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Abstract— This work evaluates the stability conditions of a non-cooperative Distributed Model Predictive
Controller configuration, which couple nominally stabilizing model predictive controllers. Two case studies using
a four-tank system assess the characteristics of the distributed formulation. In the first case, for a set of system
parameters, it is showed that if enough information is shared between local controllers, their cost function are
non-increasing. In the second case, it is mapped the combination of system parameters, in which the stability
conditions of the distributed MPC formulation are held.
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Resumo— Este trabalho avalia as condições para estabilidade de uma configuração não cooperativa para um
controlador preditivo distribúıdo, através do acoplamento de controladores preditivos nominalmente estáveis.
Dois estudos de caso, utilizando um sistema de quatro tanques acoplados, avaliam as caracteŕısticas desta formu-
lação. No primeiro caso, dado um certo conjunto de parâmetros da planta, é mostrado que se uma quantidade
suficiente de informações é trocada entre os controladores locais, as suas funções custo não crescem. No segundo
caso, é mapeada as combinações de parâmetros do sistema nas quais as condições para estabilidade da formulação
distribúıda de controladores MPC são válidas.
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1 Introduction

Centralized control schemes for large scale plants
face, in general, difficulties in coordination, main-
tenance and solution of the optimization prob-
lem in real time (Pourkargar et al., 2017; Fer-
ramosca et al., 2013). On the other hand, fully
decentralized control strategies are simpler to im-
plement, but ignore the interconnections among
systems and are not able to drive the global sys-
tem to an optimum (Venkat et al., 2008). In the
meantime, there has been an increase in avail-
ability of sensor information, actuators capability
and network-based availability of wired and wire-
less data (Christofides et al., 2013), which allows
sharing of information among different agents in a
process plant. Therefore, the use of such commu-
nication capabilities allows the application of lo-
cal optimizing controllers that share information,
which can bypass some issues of centralized con-
trol approaches while improving the performance
of decentralized control approaches.

DMPC (Distributed Model Predictive Con-
troller) is developed to achieve such objectives,
and is classified in two main approaches (Venkat
et al., 2008; Ferramosca et al., 2013): coopera-
tive controllers and non-cooperative (or commu-
nication based) controllers. In the former, each
local controller minimizes a global cost function,
while, in the later, each local controller only opti-
mizes the cost function of its subsystem, making
use of available information from other controllers
(Maestre et al., 2011). Venkat et al. (2008) in-
dicate that it is necessary to apply cooperation
based DMPC in order to achieve system-wide ob-

jectives.

However, in some conditions it is possible to
design non-cooperative stabilizing DMPC’s for-
mulations, as exemplified by Li and Xi (2010).
These authors propose an algorithm to couple fi-
nite horizon model predictive controllers in a dis-
tributed manner, dealing with a scenario in which
communication is limited. They indicated the
need of limiting communication times necessary
for the local controllers reach an agreement, as
well as, choosing proper initial estimates for the
control actions.

Then, this work aims to address the closed-
loop stability requirements for a non-cooperative
DMPC configuration, applying nominally stabiliz-
ing model predictive controllers as local agents. It
is assessed when the controllers cost functions are
non-increasing.

The rest of this article is structured as follows.
Section 2 presents the proposed DMPC formula-
tion. Section 3 details the closed-loop stability
conditions for the distributed control formulation.
Section 4 presents the case study in order to exem-
plify the features of the control system. Finally,
Section 5 offers some concluding remarks.

2 DMPC Formulation

2.1 Centralized approach

González and Odloak (2009) proposed a nominally
stabilizing model predictive controller, for systems
with solely stable poles and zone control:



Problem P0:

min
∆uk,ysp,k,δy,k

Vk =

∞∑
j=0

∥∥y(k + j|k)− ysp,k − δy,k
∥∥2

Q
+

+

m−1∑
j=0

‖∆u(k + j|k)‖2R +
∥∥δy,k∥∥2

Sy
,

suject to:

xs(k + m|k)− ysp,k − δy,k = 0 (1a)

