEE Transactions on Industrial Electronics
0046(c): 1–1.

Zometa, P., Kogel, M. and Findeisen, R. (2013).
µAO-MPC: A free code generation tool
for embedded real-time linear model predic-
tive control, American Control Conference
(ACC), 2013 (1): 5320–5325.


