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Abstract— This work presents the design and the experimental implementation of a robust state derivative
feedback (SDF) controller in an active suspension system manufactured by Quanserr (Quanser, 2009a). For this
purpose, a discrete-time SDF controller is designed in the presence of parametric uncertainties by using a state
derivative model within a regional pole placement approach. In the implementations, only the measurements
from accelerometers are employed, a typical motivation for the use of SDF. The dynamic behavior of the active
suspension system is tested for different values of the uncertain parameter within its range considered in the
controller design.
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Resumo— Este trabalho apresenta o projeto e a implementação experimental de um controlador robusto
usando realimentação da derivada dos estados em um sistema de suspensão ativa fabricado por Quanserr

(Quanser, 2009a). Para este propósito, um controlador em tempo discreto com realimentação derivativa é pro-
jetado na presença de incertezas paramétricas usando um modelo baseado nas derivadas dos estados em um
método de alocação regional de polos. Na implementação, emprega-se apenas medidas de acelerômetros, uma
motivação t́ıpica para o uso de realimentação derivativa. O comportamento dinâmico do sistema de suspensão
ativa é apresentado para diferentes valores da incerteza paramétrica dentro da faixa considerada no projeto.

Palavras-chave— realimentação da derivada dos estados, controle a tempo discreto, incerteza politópica,
sistema de suspensão ativa

1 Introduction

Engineering applications have widely employed
accelerometer as the main sensor in the in-
strumentation sets, due to the low operational
cost, simple structure and the ease in measur-
ing the acceleration signals, instead of displace-
ment and velocity, in the absence of an absolute
position reference (Yang et al., 1991). Exam-
ples of applications include active suspension de-
vices (Reithmeier and Leitmann, 2003), (da Silva
et al., 2013), vibration suppression of mechanical
systems (Abdelaziz, 2012), driving assistance con-
trollers (Fallah et al., 2013), vibration control of
bridge cables (Duan et al., 2005), and earthquake
hazard mitigation (Yang et al., 1991).

As the state variables of these systems usu-
ally correspond to displacements and velocities,
the use of accelerometers has motivated a signifi-
cant research in the control literature concerning
state derivative feedback (SDF). In fact, by double
integration of the measured accelerations, the esti-
mated displacements may not have good accuracy,
due to the propagation of errors associated to bias
in the measurements (Abdelaziz, 2012) and uncer-
tainty in the initial conditions for the integrators
(Reithmeier and Leitmann, 2003). Thus, the use
of SDF may be more convenient, since it employs

velocities and accelerations, not displacements.

Most works concerning SDF design have been
devoted to continuous-time controllers, such as
pole placement in (Abdelaziz and Valášek, 2004),
(Faria et al., 2009), linear quadratic regulators
(LQR) in (Duan et al., 2005), (Faria et al., 2009),
(Tseng and Hsieh, 2013), robust controllers for-
mulation using linear matrix inequalities (LMIs)
in (Assunção et al., 2007), (Faria et al., 2010),
(da Silva et al., 2012), among others.

The discrete-time design of SDF controllers
were still only developed in a few works. In
(Cardim et al., 2009) and (Rossi et al., 2013),
the design of SDF controllers in nominal equiv-
alence to a given state feedback controller were
presented. A direct discrete-time design of ro-
bust SDF control laws was proposed in (Rossi
et al., 2018), dispensing with the need for a pre-
liminary state feedback design. Moreover, this
method allowed the design of controllers with ro-
bustness to parametric uncertainties. However, an
experimental validation of this proposed technique
was not exhibited in (Rossi et al., 2018), only nu-
merical simulation results were shown.

In this context, this work presents a practi-
cal implementation of a robust discrete-time SDF
controller designed by using the method proposed



in (Rossi et al., 2018). This controller is applied
to an active suspension system manufactured by
Quanserr (Quanser, 2009a). For this purpose, a
state derivative model is employed, as proposed
in (Rossi et al., 2018), within a classic LMI ap-
proach for regional pole placement (Chilali and
Gahinet, 1996). A robust SDF controller is then
designed in the presence of parametric uncertain-
ties (an uncertain mass of the system) and imple-
mented using only measurements from accelerom-
eters.

