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Abstract— This work presents a comparison of six versions of the Genetic Algorithm to optimize the param-
eters of the nonlinear GAPID controller (Gaussian Adaptive Proportional, Integral and Derivative), elaborated
to control a step-down DC-DC converter. This task comprises 8 free parameters and there is no analytic solution
to solve it. Also, the design of the controller is hard to determine because there can exist several near-optimal
solutions with different values for the parameters, which defines this problem as multimodal. In this sense,
different optimization strategies can lead to different solutions. This paper analyzes the behavior of six distinct
Genetic Algorithm strategies and compares the obtained results.
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1 Introduction

Historically humanity, in the seek to evolve tech-
nologically, has faced with increasingly more com-
plex problems, many of them cannot be solved
directly by employing traditional methods. Opti-
mization tools are helpful on finding solutions to
these problems (Jones et al., 2002).

In the field of control systems, more advanced
controllers applied to highly nonlinear plants fre-
quently need complex design procedures (Dimeo
and Lee, 1995), some only achievable by employ-
ing optimization tools (Puchta et al., 2016).

Traditionally, the linear PID controller de-
signed for one nominal operating point based on
the local-linearization small-signal model is em-
ployed in many industrial applications. However,
many plants does not follow a predicted behavior,
exhibiting time-varying characteristics and some-
times a large operating point variation, which im-
pacts directly the plant’s model and, consequently,
pushing the controller out of the designed opera-
tional point. So, the controller design is a chal-
lenging task to be coped with through conven-
tional linear PID control strategy (Krohling and
Rey, 2001).

Trying to overcome this limitations, several
nonlinear alternatives are being explored: Adap-
tive, Sliding mode (Mattavelli et al., 1993), op-
timal controllers (LQR, SDRE) (Fujimoto et al.,
2010), among others (Gahinet et al., 1994), that
can achieve good performance enhancements. But
some of them are very complex and demand high
performance hardware with higher cost (Fujimoto
et al., 2010).

Some adaptive controllers seek to keep the
PID structure. This enables taking into account
the design requirements of the original PID and

then improve its performance while using the
same design specifications of the PID (Puchta
et al., 2016).

GAPID is a a kind of adaptive control based
on the linear PID with the adaptive rule defined
by a gaussian function (see section 3) (Puchta
et al., 2016). The gaussian function presents
some desirable characteristics, like being smooth
with smooth derivatives and being top and bot-
tom bounded. Some other approaches also em-
ploy smooth bounded functions: In (Pedroso
et al., 2013) a hyperbolic tangent function is used
as the adaptive function. In (Hawwa and Ma-
soud, 2006) a double-gaussian-like function is used
to adapt the derivative gain. These approaches
need more computing effort to calculate the em-
ployed functions when compared to GAPID.

In this work, GAPID is used to control the
output voltage of a step-down DC-DC converter
widely used as power supply of several electrical
and electronic equipment. The main objective of
the converter is to maintain a constant output
voltage under variable load current and unregu-
lated input voltage. The transient overshoot and
recovery time of the output voltage must be min-
imized for stable operation in many electronic ap-
plications (Yuan et al., 2015).

As there is no algebraic design method for
GAPID, then optimization tools can be employed
(Puchta et al., 2016).

As part of the Bio-inspired Metaheuristics,
Genetic algorithm (GA) is a classical optimiza-
tion method with several variations. GA counts
on three fundamental operators on every gener-
ation namely the selection, crossover, and muta-
tion. For each generation, solutions are selected
from the population based on the fitness value. A



number of chromosomes is fixed. Then, they un-
dergo the crossover and/or are passed through the
mutation to generate a new population. Finally,
each member of the current population is tested
to evaluate the ability to solve the optimization
problem. (Badis et al., 2016). Based in this oper-
ators, which may change, this paper will examine
the application of six GA strategies to GAPID de-
sign.

This paper is organized as follows: In Sec-
tion 2 a brief description of the application circuit,
the step-down DC-DC converter, is given, with
its mathematical model. In Section 3 the GAPID
controller is described, defining the adaptive func-
tion of gains and its parameters. In Section 4 a
short description of the Genetic Algorithm is given
and the six proposed variations to be tested in the
optimization of GAPID parameters. In Section 5
the chosen GA parameters and figures summariz-
ing the evolution of each GA strategy are shown.
Then the output voltage waveforms of the Buck
converter are shown in order to compare the per-
formances of traditional PID and GAPID. Finally,
Section 6 brings up the conclusions.

2 Application circuit

The step-down converter with its control circuit is
presented in Figure 1.

Figure 1: Schematics of the converter and the con-
trol system.

