
AN INFINITE HORIZON MODEL PREDICTIVE CONTROL FOR STABLE,
INTEGRATING AND UNSTABLE SYSTEMS

Rafael R. Sencio∗, Darci Odloak∗

∗Department of Chemical Engineering, Polytechnique School, University of São Paulo
Av. Prof. Luciano Gualberto, trv 3 380, 61548, São Paulo-SP, Brazil

Emails: rafaelsencio@usp.br, odloak@usp.br

Abstract— Several works in the literature of model predictive control (MPC) have focused on the development
of MPC formulations that are suitable for industrial applications. Usually, these controllers are based on state
space models whose structures depend on the system type, which may be stable, integrating, or unstable. Thus,
the usage of different internal models often yields distinct MPC formulations, which may be an issue for building a
more general industrial package. Therefore, in order to consolidate these approaches, the present study addresses
the development of a more general infinite horizon model predictive controller (IHMPC). This strategy is based
on a novel formulation of state space model for stable, integrating, and unstable systems that is suitable for the
IHMPC implementation. Simulation results demonstrated the successful application of the proposed controller to
a deisobutanizer distillation column and to an unstable reactor system.
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Resumo— Vários trabalhos na literatura de controle preditivo (MPC) têm focado no desenvolvimento de
formulações destinadas a aplicações industriais. Normalmente, esses controladores são baseadas em modelos em
espaço de estados cujas estruturas dependem do tipo de sistema, que pode ser estável, integrador ou instável.
Assim, o emprego de diferentes modelos internos frequentemente leva a formulações de MPC distintas, o que pode
ser um empecilho para a elaboração de pacotes industriais mais gerais. Portanto, com o intuito de consolidar tais
abordagens, o presente estudo apresenta o desenvolvimento de uma versão mais geral do MPC de horizonte infinito
(IHMPC). Essa estratégia é baseada em uma nova formulação de modelo em espaço de estados para sistemas
estáveis, integradores e instáveis adequada à implementação do IHMPC. Resultados de simulações demonstraram
a aplicação do controlador proposto a uma coluna deisobutanizadora e a um reator instável.

Palavras-chave— Controle preditivo, MPC, Horizonte infinito, Sistemas integradores, Sistemas instáveis.

1 Introduction

The stability properties of the constrained reced-
ing horizon control (also known as moving hori-
zon control) was first addressed in (Rawlings and
Muske, 1993), in which the authors proposed an
infinite horizon controller that is only suitable as a
constrained quadratic regulator, since it is designed
to drive the system to the origin. Further exten-
sion of this regulator has been proposed in (Muske
and Rawlings, 1993) and addresses the setpoint
tracking and the output feedback through state
estimation. However, this formulation requires the
knowledge of plant equilibrium point and assumes
that, at each sampling time, the system states lie
inside a set such that the optimization control prob-
lem is feasible, which may not hold in a practical
application.

Concerning the development of infinite hori-
zon model predictive controllers (IHMPC) that are
suitable for industrial applications, several works
have been developed considering systems with sta-
ble (Rodrigues and Odloak, 2003b; Odloak, 2004),
integrating (Rodrigues and Odloak, 2003a; Car-
rapiço and Odloak, 2005) and unstable (González
et al., 2011; Martins and Odloak, 2016) poles,
and with time delay as well (Santoro and Od-
loak, 2012; Martins et al., 2013). These stud-
ies have led to successful industrial applications
(Carrapiço et al., 2009; Porf́ırio and Odloak, 2011).

In these studies, the authors proposed a step
response-based state space model to be used as the
internal model of the IHMPC. The construction
of this model requires transfer functions that de-
scribe each output-input relationship and can be
summarized as follows:

1. apply a unitary step to system inputs;

2. obtain the analytical form of the step response
by partial fractions expansion;

3. define the states related to the incremental
form of the inputs;

4. define the states related to the system poles
(stable, integrating, or unstable);

5. build up the state space model.

However, the formulation described above de-
pends on previous knowledge about the poles of
each transfer function in order to determine the
structure of the final model. In other words, al-
though the overall steps to build the model are the
same, its structure will be different whether the
system has stable, integrating, or unstable poles.
Thus, it may be difficult to automatize the model
construction for the general case in a computer pro-
gram without using different subroutines for each
type of system, e.g. stable and integrating, stable
and unstable with time delay etc. Furthermore, dif-
ferent model structures often lead to distinct MPC



formulations, which may be an issue for building
a more general industrial package.