The remainder of this paper is organized as
follows. Section 2 describes the discrete-time de-
sign of controllers using SDF proposed in (Rossi
et al., 2018). Section 3 presents the active suspen-
sion system. The controller design is developed in
Section 4 and the practical implementation and
results are exhibited in Section 5. Finally, con-
cluding remarks are shown in Section 6.

2 State derivative feedback in
discrete-time controllers design

The method proposed in (Rossi et al., 2018) for
discrete-time controller design using SDF is pre-
sented in this section.

Consider a system described by a continuous-
time model of the form

ẋ(t) = Φcx(t) + Γcu(t) (1)

with the state vector x(t) ∈ Rn, the control input
u(t) ∈ Rm, and the constant matrices Φc ∈ Rn×n,
Γc ∈ Rn×m, with Φc non-singular.

Assume that the system is to be controlled by
using sampled measurements of the state deriva-
tive ẋ(kT ), k ∈ Z, where T is the sampling period.
Moreover, consider that a zero order hold is em-
ployed to keep the control u(t) constant between
sampling times, i.e.

u(t) = u(kT )+, (kT )+ ≤ t ≤ (k + 1)T (2)

The superscript + in (2) is employed to indi-
cate that the control is updated immediately after
the state derivative is measured at each sampling
time. Therefore, the state derivative of the system
(1) at time t = kT is given by

ẋ(kT ) = Φcx(kT ) + Γcu((k − 1)T )+ (3)

Since the control is kept constant between
sampling times, as in Eq. (2), the model (1) can
be discretized as

x((k + 1)T ) = Φx(kT ) + Γu(kT )+ (4)

with Φ = eΦcT and Γ =
∫ T

0
eΦcτΓc dτ .

The following theorem shows that the
model (4) can be reformulated in terms of the
derivative of the state ẋ(kT ) and the control in-
put, in a suitable form for use in discrete-time
control design.

Theorem 1 Let ẋ(kT ) denote the derivative of
the state at sampling time t = kT , immedi-
ately before the control update. The discrete-time
model (4) can then be recast into the following
form:

ξ((k + 1)T ) = Aξ(kT ) +Bu(kT )+ (5)

with ξ(kT ) ∈ Rn+m, A ∈ R(n+m)×(n+m) and B ∈
R(n+m)×m defined as

ξ(kT ) ,

[
ẋ(kT )

u((k − 1)T )+

]
(6)

A =

[
Φ −ΦΓc
0 0

]
, B =

[
ΦΓc
I

]
(7)

where 0 and I denote a matrix of zeros and an
identity matrix of appropriate dimensions, respec-
tively.

Proof: See in (Rossi et al., 2018). 2

Remark 1 The representation (5) derived in
Theorem 1 can be employed to design control laws
of the form:

u(kT )+ = Fξ(kT ) (8)

with a feedback gain matrix F ∈ Rm×(n+m), which
can be designed through standard discrete-time
state-space methods. In the examples illustrated
in Section 5, it is assumed that the control task
starts at time k = 0 and thus the control law is
initialized with u(−T )+ = 0.

Remark 2 (Polytopic uncertainties)
Consider a model of the form (1), with matrices
Φc and Γc subject to polytopic uncertainties, i.e.
(Φc,Γc) ∈ ΩΦc,Γc , where ΩΦc,Γc is a polytope
with known vertices (Φc,i,Γc,i), i = 1, 2, . . . , N .
In addition, let Φi = eΦc,iT and assume that
the sampling period T is sufficiently small so
that the quadratic and higher-order terms in the
power series expansion of eΦc,iT can be neglected
in the uncertainty representation. Therefore,
the matrices (Φ,Γc) will lie in a polytope ΩΦ,Γc

with vertices (Φi,Γc,i), i = 1, 2, . . . , N . Thus,
in view of the product between Φ and Γc in
(7), the (A,B) matrices in (5) will belong to a
polytope with N2 vertices, which are associated
to the cross-products between the vertices Φi,
i = 1,2, . . . , N , and Γc,j, j = 1,2, . . . , N . In cases
where T is not sufficiently small for assuming the
hypothesis considered above, this issue needs to
be studied in more detail. Indeed, in these cases,
the use of techniques for the systematic treatment
of the high order terms in the discretization
procedure could be investigated, as proposed in
(Braga et al., 2014). However, the first approach
described herein leads to simpler design proce-
dures and can be appropriate to meet closed-loop
specifications, as will be illustrated in Section 5.