−∆umax ≤ ∆u(k + j|k) ≤ ∆umax, j = 0, . . . ,m− 1,
(1b)

umin ≤ u(k + j|k) ≤ umax, j = 0, . . . ,m− 1, (1c)

ymin ≤ ysp,k ≤ ymax, (1d)

where xs(k + m|k) is a vector of artificial inte-
grating states at the time step k +m given infor-
mation available at time step k (included by the
model formulation), ∆u(k+ j|k) is the movement
increment in the input variables, y(k+ j|k) is the
output vector at time step k + j, ysp,k is the ref-
erence vector, m is the control horizon, δy,k is a
vector of slack variables that aims to enlarge the
attraction domain of solutions, and Q, R and Sy

are weighting matrices.
The model of the system applied in such a

formulation is a canonical state space based on the
analytical form of the step response of the system
(González and Odloak, 2009):

[
xs(k + 1)
xst(k + 1)

]
=

[
Iny 0
0 F st

]
·
[
xs(k)
xst(k)

]
+

[
Bs

Bst

]
·∆u(k),

(2)

y(k) =
[
Iny Ψst

]
·
[
xs(k)
xst(k)

]
, (3)

where xst is the stable states vector of the sys-
tem. The other matrices included in the model
are detailed in González and Odloak (2009).

Such a controller can be applied in underacted
systems due to the degrees of freedom included by
the zone control approach.

In order to simplify the application of such a
controller, the equality constraint, Equation (1a),
can be directly included into the objective func-
tion, which gives:
Problem P1:

min
∆uk,ysp,k

Vk =

∞∑
j=0

‖y(k + j|k)− xs(k +m|k)‖2Q+

+

m−1∑
j=0

‖∆u(k + j|k)‖2R +
∥∥xs(k +m|k)− ysp,k

∥∥2

Sy
,

suject to: equations (1b), (1c), (1d).

Remark 1 It is straightforward to show that
Problem P1 preserves the properties of Problem
P0, namely: (i) nominal stability, (ii) feasibil-
ity (there is always a solution for the optimiza-
tion problem that fulfill the constraints for all time
steps).

2.2 Distributed approach

In this approach, it is necessary to decompose the
system in different subsystems, which are con-
trolled by local agents with some level of com-
munication (Pourkargar et al., 2017). Here it is
assumed that the controllers only exchange their
input increments.

The model applied in the centralized con-
troller, Equations (2) and (3), is already on a
canonical form. This allows the direct decomposi-
tion of the subsystems, which can be represented
by selecting the states related to each subsystem
- xs

i , x
st
i - and including manipulated variables of

adjacent subsystems - ∆uj - as disturbances:[
xs
i(k + 1)

xst
i (k + 1)

]
=

[
Inyi 0

0 F st
i

]
·
[
xs
i(k)

xst
i (k)

]
+

[
Bs

i
Bst

i

]
·∆ui(k)

+
∑
j 6=i

[
Bs

j

Bst
j

]
·∆uj(k), (5)

yi(k) =
[
Inyi Ψst

i

]
·
[
xs
i(k)

xst
i (k)

]
, (6)

where ∆uj can be considered as a known distur-
bance vector for the system i.

Then, each local controller on this distributed
approach is an IHMPC (infinite horizon model
predictive controller), which follows Problem P1,
applying the model represented by Equations (5)
and (6). Consequently, they must take account
into a known disturbance vector.

Considering a two agents system, the follow-
ing non-cooperative DMPC algorithm can be for-
mulated, based on an algorithm proposed by Li
and Xi (2010):

1. Define the error tolerance and maximum it-
eration for the algorithm,

2. Obtain the previously evaluated input incre-
ment vectors of each agent and apply the re-
ceding horizon for them:

∆ũ1k =
[
∆u1(k|k − 1)∗

> · · ·

∆u1(k +m− 2|k − 1)∗
>

0
]>

, (7)

∆ũ2k =
[
∆u2(k|k − 1)∗

> · · ·

∆u2(k +m− 2|k − 1)∗
>

0
]>

, (8)

3. Evaluate Problem P1 for each subsystem, us-
ing ∆ũ1k and ∆ũ2k as disturbance vectors
for subsystems 2 and 1, respectively,

4. Exchange the optimum input increments
evaluated in step 3, ∆u∗1k and ∆u∗2k . Con-
sider them as disturbance vectors for subsys-
tems 2 and 1, respectively, and solve Problem
P1 again for each subsystem,



5. Evaluate the stop criteria: the euclidean
norm between the difference of optimum so-
lutions found on steps 3 and 4,

6. Repeat steps 4 and 5 until the tolerance is
met or the maximum number of iteration is
reached.

7. Implement the instant control actions -
∆u∗1(k|k), ∆u∗2(k|k) - move for the next time
step and return to step 2.

According to Li and Xi (2010), the stop crite-
ria imposed, based on the euclidean norm of the
difference, approximately guarantees the Nash op-
timality, if the tolerance is sufficiently small and
the maximum number of iterations is not reached.
These authors indicate that such a limitation for
the iterations should be included to account for
the acceptable communication time during one
sampling time.