In this view, the purpose of the present study
is to propose an alternative method for building
up state space models suitable for the IHMPC
implementation. This new method requires the
system discrete time state space model, which in
general can be easily obtained by linearization
and discretization of rigorous differential equations
models or even by means of system identification
techniques when experimental data are available.
Also, the proposed method deals with systems that
have multiplicity of poles and is easy to automatize
in a computer program, which is an advantage for
developing an industrial package.

This paper is organized as follows. The next
section details the proposed method for building
the state space model which will be used as the in-
ternal model of the IHMPC. Then, in Section 3, we
discuss the development of the IHMPC algorithm
based on the proposed model formulation. In Sec-
tion 4, we present simulation results concerning
the application of the IHMPC to a deisobutanizer
distillation column and to an unstable reactor sys-
tem. Finally, the conclusions of this study are
given in Section 5.

2 The extended output
prediction-oriented model

Consider the state space model in the posi-
tional form of the inputs defined below, in
which x̃(k) ∈ Rnx , ũ(k) ∈ Rnu , Ã ∈ Rnx×nx ,
B̃ ∈ Rnx×nu , C̃ ∈ Rny×nx and nx, nu and ny are
the number of states, inputs, and outputs, respec-
tively.

x̃(k + 1) = Ãx̃(k) + B̃u(k) (1)

y(k) = C̃x̃(k) (2)

We can perform a system decomposition
(Nagar and Singh, 2004) in order to obtain the
following form of the state space model: x̃st(k + 1)

x̃in(k + 1)
x̃un(k + 1)

 =

Ãst 0 0

0 Ãin 0

0 0 Ãun

 x̃st(k)
x̃in(k)
x̃un(k)


+

 B̃stB̃in
B̃un

u(k) (3)

y(k) =
[
C̃st C̃in C̃un

]  x̃st(k)
x̃in(k)
x̃un(k)

 (4)

in which Ãst ∈ Rnst×nst , Ãin ∈ Rnin×nin ,
Ãun ∈ Rnun×nun are diagonal matrices (or block
diagonal in the case of repeated poles) whose
main diagonals are formed by nst stable, nin in-
tegrating and nun unstable poles of the system,

respectively, and x̃st(k) ∈ Rnst , x̃in(k) ∈ Rnin ,
x̃un(k) ∈ Rnun , B̃st ∈ Rnst×nu , B̃in ∈ Rnin×nu ,
B̃un ∈ Rnun×nu , C̃st ∈ Rny×nst , C̃in ∈ Rny×nin

and C̃un ∈ Rny×nun .

Now, defining

∆x̃st(k) = x̃st(k)− x̃st(k − 1),

∆x̃in(k) = x̃in(k)− x̃in(k − 1),

∆x̃un(k) = x̃un(k)− x̃un(k − 1) and

∆u(k) = u(k)− u(k − 1)

we can write the expressions for the incremental
states in a convenient manner as follows

∆x̃st(k) = Ãst∆x̃st(k − 1)

+
(
I − Ãst

)−1 (
I − Ãst

)
B̃st∆u(k − 1)

(5)

∆x̃in(k) = Ãin∆x̃in(k − 1) + B̃in∆u(k − 1) (6)

∆x̃un(k) = Ãun∆x̃un(k − 1)

+
(
I − Ãun

)−1 (
I − Ãun

)
B̃un∆u(k − 1)

(7)

Then, the system output can be computed as
follows

y(k) = C̃st (x̃st(k − 1) + ∆x̃st(k))

+ C̃in (x̃in(k − 1) + ∆x̃in(k))

+ C̃un (x̃un(k − 1) + ∆x̃un(k))

(8)

Let us define the following states

x∆(k − 1) = C̃stx̃st(k − 1) + C̃inx̃in(k − 1)

+ C̃unx̃un(k − 1)
(9)

xst(k − 1) = ∆x̃st(k − 1) (10)

xin(k − 1) = ∆x̃in(k − 1) (11)

xun(k − 1) = ∆x̃un(k − 1) (12)

Now, we may write the output y(k) as function
of the above variables as follows

y(k) = x∆(k − 1) + C̃st

(
Ãstxst(k − 1)

−
(
I − Ãst

)−1

ÃstB̃st∆u(k − 1)

)
+ C̃inÃinxin(k − 1) + C̃un

(
Ãunxun(k − 1)

−
(
I − Ãun

)−1

ÃunB̃un∆u(k − 1)

