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‡Federal Technological University of Paraná (UTFPR), Coordination of Electrical Engineering
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Abstract— In this paper, sufficient conditions for the D-stabilization of linear time-invariant systems are
proposed. The controllers are obtained through the resolution of the linear quadratic regulator (LQR) via
linear matrix inequalities (LMIs), and the algebraic Riccati equation’s (ARE) formulation is based on the state
derivative feedback. In the end, practical implementations are performed to illustrate the efficiency of the
proposed technique. During the implementations an uncertainty is considered in the model of the system and,
even in the presence of uncertainties, the method proposed is effective.

Keywords— D-stability, Linear Quadratic Regulator (LQR), Linear Matrix Inequalities (LMIs), State Deriva-
tive Feedback, Polytopic Uncertainties, Robust Pole Placement.

Resumo— Neste trabalho são propostas condições suficientes para a D-estabilização de sistemas lineares
invariantes no tempo. Os controladores são obtidos por meio da resolução do problema do regulador linear
quadrático (LQR) via desigualdades matriciais lineares (LMIs), sendo que a formulação da equação de Riccati
(ARE) é baseada na realimentação derivativa. Ao final, são feitas implementações práticas para ilustrar a
eficiência da técnica proposta. Durante a implementação, é considerada uma incerteza no modelo do sistema e,
mesmo na presença de incertezas, o método proposto é eficaz.

Palavras-chave— D-estabilidade, Regulador Linear Quadrático (LQR), Desigualdades Matriciais Lineares
(LMIs), Realimentação Derivativa, Incertezas Politópicas, Alocação Robusta de Polos.

1 Introduction

In control systems, stability is a minimal re-
quirement, although, in the greater of practical sit-
uations, a good controller should also delivery fast
and well-damped time responses, which is made by
placing the closed-loop poles in a suitable region
of the complex plane (Chilali et al., 1999). Ac-
cording to Leite et al. (2004), it is possible, for the
designer, include performance index like damping
ratio, bounds in the undamped natural frequency
and the damped natural frequency, to improve the
response of the system in closed-loop by means of
placing the closed-loop poles in a circular region
of the complex left half plane with radius r and
center in (−c, 0).

Many papers deal with the pole placement in
a region of the complex left half plane, for ex-
ample: Chilali and Gahinet (1996) showed that
some regions in the complex left half plane can
be described as linear matrix inequalities (LMIs)
regions, besides the design of the controllers via
D-stability; Faria et al. (2009) presented extended
results of the D-stability for uncertain, or not, lin-
ear systems using the state derivative feedback;
Soliman et al. (2016) designed a saturated con-
troller for uncertain systems considering the D-

stability in the problem; Datta (2017) presented
an algorithm to compute a state feedback gain for
a linear time-invariant, regular descriptor system,
using the D-stability concepts, as well as LMI re-
gions. All these papers take in hand the controllers
design with LMIs, which presents some advan-
tages like the facility to include performance index
and treat, with simplicity, uncertainties present
in the system model (Boyd et al., 1994). Also,
when feasible, LMIs can be easily solved by soft-
ware programs present in the mathematical pro-
gramming literature, such as MatLab R© (Gahinet
et al., 1994).

Controllers design involving LMIs are widely
addressed in the specialized literature, includ-
ing to solve problems that deal with the state
derivative feedback (Faria et al., 2009; da Silva
et al., 2012; Beteto et al., 2016; Llins et al., 2017).
The advantage of using state derivative feedback
in the controllers design is that in some system the
second derivative signals are accessible due to the
presence of accelerometers. Accelerometers are in-
creasingly used in solving engineering problems
(Sabato et al., 2016; Kasprzyk et al., 2017; Zhu
et al., 2018). Through the acceleration signal,
it is possible to reconstruct the velocity signal



with good accuracy, but the same does not oc-
cur with the displacement signal (Abdelaziz and
Valasek, 2004). So, the signals used in the feed-
back are velocity and acceleration.

In addition, a robust LQR-state derivative
controller with pole placement constraints is pro-
posed in this paper. The design of a controller
using linear quadratic regulator (LQR) is very use-
ful once this method seeks the optimal controller
that minimizes a given cost function, which is
parametrized by the matrices Q and R (weight-
ing matrices) that weight the state vector and the
signal control vector (Ahmed et al., 2010). An-
other characteristic of the LQR method is that
his model is based on the state-space, beyond
it can obtain the optimal control signal by solv-
ing the algebraic Riccati equation (ARE) (Ahmed
et al., 2010; Kumar and Jerome, 2013). Consid-
ering the matrix nature of the ARE, it is possible
to solve the ARE by LMIs (Boyd et al., 1994).
Ge et al. (2002) and Caun et al. (2015) presented
the resolution of the ARE via LMIs. Both of
these papers use the state feedback to formulate
the ARE. Now, in this paper, the formulation of
the ARE is made by the state derivative feedback
as seen in (Abdelaziz and Valášek, 2005; Abde-
laziz, 2010; Beteto et al., 2016; Beteto et al., 2018).

At the end, a practical implementation is pre-
sented to show the efficiency of the proposed tech-
nique. During the implementation, a mass uncer-
tain is considered to show the effectiveness of the
technique to mitigate the vibrations even when the
system is subject to a variation of the mass.