The converter can be described by the state-
space equations

L
diL
dt

= −vc + uVi

C
dvc
dt

= iL −
1

R
vc

(1)

where L is the converter inductor, C is the capac-
itor, R is the load, Vi is the supply voltage, iL and
vc are the state variables for inductor current and
capacitor (output) voltage, and u is the control
input. This system presents the following control
input-to-voltage output transfer function

vo(s)

u(s)
=

Vi

LCs2 + L
Rs+ 1

. (2)

This system is controlled by a GAPID con-
troller presented in the next section.

3 Gaussian Adaptive PID

It is known that nonlinear controllers are more ef-
ficient than linear controllers; the problem is they
are harder to design. In this work, a nonlinear
adaptive PID controller is used, where the adap-
tive rule is based on a Gaussian function defined
by

f(δ) = k1 − (k1 − k0)e−qδ
2

(3)

where k0 and k1 are the upper and lower bounds of
the function and q defines the degree of concavity.
This function is shown in figure 2.

Figure 2: Gaussian function.

The Gaussian function represents a smooth
function with smooth derivatives and is upper and
lower bounded. Being smooth, it avoids abrupt
changes in the gains that can lead to problems
in some systems, like the occurrence of chattering
due to fast repetitive changes in the gains. Being
bounded, the designer can establish clear limits
for the gains in the whole error range.

This gaussian function has three parameters:
k0, k1 and q. Each of the PID gains employ gaus-
sian functions each with its own set of parame-
ters. This initially comprises a nine parameters
problem. However, an important assumption is
to define the value of k0d as zero. This constant
represents the derivative gain when the set-point
is achieved, i.e., when the error is null. In this sit-
uation, the controller presents only Proportional-
Integral actions helping avoiding derivative noise
issues.

At the moment, there is no methodology to
solve the problem algebraically, so an optimization
algorithm based on metaheuristics is employed in
order to find an optimized solution to the prob-
lem, which allows to achieve the faster response
with low overshoot. Genetic Algorithm was cho-
sen, and will be presented in the next section.

4 Genetic Algorithm

Genetic Algorithm (GA) is a metaheuristic in-
spired by the biological process of evolution by
natural selection, developed to deal with optimiza-
tion problems. GA is a probabilistic method, act-
ing on individuals (or gene) and influencing the
population indirectly (Holland, 1992).



The optimization process using a Genetic Al-
gorithm is initiated creating multiple random can-
didate solutions (individuals) to the task. Each
individual is characterized by its coordinates on
the problem-solving space, being these the equiv-
alent of a genotype of a living creature. In other
words, an individual is a vector containing the val-
ues of the coefficients of the problem addressed
(Castro, 2006).

The individuals present a phenotype, named
the fitness. The fitness behave like a score: solu-
tions with higher fitness values are more likely to
survive to the process of selection and be able to
maintain their genotype in the next generation.

The next step is the application of the se-
lection procedure. This allows the assortment of
some individuals to participate to the next steps
of the GA. There are many ways to perform that,
being the most used the roulette wheel and tour-
nament (Goldberg, 2006).

In the first case, a roulette is created consid-
ering that each part is proportional to the fitness
of the individuals. It means that the ”slice” cor-
respondent to better individuals are greater than
those of the worse ones. Then, the probability
to draw the genes with best fitness is more likely.
Also, the same individual may be selected more
than once.

The second proposal, the tournament, is initi-
ated selecting randomly some individuals, usually
two. The competition is the comparison of their
fitness values. The winner is the one which present
the higher fitness. As the participants can be some
of the best, the selective pressure is lower than in
the roulette wheel method(Michalewicz, 1996).

The subsequent generation is created by the
application of the genetic operators. The first is
the crossover, in which two individuals (parents)
are randomly chosen among those that survived
after the selection process. Then, two new indi-
viduals are created using the genotype of both par-
ents. To explain that, we use an example: suppose
that the individuals (vectors) have 10 dimensions.
We choose the fifty dimension as the cut point.
Therefore, the first new individual will have the
first five elements of the parent 1 and the last five
elements of the parent 2. Obviously, the second
new one will have the other dimensions of both
parents. The proposal is known as ”one-point
crossover”. This process allows the local search,
or the exploitation (Holland, 1992). A scheme of
the one-point crossover is in figure 3.

The second operator is the mutation. This
method changes randomly some of the genes of the
entire population, with the view of become possi-
ble a global search, or the exploration. Therefore,
a percentage of the genes must be selected to be
mutated. Figure 4 shows an example of this pro-
cess (Castro, 2006).

The new generations are evaluated and the

Figure 3: Example of the Crossover.

Figure 4: Example of the Mutation.

process is repeated until a fitting solution be
found. A summary of a Genetic Algorithm is
shown in the flowchart on Figure 5.

Figure 5: Flowchart of the GA.