3 Active suspension system

Fig. 1 shows the active suspension plant at Lab-
oratório de Pesquisa em Controle (LPC), Facul-
dade de Engenharia de Ilha Solteira / Universi-
dade Estadual Paulista “Júlio de Mesquita Filho”
(FEIS/UNESP), where the experiments reported
herein were carried out. It is a bench-scale model
representing a classic quarter-car model controlled
by an active suspension mechanism. This plant
consists of three floors/plates on top of each other.
The top floor (blue plate) represents the vehicle
body supported above the suspension. The mid-
dle floor (red plate) corresponds to the tire. The
bottom floor (silver plate) provides the road ex-
citation in the system. A DC motor is standing
between the top and middle floors to emulate an
active suspension system.

A schematic model is represented in Fig. 2.
The sprung mass Ms represents the mass of the
vehicle body. The unsprung mass Mus represents
the vehicle tire set. The spring ks and the damper
bs support the body weight over the tire. The
spring kus and the damper bus model the stiffness
of the tire in contact with the road. The force Fc
controls the motor (actuator) connected between
the masses Ms and Mus, which represents the ac-
tive suspension mechanism used to reduce the vi-
brations caused by chances on the bottom floor
zr. The control actuator Fc is limited to work in
the range −39.5 N ≤ Fc ≤ 39.5 N.

The system dynamics can be described by
a continuous-time state equation of the form
(Quanser, 2009a):

ẋ(t) = Φcx(t) + Γcu(t) + Γc,d ud(t) (9)

with

x(t) =


zs(t)− zus(t)

żs(t)
zus(t)− zr(t)

żus(t)

 (10)

u(t) = Fc, ud(t) = żr(t) (11)

Φc =


0 1 0 −1

− ks
Ms

− bs
Ms

0 bs
Ms

0 0 0 1
ks
Mus

bs
Mus

− kus

Mus
− bs+bus

Mus

 (12)

Γc =


0
1
Ms

0
− 1
Mus

 , Γc,d =


0
0
−1
bus

Mus

 (13)

where zs and zus denote the vertical displace-
ments of masses Ms and Mus, respectively, and

żs and żus represent the corresponding velocities.
The first state represents the suspension deflec-
tion. The third state represents the tire deflec-
tion. The control input u is composed by the
force Fc. The input ud is the bottom floor ex-
citation represented by its velocity żr. The sys-
tem parameters are Ms = 2.45 kg, Mus = 1 kg,
ks = 900 N/m, kus = 2500 N/m, bs = 7.5 Ns/m
and bus = 5 Ns/m.

Figure 1: Active suspension system at LPC,
FEIS/UNESP.

Mus

ks bs

Fc

kus
bus

zus

Ms

zs

Accelerometer

Accelerometer

zr

Figure 2: Schematic model of the active suspen-
sion system represented by double mass-spring-
damper.

In the system, there is a payload mass (brass)
removable in the vehicle body mass Ms. It con-
sists of two identical weight units, each one weight-
ing 0.4975 kg. The Ms value corresponds to the
total mass (Ms = 2.45 kg), which includes the
total payload mass. Without the payload mass,
Ms = 1.455 kg. Therefore, the Ms mass may be
uncertain in a range of 1.455 kg ≤ Ms ≤ 2.45 kg
(without or with the two weight units).

This active suspension system has two ac-
celerometers measuring the accelerations z̈s(kT )
and z̈us(kT ) of the masses Ms and Mus, respec-
tively. The velocities żs(kT ) and żus(kT ) can be



estimated by integration of the respective acceler-
ation signals. Moreover, the motion of the bottom
plate (zr) and the middle plate (zus) is tracked by
two encoders. A third encoder measures the mo-
tion of the top plate relative to the middle one
(zs − zus). However, these signals from the en-
coders will not be used in the control system, they
will only be used to register the results.

It is worth mentioning that the original active
suspension system from Quanserr does not have
an accelerometer to measure z̈us(t). For imple-
mentation of SDF, the addition of this accelerome-
ter to the system was requested by the researchers
from LPC, for the manufacturer.