3 Stability Conditions

In other to discuss the stability of the DMPC
strategy presented earlier, it is necessary to ad-
dress the stability conditions of Problem P1 tak-
ing account into known disturbances. This issue
is detailed in Theorem 1.

Theorem 1. For the pair (A,B) stabilizable,
consider a subsystem i with distinct stable poles,
in which a set of planned increments in the ma-
nipulated inputs of adjacent subsystems, ∆uj, are
available after convergence of the proposed algo-
rithm. Since the solution of Problem P1, ∆u∗i , is
always feasible at any time step, then, based on
the available information about ∆uj, the succes-
sive solutions of the algorithm applying Problem
P1 drive the closed-loop system asymptotically to
a steady-state, provided that the increments in the
manipulated inputs of adjacent systems realized,
α ·∆uj, are closer to the ones planned.

Proof: This proof extends the one presented by
González and Odloak (2009) for the case where
disturbances are included in the model.

Consider that
[
∆u∗1k ,y

∗
1sp

]
is a feasible

solution for the Problem P1 at time step k
after convergence of the algorithm, where ∆u∗1k
is

[
∆u1(k|k)∗ · · · ∆u1(k +m− 1|k)∗

]>
,

evaluated assuming a certain trend for the
increments in the input variables ∆u2k ,[
∆u2(k|k) · · · ∆u2(k +m− 1|k)

]>
. Then,

moving for time step k + 1, it is straight-
forward to show that the inherited solu-
tion

[
∆ũ1k+1

,y∗1sp
]
, where ∆ũ1(k + 1) is[

∆u1(k + 1|k)∗ · · · ∆u1(k +m− 1|k)∗ 0
]>

,
remains feasible for the controller 1 since it
attends the constraints, Equations (1b), (1c) and
(1d).

Assume that at time step k+1 the increments
∆u2k+1

is not equal to the ones planned after con-
vergence of the algorithm, being represented by
α · ∆u2k . Consequently, the comparison of the
objective function evaluated at time k and k + 1
gives:

V ∗1k
− Ṽ1k+1 =

‖y1(k|k)− xs
1(k +m|k)‖2Q + ‖∆u1(k|k)∗‖2R + Ω(α),

(9)

where Ω(α) is an infinite sum of terms, which is
function of the input increments of adjacent sys-
tems that actually were realized, α·∆u2k , the ma-
nipulated increments, ∆u1k , the calculated set-
point, ysp,k, the weighting matrices of the con-
troller and the model of the system.

Then, the application of the inherited solu-
tion, systematically decreases the objective func-
tion if and only if Ω(α) is positive. In this case, as
the controller is not obligated to use the inherited
solution at time step k + 1, one can assume that
V ∗k+1 ≤ V ∗k .

2

Remark 2 If α is the identity matrix, i.e the dis-
turbance realized is equal to the one planned, Ω(I)
is zero.

Remark 3 It is necessary to define the neighbor-
hood of α around the identity matrix, in which
Theorem 1 holds.

Remark 4 In the non-cooperative distributed
configuration, for the controller related to subsys-
tem 1, the planned vector of input increments,
∆u2k , is evaluated by other controller, thus its
values could change along the simulation. This
also holds for the controller related to subsystem 2.
Therefore, assuming that such changes are small
(α is in some neighborhood around the identity
matrix) and the control horizon is sufficiently large
to guarantee an acceptable sharing of information,
then the objective function of the controllers does
not increase.