)
+

(
C̃st

(
I − Ãst

)−1

B̃st + C̃inB̃in

+ C̃un

(
I − Ãun

)−1

B̃un

)
∆u(k − 1) (13)

The states defined in 9, 10, 11 and 12 can be
updated recursively according to 14, 15, 16 and 17,



respectively.

x∆(k) = x∆(k − 1) + C̃inÃinxin(k − 1)

+

(
C̃st

(
I − Ãst

)−1

B̃st + C̃inB̃in (14)

+ C̃un

(
I − Ãun

)−1

B̃un

)
∆u(k − 1)

xst(k) = Ãstxst(k − 1)

−
(
I − Ãst

)−1

ÃstB̃st∆u(k − 1)
(15)

xin(k) = Ãinxin(k − 1) + B̃in∆u(k − 1) (16)

xun(k) = Ãstxun(k − 1)

−
(
I − Ãun

)−1

ÃunB̃un∆u(k − 1) (17)

Finally, we may write the following state-space
model:

x(k + 1) = Ax(k) +B∆u(k) (18)

y(k) = Cx(k) (19)

with

A =


Iny 0 CinAin 0
0 Ast 0 0
0 0 Ain 0
0 0 0 Aun

 ,

x(k) =


x∆(k)
xst(k)
xin(k)
xun(k)

 , B =


B∆

Bst
Bin
Bun

 ,
C =

[
Iny

Cst 0 Cun
]

in which

Ast = Ãst, Ain = Ãin, Aun = Ãun,

B∆ = C̃st

(
I − Ãst

)−1

B̃st + C̃inB̃in

+ C̃un

(
I − Ãun

)−1

B̃un,

Bst = −
(
I − Ãst

)−1

ÃstB̃st, Bin = B̃in,

Bun = −
(
I − Ãun

)−1

ÃunB̃un,

Cst = C̃st, Cin = C̃in, Cun = C̃un.

Here in this representation, x∆(k) corresponds
to the integrating states related to the incremental
form of inputs and xst(k), xin(k) and xun(k) stand
for the states related to stable, integrating and
unstable modes of the original system.

3 The IHMPC formulation

The infinite horizon model predictive controller is
based on the following quadratic cost function:

V (k) =

∞∑
j=0

‖y(k + j|k)− ysp,k‖2Q

+

∞∑
j=0

‖∆u(k + j|k)‖2R

(20)

in which Q ∈ Rny×ny and R ∈ Rnu×nu are positive
definite weighting matrices, y(k+j|k) is the output
prediction at time step k + j computed at time
step k, ysp,k ∈ Rny is the output setpoint at time
step k, ∆u(k + j|k) is the vector of input moves
with ∆u(k+ j|k) = 0 for j ≥ m, in which m is the
control horizon.

The first term of 20 can be written as follows

∞∑
j=0

‖y(k + j|k)− ysp,k‖2Q =

m∑
j=0

‖y(k + j|k)− ysp,k‖2Q

+

∞∑
j=m+1

‖y(k + j|k)− ysp,k‖2Q (21)

Since there are no control actions for j ≥ m, it is
easy to show that we can compute y(k + j|k) for
j ≥ m+ 1 according to

y(k + j|k) = CAj−mx(k +m|k) (22)

Then, we have that

∞∑
j=m+1

‖y(k + j|k)− ysp,k‖2Q =

∞∑
j=m+1

‖CAj−mx(k +m|k)− ysp,k‖2Q (23)

However, if we expand the right-hand side of
22 according to 24, it is easy to see that only
CstA

j−m
st xst(k+m|k) goes to zero as j →∞ since

lim
j→∞

Ajst = 0.

CAj−mx(k +m|k) = x∆(k +m|k)

+ CstA
j−m
st xst(k +m|k)

+ Cin

(
j∑
i=1

Ai−min −
m−1∑
i=0

A−iin

)
xin(k +m|k)

+ CunA
j−m
un xun(k +m|k) (24)

Therefore, in order to prevent the cost function
to be unbounded, the following terminal equality
constraints must be included in the control opti-
mization problem:

x∆(k +m|k)− ysp,k = 0 (25)

xin(k +m|k) = 0 (26)



xun(k +m|k) = 0 (27)

It is easy to show that x(k + m|k) can be
computed according to

x(k +m|k) = Amx(k) +W∆uk (28)

with

W =
[
Am−1B Am−2B · · · AB B

]
∆uk =

[
∆u(k|k)T · · · ∆u(k +m− 1|k)T

]T
Then, the constraints given in 25, 26 and 27

can be written in a compact form as follows:

N (Amx(k) +W∆uk)− γk = 0 (29)

with

N =

Iny
0 0 0

0 0 Inin 0
0 0 0 Inun

 and γk =

ysp,k0nin

0nun

 .
Now, imposing the constraint given in 29, we

can simplify 23 according to

∞∑
j=m+1

‖y(k + j|k)− ysp,k‖2Q

=

∞∑
j=m+1

‖CstAj−mst xst(k +m|k)‖2Q

= ‖xst(k +m|k)‖2Q̄ (30)

in which Q̄ ∈ Rnst×nst is computed as solution of
the Lyapunov equation given in

Q̄−ATstQ̄Ast = ATstC
T
stQCstAst (31)

Therefore, the controller can be defined as
solution of the following problem:

Problem P1

min
∆uk

V1(k) =

m∑
j=0

‖y(k + j|k)− ysp,k‖2Q

+
m−1∑
j=0

‖∆u(k + j|k)‖2R

+ ‖xst(k +m|k)‖2Q̄

(32)

subject to 18, 19 and 29 and

∆u(k + j|k) ∈ U , j = 0, . . . ,m− 1 (33)

∆u(k + j|k) = 0, j ≥ m (34)

in which

U =
∆umin ≤ ∆u(k + j|k) ≤ ∆umax

umin ≤ u(k − 1) +

j∑
i=0

∆u(k + i|k) ≤ umax



However, we have no guarantee that the termi-
nal equality constraint 29 holds for any control hori-
zon m, which may lead the optimization problem
to be infeasible and then compromise its practical
application due to lack of reliability. Hence, ap-
propriate slack variables must be included in order
to soften the hard terminal constraints. Therefore,
constraints 25, 26 and 27 are rewritten as follows:

x∆(k +m|k)− ysp,k + δ∆,k = 0 (35)

xin(k +m|k) + δin,k = 0 (36)

xun(k +m|k) + δun,k = 0 (37)

which again can be written in a compact form as
given in 38.

N (Amx(k) +W∆uk)− γk + δk = 0 (38)

with δk =
[
δT∆,k δTin,k δTun,k

]T
, δ∆,k ∈ Rny ,

δin,k ∈ Rnin and δun,k ∈ Rnun .
Also, the slack variables must be included in

the first term of the cost function so it remains
bounded and the terminal penalty can be employed.
Then, we have that

∞∑
j=m+1

∥∥y(k + j|k)− ysp,k + CAj−mNT δk
∥∥2

Q

=

∞∑
j=m+1

∥∥CAj−m (x(k +m|k) +NT δk
)
− ysp,k

∥∥2

Q

=

∞∑
j=m+1

∥∥∥CstAj−mst xst(k +m|k)
∥∥∥2

Q

= ‖xst(k +m|k)‖2Q̄ (39)

Finally, the control optimization problem can
be redefined as stated below.

Problem P2

min
∆uk, δk

V2(k), (40)

V2(k) =

m∑
j=0

∥∥y(k + j|k)− ysp,k + CAj−mNT δk
∥∥2

Q

+

m−1∑
j=0

‖∆u(k + j|k)‖2R

+ ‖xst(k +m|k)‖2Q̄ + ‖δk‖2S
subject to 18, 19, 33, 34 and 38.

In the above problem, the penalty matrix of

slack variables is such that S =

S∆

Sin
Sun


in which S∆ ∈ Rny is a positive semi-definite
weighting matrix related to δ∆,k, while Sin ∈ Rnin

and Sun ∈ Rnun are positive definite weighting
matrices related to δin,k and δun,k, respectively.



In the case when the slack variables related to
integrating and unstable modes are zeroed, a sta-
bilizing control law can be obtained by simplifying
Problem P2 as the following optimization problem:

Problem P3

min
∆uk, δ∆,k

V3(k), (41)

V3(k) =

m∑
j=0

‖y(k + j|k)− ysp,k + δ∆,k‖2Q

+

m−1∑
j=0

‖∆u(k + j|k)‖2R

+ ‖xst(k +m|k)‖2Q̄ + ‖δ∆,k‖2S∆

subject to 18, 19, 33, 34 and

N (Amx(k) +W∆uk)− γk + δk = 0 (42)

with δk =
[
δT∆,k 0Tnin

0Tnun

]T
.

The following lemma concerns about the recur-
sive feasibility of Problem 3, while its convergence
is assured by the theorem stated next.