4 Controller design

In order to decrease the oscillations caused by
changes on the bottom floor zr, a regulator control
system was designed for the active suspension sys-
tem. Since the acceleration signals of the system
were measured and the mass Ms was subject to
uncertainties, an SDF control law in the presence
of parametric uncertainties was developed. For
this purpose, the state derivative representation
(5) proposed in Theorem 1 was employed within
the classic LMI approach for regional pole place-
ment presented in (Chilali and Gahinet, 1996) (see
Appendix A).

In the experimental tests that will be per-
formed, zr is piecewise constant. In the time inter-
val where zr is constant, żr is zero, while during
the changes on the bottom floor zr from a con-
stant value to another, żr is different from zero.
However, a change occurs in a small time inter-
val. Therefore, the motion of zr is considered fast
enough so that the transient response of the sig-
nal zr can be disregarded in the analysis. Then,
in each part where the control regulation will be
carried out, żr is considered zero.

By considering żr = 0, the model (9) can
be described by a state equation of the form (1),
with x(kT ), Φc, Γc as in (10), (12), (13) respec-
tively. As the Ms mass is uncertain in a range of
1.455 kg ≤Ms ≤ 2.45 kg, the model is of the form
(1) with (Φc,Γc) ∈ Co{(Φc,1,Γc,1), (Φc,2,Γc,2)},
where Ms = 1.455 kg (without payload mass) for
(Φc,1,Γc,1) and Ms = 2.45 kg (with total payload
mass) for (Φc,2,Γc,2).

Table 1 presents the eigenvalues of matrices
Φc,1 and Φc,2, as well as the corresponding damp-
ing ratios (ζ), natural frequencies (ωn) and nat-
ural oscillation periods Tn = 2π/ωn. As can
be observed, the plant has two 2nd-order modes,
with dynamics features that depend on the un-
certain mass Ms. For discrete-time control pur-
poses, it was employed the default sampling pe-
riod adopted in the software package provided by
Quanserr, T = 1 ms, which is 100 times smaller
than the smallest Tn value, as shown in Table 1.

Table 1: Eigenvalues of the continuous-time model
vertices, with corresponding damping ratios (ζ),
natural frequencies (ωn) and natural oscillation
periods Tn = 2π/ωn.

Eigenvalues ζ ωn(rad/s) Tn(s)

Φc,1
−7.50± j59.3 0.12 59.8 0.10
−1.33± j20.8 0.06 20.8 0.30

Φc,2
−6.95± j58.7 0.12 59.1 0.11
−0.83± j16.2 0.05 16.2 0.40

In light of Theorem 1, the resulting discrete-
time plant model can be cast into the form (5),
with A,B as in (7) and

ξ(kT ) =


żs(kT )− żus(kT )

z̈s(kT )
żus(kT )
z̈us(kT )

u((k − 1)T )+

 (14)
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Figure 3: (a) Open-loop poles of the state deriva-
tive model for the active suspension system. The
dotted lines correspond to curves of constant
damping ratio ζ. (b) Closed-loop poles, with the
boundary of the allocation region indicated as a
thick line. The open-loop and closed-loop poles in
the proximity of the unit circle are shown as inset.

Fig. 3a presents the open-loop poles of the
discrete-time model (i.e. the eigenvalues of A), ob-



tained by varying the parameter Ms in the range
1.455 ≤ Ms ≤ 2.45 kg. It is worth noting that
there is a pole at the origin for each case, which is
associated to the row of zeros for the past control
input in the structure of A defined in (7).

The control problem considered herein con-
sists of designing a control law of the form (8), so
that the closed-loop poles are placed in a desired
region for any value of the uncertain parameter
Ms. For stability in discrete-time, the conven-
tional desired location of the eigenvalues is inside
the unit circle in the complex plane. However,
for a better transient behavior of the system, a
more restricted region inside the unit circle may
be selected for pole placement, in order to include
performance constraints. For this purpose, in this
work, the allocation region was chosen as a circle
of radius r = 0.395 centered at (0.6, 0) (depicted
as a thick line in Fig. 3b). More details about
the choice of the allocation region can be found at
(Rossi, 2018).