4 Case Studies

This section aims to present the performance of
this non-cooperative DMPC strategy and discuss
the applicability of Remarks 3 and 4. The case
studies are based on a four-tank system, borrowed
from Alvarado et al. (2011). In this system, four
tanks are fed by two pumps. Pump A feeds tanks
1 and 4, while pump B feeds tanks 2 and 3. Ad-
ditionally, the discharge flow of tank 4 feeds tank
2 and the discharge flow of tank 3 feeds tank 1.
The model of this system is represented by:



dh1

dt
=− a1

S
·
√

2 · g · h1 +
a3

S
·
√

2 · g · h3 +
γa

S
· qa,
(10)

dh2

dt
=− a2

S
·
√

2 · g · h2 +
a4

S
·
√

2 · g · h4 +
γb

S
· qb,
(11)

dh3

dt
=− a3

S
·
√

2 · g · h3 +
1− γb

S
· qb, (12)

dh4

dt
=− a4

S
·
√

2 · g · h4 +
1− γa

S
· qa. (13)

where, hi is the level of tank i, qa is the flow pro-
vided by pump A and qb is the flow provided by
pump B. The other parameters and their nominal
values are presented in Table 1.

Table 1: Parameters of the model. Source:
adapted from Alvarado et al. (2011).

Value Description
a1 1.31 · 10−4 m2 Discharge constant 1
a2 1.51 · 10−4 m2 Discharge constant 2
a3 9.27 · 10−5 m2 Discharge constant 3
a4 8.82 · 10−5 m2 Discharge constant 4
S 0.06 m2 Cross section
γa 0 to 1 Parameter 3-way valve
γb 0 to 1 Parameter 3-way valve

This system is decomposed into two subsys-
tems, each one with a local controller, namely:

• Controller 1: controls the levels of tanks 1 and
4, using as manipulated variable qa.

• Controller 2: controls the levels of tanks 2 and
3, using as manipulated variable qb.

4.1 Case 1: characteristics of the controller

In order to assess characteristics of the distributed
algorithm, using IHMPC as local agents, the case
scenario addresses the system when γa and γb
are 0.6. The system is linearized in the follow-
ing steady state: 0.72 m (h1), 0.59 m (h2), 0.29 m
(h3), 0.21 m (h4), 1.63 m3/h (qa), 2.00 m3/h (qb).
The sampling time applied is 5 s, and the model
obtained for each subsystem, following equations
(5) and (6), are composed by two artificial inte-
grating states and three stable states. The model
of the plant represents the global system linearized
in the same steady state.

The simulation scenario addresses changes in
the zones of h1 and h2, while the zones of h3 and
h4 are kept constant to give degrees of freedom
for the controllers. This scenario is detailed as fol-
lows: both subsystems start in the steady state,
at 2.4 min h1 is raised, at 16.6 min h2 is raised, at
41.6 min h1 and h2 are raised, and finally at 62.4
min h1 and h2 are decreased. Table 2 presents
the tuning parameters and constraints of each con-
troller.

Table 2: Tuning parameters and constraints of
controllers.

Parameters Controller 11 Controller 21

m 1 and 5
Q diag(ι(2))
R 10.5
Sy 1 · 103 · diag(ι(3))
umin 0 m3/h
umax 3.25 m3/h 4 m3/h

∆umax 0.5 m3/h
1 ι>(j) is a vector composed of j unitary

scalar elements.

In order to exemplify the features of the dis-
tributed control algorithm, specially Remark 4,
two control horizons were evaluated: (i) the min-
imum allowed control horizon, 1, and (ii) a larger
control horizon, 5, to comply with Remark 4.

Figures 1 and 2 present the trends for con-
trolled and manipulated variables of the subsys-
tems 1 and 2, respectively. Regarding h1 and h2,
each local controller guided, in general, such vari-
ables towards the inferior or superior bounds of
the zone constraints. This can be explained by
the interaction between each subsystem, what in-
creases the difficulty of each controller to keep the
controlled variables inside the zones.

The interaction between these subsystems is
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Figure 1: Control structure of subsystem 1
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Figure 2: Control structure of subsystem 2

made clear until 41 min of simulation, when the
zone changes happen for each subsystem at a time.
It is possible to notice the influence of one sub-
system in the other and the capability of each
local controller to deal with the planned distur-
bance, ∆ujk , forcing the controlled variables to
their zone, if enough time is given.

From 41 min to the end of the simulation, the
zone changes of each controller happen simulta-
neously, and given enough time, each controller
brings its subsystem to the desired zone.