Lemma 1 The feasibility of Problem P3 at time
step k implies the optimization problem will remain
feasible for any subsequent time step k + j > k.

Proof: The main idea to this proof has been pro-
vided in (Muske and Rawlings, 1993) and a similar
procedure will be followed here.

Let (∆u∗k, δ
∗
∆,k) denote the solution to Prob-

lem P3 at a given time step k. Then, only the first
control move is inject into the plant according to
the receding horizon principle. At time step k + 1,
let us consider the non-optimal candidate solution
given as follows:

∆ũk+1 =[
∆u∗(k + 1|k)T · · · ∆u∗(k +m− 1|k)T 0T

]
δ̃∆,k+1 = δ∗∆,k

It is clear that (∆ũk, δ̃∆,k) satisfies the in-
equality constraints given in 33 and 34 since the
last control movement is null. We can also show
the equality constraint 42 is satisfied. To do so,
note that x(k +m+ 1|k + 1) = Ax(k +m|k), then
we have

Nx(k +m+ 1|k + 1)− γk + δ∗k
T =

NAx(k +m|k)− γk + δ∗k
T

with δ∗k
T =

[
δ∗∆,k

T 0Tnin
0Tnun

]T
.

Thus, since xin(k+m|k) and xun(k+m|k) are
zero, it yields that

x∆(k +m|k)− ysp,k + δ∗∆,k = 0

Therefore, by induction, it is easy to see that
the problem will remain feasible at every time step
k + j > k. 2

Theorem 1 For an undisturbed stable, integrating
and unstable system with (A,B) stabilizable and
m ≥ (nin + nun) the steady state corresponding
to the system reference ysp,k is an asymptotically
stable solution to Problem P3, provided ysp,k is
reachable and Q and R are positive definite weight-
ing matrices.

Proof: Consider that V ∗3 (k) denotes the optimal
cost function value at time step k and Ṽ3(k + 1)
corresponds to the cost value for (∆ũk, δ̃∆,k), as
defined above. Thus, we may write the following
relationship:

V ∗3 (k)− Ṽ3(k + 1) = ‖y(k|k)− ysp,k + δ∆,k‖2Q
+ ‖∆u(k|k)‖2R (43)

Since the right-hand side of 43 is positive, it
is easy to see that Ṽ3(k + 1) ≤ V ∗3 (k), which also
implies V ∗3 (k + 1) ≤ V ∗3 (k). Consequently, the
sequence that comprises optimal cost values at sub-
sequent time steps is non-increasing and bounded
below by zero. Therefore, V ∗3 (k) converges to zero,
which implies that ∆uk also converges to zero and
that the system output converges to ysp,k. 2

4 Application examples

Deisobutanizer distillation column

As our first example, we consider a deisobutanizer
distillation column, which has been described in
(Alvarez et al., 2009). This distillation column is
part of the alkylation unit in the oil refinery of
PETROBRAS/Cubatão.

A simplified version of the experimental model
is given as follows:

y1(s)
y2(s)
y3(s)

 =


2.3
s

−0.7×10−3

s
0.2
s

4.7
9.3s+1

1.4×10−3

6.8s+1
0.4

11.6s+1

1.9
10.1s+1

61×10−3

6.6s+1
0.2

12.3s+1


u1(s)
u2(s)
u3(s)


The output variables of this process are y1 (%)

the liquid level of the top drum, y2 (◦C) the tem-
perature of tray 68 and y3 (%) the percentage
of flooding in the column, while the manipulated
inputs are u1 (ton/h) the steam flow rate to the re-
boiler, u2 (m3/d) the reflux flow rate and u3 (◦C)
the feed temperature, which is supposed to be
manipulated (Alvarez et al., 2009).

For simulation purpose, we considered the sys-
tem has the same input constraints as given in
(Alvarez et al., 2009), which are

umax =
[
5.5 2800 90

]T
umin =

[
4 2400 85

]T
∆umax =

[
0.2 25 0.5

]T
∆umin = −∆umax.



The tunning parameters of the controller are

m = 3

Q = diag
([

1 1 1
])

R = diag
([

1 1 1
])
× 10−1

S∆ = diag
([

1 1 1
])
× 103

Sin = 1× 105

The simulation started from a point in

which ysp =
[
47 52.5 91

]T
, y = ysp and

u =
[
4.7 2650 88.5

]T
. Then, the output set-

point was changed to ysp =
[
49 52.5 90.5

]T
at

time step t = 10 min.