The gain matrix F was then obtained by using
the LMI approach of (Chilali and Gahinet, 1996)
described in Appendix A, with ξ(kT ), A, B in
place of x(kT ), Φ, Γ, respectively. As can be seen
in the plant dynamics described in (12)-(13), the
uncertainty in the parameter Ms affects both Φc
and Γc. Therefore, as discussed in Remark 2, the
(A,B) matrices belong to a polytope with N2 = 4
vertices formed from the pairwise combinations of
Φ1, Φ2 and Γc,1, Γc,2. A feasible solution to the
LMIs involved in the pole placement problem was
obtained by using the Robust Control ToolboxTM

function“feasp”, resulting in the following gain F :

F =
[
−15.296 −0.109 −10.331 −0.011 0.779

]
(15)

Fig. 3b shows the closed-loop poles (eigenval-
ues of A + BF ), again obtained by varying the
parameters Ms in the range of 1.455 ≤ Ms ≤
2.45 kg. An extended view of the open-loop and
closed-loop poles in the proximity of the unit circle
are shown as an inset, for a better visualization.
A comparison with Fig. 3a reveals that the closed-
loop poles are indeed with larger damping ratios
ζ, aiming at a suppression of the oscillations.

5 Practical Implementations and Results

For experimental implementations in the active
suspension system, the Matlabr/ Simulinkr Soft-
ware is connected to Quanserr’s QUARCr Real-
Time Control Software, which enables the real-
time control application directly from Simulink-
designed controllers. The velocities and acceler-
ations signals were used for feedback. The ac-
celeration signals were measured by accelerome-
ters and filtered, in order to remove bias and high
frequency noises, employing filters adopted in the

software package provided by Quanserr. The ve-
locities were estimated by using suitable integrat-
ing filters developed at LPC.

As an excitation signal, zr(t) was adopted
to produce a square wave signal, with amplitude
0.02m, frequency of 1/3 Hz with pulse width of
50%, for the introduction of changes on the bot-
tom floor (disturbances), as discussed in (Quanser,
2009a). By using the designed robust SDF con-
troller, three cases were investigated, each one
with a different mass Ms coupled in the active
suspension system.
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Figure 4: Open-loop and closed-loop responses for
the system with Ms = 2.45 kg.
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Figure 5: Open-loop and closed-loop responses of
the accelerations for the active suspension system
with total payload mass (Ms = 2.45 kg).

First, the two weight units were coupled in
the active suspension system (Ms = 2.45 kg).
Fig. 4 presents the resulting dynamic behavior of
the system. A vertical dotted line indicates the
time t = 10s when the control starts to operate
(closed-loop). As can be seen, even in open-loop,
the system is stable. However, without the control
action, the displacements zs and zus of the masses
Ms and Mus present large oscillations. By using
the robust SDF controller, these oscillations were
significantly reduced, as shown in the closed-loop
responses, with the overshoot and settling time
attenuated. Fig. 5 shows the filtered acceleration



signals z̈s and z̈us. The control signal effort for
the active suspension system with total payload
mass (Ms = 2.45 kg) is illustrated in Fig. 6.
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Figure 6: Control input for the system with
Ms = 2.45 kg.

It is worth mentioning that the presence of off-
set in the displacement responses is due to nonlin-
earities that occur in the actual active suspension
system, such as dry friction, which is not consid-
ered in the design model.

After removing a weight unit, the next test
was implemented, for the system with half of the
payload mass (Ms = 1.9525 kg). Fig. 7 and
Fig. 8 show the displacements and accelerations of
the system in this condition, respectively. Fig. 9
presents the corresponding control signal effort.
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Figure 7: Open-loop and closed-loop responses for
the system with Ms = 1.9525 kg.
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Figure 8: Open-loop and closed-loop responses of
the accelerations for the active suspension system
with half of the payload mass (Ms = 1.9525 kg).
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Figure 9: Control input for the system with
Ms = 1.9525 kg.

Lastly, for the third implementation, the
other weight unit was also removed, resulting in
no payload mass coupled to the active suspension
system (Ms = 1.455 kg). The dynamic behavior
of the system without the payload mass is exhib-
ited in Fig. 10 and Fig. 11. The corresponding
control signal effort is shown in Fig. 12.
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Figure 10: Open-loop and closed-loop responses
for the system with Ms = 1.455 kg.
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Figure 11: Open-loop and closed-loop responses of
the accelerations for the active suspension system
without payload mass (Ms = 1.455 kg).
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Figure 12: Control input for the system with
Ms = 1.455 kg.