4.1 Genetic Algorithm Variations

The proposed method presented in the last Sec-
tion showed the general steps to be followed in the
implementation of the Genetic Algorithm. How-
ever, it is possible to change same parts of the
canonical proposal, creating some variations of
the GA. It can be done, for example, changing
the selection process or applying rates to deter-
mine if the genetic operators will be performed
(Michalewicz, 1996). We highlight that the muta-
tion rate adopted in this work to all propositions
was 10%.



GA 1

The first GA implemented was the original
method described by John Holland (Holland,
1992). In this case, the selection is performed us-
ing the roulette wheel, as described in Section 4.

The following step is the application of the
genetic operators. Here, we have to determine a
probability of occurrence of the crossover or the
mutation. In the first case, we consider a rate
of 70%. It means that after the selection of the
parents, they have 70% of chance to perform the
crossover. Otherwise, they stay in the population
as the offspring.

GA 2

The second GA proposal is quite similar to the
last. The only difference is that the crossover rate
is set as 100%. In this approach, all the parents
selected must perform the crossover. It is obvious
that they never participate of the new population.

GA 3

The next approach differs from the GA 2 in the
selection of the individuals. Here, the binary tour-
nament is addressed. However, even if some indi-
vidual loose the competition, it is able to partici-
pate again.

GA 4

In the fourth approach, we apply the ”death tour-
nament” to perform the selection. Therefore, the
individuals that loose the tournament are sup-
pressed of the population. In this way, each one
just participate only once of the selection.

GA 5

The following GA is quite different from the previ-
ous. In this case, we change the order of the oper-
ations described in figure 5, so that the selection
is applied after the mutation. The consequence
is the creation of a intermediate subpopulation,
having twice times the number of the individuals.
Then, the selection decrease the population size
to the original quantity.

In this proposal the roulette wheel is used to
select the next population.

GA 6

Finally, in the last GA, we follow the same steps
of the GA 5. The only difference is the application
of the tournament to select the individuals to the
next generation.

4.2 Fitness function

In optimization tasks the assessment of the indi-
viduals plays a fundamental role, which is accom-
plished by the fitness function, similar to the cost
function, where higher scores are given to best so-
lutions. It is expected that in the evolution pro-
cess, the mean score of the population increases
and at least one individual approaches the maxi-
mum point.

It is important to observe that a wrong choice
of such function compromises the results because
the highest score may not match the best solution
of the problem.

The objective is to select a solution that
presents the best possible solution with a maxi-
mum admissible overshoot of 5%.

In this sense, a good alternative is the Inte-
gral Absolute Error (IAE) that has been used by
several research groups worldwide.

The IAE function is given by

IAE =

∫ ∞
0

|δ(t)|dt (4)

where δ(t) is input error, and the fitness function
is given by

fit = 1/IAE. (5)

Therefore, the cost function defined in eq. (4)
must be minimized, it means that we have to max-
imize the fitness defined in eq. (5).

5 Results

In this section we present the computational re-
sults achieved by the six proposals of Genetic Al-
gorithm applied to the GAPID controller. To
all proposals we use 50 iterations and a popula-
tion with 40 individuals. It is important to high-
light that they were through empirical preliminary
tests:

The final results of each proposal are summa-
rized in table 1. The boxplot of the results is in
figure 7.

GA model Fitness
GA1 0.993574
GA2 0.993661
GA3 0.993898
GA4 0.993680
GA5 0.993432
GA6 0.993999

Table 1: Physical simulation parameters.

As one can be note, the best results are related
to the proposals GA3, GA4 and GA6. The main
similarity of these schemes is that all of them use
the binary tournament as the selection proposal.
It seems to be clear that to utilize a methodol-
ogy with less selective pressure is an advantage to



(a) GA 1 (b) GA 2 (c) GA 3

(d) GA 4 (e) GA 5 (f) GA 6

Figure 6: Flowchart of the GA.

Figure 7: Boxplot of the fitness

this application. Therefore, the use of the roulette
wheel should be avoided.

Comparing the performances of the best pro-
posals, the GA3 achieved the best general results.
In the same way, the GA4 presented the the lowest
dispersion.

6 Conclusions

This paper presented the application of six Ge-
netic Algorithm strategies to find the best param-
eters configuration of a Gaussian Adaptive PID
controller. The results of each strategy demon-
strated some little differences, as shown in fig-
ure 7(boxplot) where strategies 3 and 6 achieved
a higher fitness of the best individual, with rel-
atively low dispersion. Strategy 4 presented the
lowest dispersion and a relatively high fitness, sim-
ilar to strategy 2. In general, strategies 3, 4 and
6 performed better. Taking the results obtained
in strategy 6, the optimized GAPID performed
as presented in figure 6 demonstrating its effec-
tiveness for enhancing the traditional PID perfor-
mance using the same design requisites.
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