The process response is shown in Figures 1
and 2 for the controlled and manipulated variables,
respectively. Since the first output is pure integrat-
ing with respect to all the three inputs, it rapidly
converged to its reference as an effect of the high
penalty selected for the slack variable related to
the integrating modes. Also, from Figure 3, we
observe the monotonically decreasing behavior of
the controller cost function along the simulation.

Unstable reactor system

In the sequence, we provide the application of the
proposed IHMPC to an unstable reactor system, in
which a liquid phase, exothermic, irreversible, first
order chemical reaction occurs, with A→ B. The
system model based on dimensionless variables are
detailed in (Nagrath et al., 2002) and is replicated
here as follows:

dx1

dτ
= q (x1f − x1)− φx1κ, κ = exp

(
x2

1 + x2/γ

)
dx2

dτ
= q (x2f − x2)− δ (x2 − x3)− βφx1κ

dx3

dτ
=
qc (x3f − x3)

δ1
+
δ (x2 − x3)

δ1δ2

in which τ corresponds to the time, x1 is the con-
centration of reactant A, x2 is the reactor temper-
ature, x3 is the jacket temperature, q is the reactor
feed flow rate and qc represents the jacket flow rate.
Also, the dimensionless parameters are given as fol-
lows: β = 8.0, γ = 20, δ = 0.3, δ1 = 0.1, δ2 = 0.5,
φ = 0.072, x1f = 1.0, x2f = 0.0 and x3f = −1.0.
The authors in (Martins and Odloak, 2016) per-
formed the linearization of the CSTR model around
an open-loop unstable operating point, which re-
sulted in the following transfer matrix:

G(s) =
0.45(s+22.44)(s+0.58)

(s+22.59)(s+0.89)(s−0.62)
1.04

(s+22.59)(s+0.89)(s−0.62)

−2.75(s+22.53)(s+0.76)
(s+22.59)(s+0.89)(s−0.62)

−3(s+1.81)
(s+22.59)(s+0.89)(s−0.62)

−16.51(s+0.76)
(s+22.59)(s+0.89)(s−0.62)

−10(s+3.57)(s−0.12)
(s+22.59)(s+0.89)(s−0.62)


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Figure 1: Controlled variables of the distillation
column.
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Figure 2: Manipulated variables of the distillation
column.

0

150

300

450

600

750

0 20 40 60 80 100

V

time

Figure 3: Cost function of the IHMPC applied to
the deisobutanizer distillation column.



In this example, we considered the following
input constraints:

umax =
[
5 10

]T
umin =

[
0 0

]T
∆umax =

[
1 2

]T
∆umin = −∆umax.

Note that in this case we have only two inputs
to manipulate, which implies that there are no
degrees of freedom to control all the three outputs.
Therefore, we considered here that y3 is not a
controlled variable, which can be easily handled
by zeroing the weights related to this output. The
tunning parameters of the controller are given as
follows:

m = 4

Q = diag
([

1 1 0
])

R = diag
([

1 1
])

S∆ = diag
([

1 1 0
])
× 104

Sun = diag
([

1 1
])
× 104

In the application of the IHMPC, we
considered the system initial condition is

ysp =
[
0.8933 0.5193 −0.5950

]T
, y = ysp and

u =
[
1.0 1.65

]T
. At time step t = 2,

the desired system reference was changed to

ysp =
[
0.6 2.3 −0.5950

]T
.

Figure 4 depicts the response of the system
outputs, while the manipulated variables are shown
in Figure 5. As expected, only the first two out-
puts converged to their setpoints since y3 was not
considered as a controlled variable. According to
Figure 5, the manipulated variables temporarily
reached their lower limits after the setpoint change,
which was properly handled by the optimization
problem. In addition, the value of cost function as
shown in Figure 6 was also non-increasing, which
demonstrates the controller stability.

5 Conclusion

In this study, an alternative formulation of a state
space model suitable for IHMPC implementation
was provided. In addition, we presented the de-
velopment of the IHMPC for stable, integrating
and unstable systems. The simulation examples
showed the proposed controller was successfully
applied to both an integrating and an unstable
system.

Finally, the proposed IHMPC can be easily
modified in order to accommodate output zones
and input targets, which is very common in process
industries. In addition, future works may compre-
hend the extension of the model presented here
considering time delayed systems as well as a ro-
bust version of the proposed IHMPC for dealing
with system uncertainties.
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Figure 4: Output response of the unstable reactor.
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Figure 5: Manipulated variables of the unstable
reactor.
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the unstable reactor.
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