In this quarter car model, the acceleration z̈s
of the sprung mass Ms can be a measure for the
ride comfort, which is related to vehicle body mo-
tion sensed by the passengers (Quanser, 2009b).
An analysis of the acceleration z̈s obtained for the
system in open and closed loop, for different val-
ues of Ms, is shown in Table 2. As can be seen, in
closed-loop, the acceleration was decreased com-
pared to the open-loop response, which would re-
sult in a more comfortable ride for the passengers
in an actual vehicle.

Table 2: Maximum absolute value and root mean
square (RMS) value of the acceleration z̈s for the
open and closed-loop system with different values
of Ms.

Ms Loop status max|z̈s| RMS[z̈s(t)]
(kg) (m/s2) (m/s2)

2.45
Open 3.79 1.54
Closed 2.84 0.75

1.9525
Open 4.49 1.77
Closed 3.26 0.84

1.455
Open 5.57 2.05
Closed 3.63 0.93

Thus, the designed SDF controller was able to
improve the dynamic behavior of the active sus-
pension system with robustness to the uncertainty
in the mass Ms. For different values of Ms, within
its range considered in the controller design, the
closed-loop responses presented significant reduc-
tion of the oscillations caused by changes on the
bottom floor zr.

6 Conclusion

This paper presented a practical implementation
of the robust discrete-time SDF control law pro-
posed in (Rossi et al., 2018) in an active suspen-
sion system. By considering the measurements
only from accelerometers and the presence of an
uncertain mass of the vehicle body, an SDF con-
troller was designed with robustness to paramet-
ric uncertainties using a state derivative design
model. The control problem consisted of reducing
the oscillations caused by changes on the bottom

floor. The results exhibited that the designed SDF
controller improved the dynamic behavior of the
active suspension system, for different values of
the uncertain mass. The use of filters to remove
bias and high frequency noises from the signals
measured by the accelerometers did not compro-
mise the results. However, future investigations
could be carried out to obtain explicit robustness
with respect to the presence of the filters. More-
over, future implementations could be concerned
with the active suspension system subject to input
time delay or fault in the actuator.
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A Regional Pole Placement (CHILALI;
GAHINET, 1996)

Consider a discrete-time model of the form

x((k + 1)T ) = Φx(kT ) + Γu(kT ), (16)

where x(kT ) ∈ Rn, u(kT ) ∈ Rm are the state
and input vectors at time kT . Matrices (Φ,Γ) are
assumed to belong to a polytope Ω with known
vertices (Φi,Γi), i = 1, 2, . . . , N .

Moreover, let D be a region in the complex
plane described by

D = {z ∈ C | α+ zβ + z̄βT < 0} (17)

where z̄ denotes the complex conjugate of z and
α, β are (p×p) matrices of real-valued coefficients,
with α symmetrical.

If there exist matrices X = XT ∈ Rn×n and
L ∈ Rm×n such that the following LMIs are satis-
fied (Chilali and Gahinet, 1996):

α⊗X + β ⊗ (ΦiX + ΓiL)+

+ βT ⊗ (ΦiX + ΓiL)T < 0, i = 1, . . . , N (18)

X > 0 (19)

then a control law of the form u(kT ) = Fx(kT ),
with F = LX−1, will place the closed loop poles
inside D, for any (Φ,Γ) ∈ Ω. The symbol ⊗ de-
notes the Kronecker product of matrices.

A particular case consists of placing the closed
loop poles inside a circle of radius r and center
(χ0, 0), i.e. D = {z = (χ+ jν) | (χ− χ0)2 + ν2 <
r2}. For this purpose, Schur’s complement can be
used to rewrite the inequality (χ−χ0)2 + ν2 < r2

as [
−r −χ0 + z

−χ0 + z̄ −r

]
< 0 (20)

which can be cast into the form α+ zβ+ z̄βT < 0
of (17), with α and β given by (Rossi et al., 2018):

α =

[
−r −χ0

−χ0 −r

]
, β =

[
0 1
0 0

]
(21)