Additionally, despite minor differences in the
performance of the controllers with the tuning ap-
plied, regarding the control horizons imposed, this
case study shows the feasibility of the controllers,
since they are able to find a solution even for small
control horizons.

In order to evaluate the stability of each local
controller, Figure 3 presents the cost function of
them, and it includes details for some time periods
when the zones have changed.

It is clear that by using the control horizon of
1, the cost function can increase at a series of time
steps right after a change of zones. Taking, for ex-
ample, the controller 1 at times 16.6 min and 62.4
min, it needs from 4 to 7 time steps in order to
the cost function continually decrease. Other ex-
ample is controller 2 at time 2.4 min, when it needs
10 time steps to its cost function continually de-
crease. However, the use of the control horizon of
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(a) Cost function of the controller - subsystem 1.
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Figure 3: Cost functions of controllers.

5 turns both cost functions non-increasing, what
indicates that it gave sufficient information for the
controllers, complying with Remark 4.

4.2 Case 2: mapping the closed-loop stability
limits

This case study aims to map the region delimited
by the system parameters, γa and γb, in which
both local controllers comply with Remarks 3 and
4. This implies that, in this region, the controller
cost functions are non-increasing, given an accept-
able information sharing.

Then, the same simulation scenario of case
study 4.1 is evaluated for different combinations
of γa and γb. The following considerations are
taken:

• the zone changes are the same from case
study 4.1. However, the alteration of γa and
γb modifies the steady state, then the initial
zones of each system are adjusted in such a
way to contain these initial states.

• the tuning parameters of each controller and
constraints detailed in Table 2 are applied.
However, in order to enlarge the domain in
which the controllers comply with Remark 4,
it is applied a control horizon of 10.

Figure 4 summarizes the results of simula-
tions, which have three possible outcomes: (i)
non-increasing control cost of both controllers,
complying with remark 4, (ii) increasing control
cost of at least one controller, and (iii) saturation
of at least one input, not fulfilling the hypothesis
of Theorem 1.
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Figure 4: Mapping of the three-way valve param-
eters.

It can be noticed that, as interaction between
the subsystems increase, i.e. γa and γb decrease,
the range in which the controllers present a Lya-
punov function reduces. If the difference between
these parameters are, in general, greater than 0.1,
the controllers tend to saturate their manipulated
variables in order to attend the zones imposed.

For the point where γa and γb are both 0.55,
only the objective function of controller 1 is not
always decreasing after a change of zones. Then,
the control horizon of controller 1 was enlarged
to 15, in order to give it more time steps to deal
with the disturbance. With this new tuning, both
controllers cost functions are non-increasing.

5 Conclusion

This work assesses the stability conditions of
a simple algorithm to couple two infinite hori-
zon model predictive controllers, forming a non-
cooperative DMPC strategy. The conditions for
which the objective functions of the local con-
trollers are non-increasing are summarized as: (i)
the trend of successive solutions of each controller
can vary inside a limited range, (ii) the control
horizon must guarantee a sufficient share of infor-
mation, and (iii) the system interactions are small.
Additionally, the local controller formulations are
always feasible, due to the use of slack variables
in the terminal constraints.

The case studies exemplified such features us-
ing a four-tank system. The first case study ad-
dressed the difference of controllers behavior when
using two different control horizons, in order to
highlight the necessity to have enough informa-
tion sharing to achieve a non-increasing cost func-
tion. However, even with the control horizon of
1, the controllers were able to solve their opti-
mization problem - showing the feasibility of this
formulation. The second case study mapped the
combination of system parameters, in which this
formulation was able to achieve a non-increasing

cost function in both local controllers.
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Maestre, J. M., Muñoz de la Peña, D. and Ca-
macho, E. F. (2011). Distributed model pre-
dictive control based on a cooperative game,
Optimal Control Applications and Methods
32(2): 153–176.

Pourkargar, D. B., Almansoori, A. and Daou-
tidis, P. (2017). Distributed model predic-
tive control of process networks : Impact
of control architecture, IFAC-PapersOnLine
50(1): 12963–12968.

Venkat, A., Hiskens, I., Rawlings, J. and Wright,
S. (2008). Distributed MPC strategies with
application to power system automatic gener-
ation control, IEEE Transactions on Control
Systems Technology 16(6): 1192–1206.