2 State Derivative Feedback for

Uncertain and Time-invariant Systems

Consider a controllable, linear, time-invariant
and uncertain system described as a convex com-
bination of the polytope vertices:

ẋ(t) =
s

∑

i=1

αi(Aix(t)+Biu(t)) = A(α)x(t)+B(α)u(t), (1)

where s represents the polytope vertices. The param-
eters αi, i = 1, 2, ..., s are constant and unknown real
numbers belonging to unitary simplex A given by

A =

{

s
∑

i=1

αi = 1, αi ≥ 0, i = 1, ..., s,

}

. (2)

Then, replacing the control law

u(t) = −Kẋ(t) (3)

in (1) and supposing that A(α) is nonsingular
(det(A(α)) 6= 0, ∀i) (Abdelaziz and Valasek, 2004), the
robust system in closed-loop is given by

ẋ(t) = (I +B(α)K)−1A(α)x. (4)

Considering the state derivative feedback is being used
and do not have full access to x0, an initial conditions
polytope will be used:

x0(β) =

p
∑

k=1

βkx0k, (5)

similar to the unitary simplex (2), being p the vertices
of the initial conditions polytope.

3 Pole Placement Region

First, a region for pole placement in the complex
left half plane is defined.

Definition 1 Given a region D of the complex left
half plane, then a matrix A ∈ R

n×n is said to be D-
stable if all of your eigenvalues are in the D region
(Chilali and Gahinet, 1996).

As aforementioned, the pole placement in the D
region guarantees performance index. In this paper, a
circular region as D region will be considered (Figure
1). As specified by Leite et al. (2004), the circular
region constraints for the closed-loop poles assurance
that the system dynamics are bounded by exponentials
with decay in the interval −c±r and frequencies lower
or equal than r, i.e., lower values of r achieve lower
transient oscillations.

Im(λ)

Re(λ)
γ

r

−c

Figure 1: Pole placement region.
For a matrix A ∈ R

n×n have all of your eigenval-
ues inside of the circle it is necessary that the inequal-
ity (6) be respected (Haddad and Bernstein, 1992).

ATP + PA+ 2γP +
1

r
(A+ γI)TP (A+ γI) < 0. (6)

Observation 1 Inequality (6) was verified in
(Haddad and Bernstein, 1992) using a Com-
mon Quadratic Lyapunov Function (CQLF),
V (x(t)) = x(t)TPx(t) > 0, P = P T ∈ R

n×n, with
V̇ (x(t)) = ẋ(t)TPx(t) + x(t)TP ẋ(t) < 0, ∀x(t) 6= 0.

If (6) is feasible, it is possible to assure that all
eigenvalues (λ) of A belong to the disk of radius r,
decay rate greater or equal to γ and center in (−c, 0)
(c = γ + r). According to da Silva et al. (2012), the
circular region guarantees an overshoot and decay rate
limitation for the closed-loop system.

Note that the inequality (6) deal with a matrix A
precisely know. For a matrix A uncertain, A ∈ A, a
sufficient condition for the pole placement in the region
of Figure 1 is achieved by using the result presented in
Leite et al. (2004). Then, the inequality (7) is equiva-
lent to the inequality (6).

[

AT
i P + PAi + 2γP (Ai + γI)TP
P (Ai + γI) −rP

]

< 0. (7)

The next section presents sufficient conditions to
the D-stabilization of the uncertain system (1) using
the state derivative feedback.

4 Robust LQR-State Derivative Controller

For the demonstration of LQR-state derivative
controller in terms of LMI, the Propriety 1 is used.
The ARE formulation can be found in (Abdelaziz and



Valášek, 2005; Abdelaziz, 2010; Beteto et al., 2016;
Beteto et al., 2018).

Propriety 1 A matrix M is invertible if M+MT < 0
for any nonsymmetric matrix M (M 6= MT ) (Slotine
et al., 1991).

Theorem 1 (Robust LQR-State Derivative Con- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
troller via LMI, D-stability) Let Ai nonsingular
(det(Ai) 6= 0) and given Q ∈ R

n×n, R ∈ R
m×m,

x0k ∈ R
n, r > 0 and γ > 0, the system (1) is

D-stable and has optimized performance if there exist
symmetric matrix X > 0 ∈ R

n×n and a matrix
Y ∈ R

m×n satisfying
min µ

X = XT > 0, Y

Subject to
[

µ xT
0k

x0k X

]

≥ 0, k = 1, 2, ..., p, (8)

Ψii =













Λii ∗ ∗ ∗ ∗
ΓT
i −rX ∗ ∗ ∗

ΩT
i 0 −X/(2γ) ∗ ∗

XAT
i 0 0 −Q−1 ∗

Y AT
i 0 0 0 −R−1













< 0,

i = 1, 2, ..., s,
(9)

Ψij+Ψji =













Λij + Λji ∗ ∗
ΓT
ij + ΓT

ji −2rX ∗

2X + Y TBT
i + Y TBT

j 0 −X/γ
XAT

i +XAT
j 0 0

Y AT
i + Y AT

j 0 0

∗ ∗
∗ ∗
∗ ∗

−2Q−1 0
0 −2R−1













≤ 0,
i = 1, 2, ..., s− 1,
j = i+ 1, ..., s,

(10)
where Λii = AiX +XAT

i +BiY AT
i +AiY

TBT
i , ΓT

ii =
XAT

i + γ(X +Y TBT
i ), Ω

T
i = X + Y TBT

i , Λij +Λji =
AiX + XAT

i + AjX + XAT
j + BjY AT

i + AiY
TBT

j +
BiY AT

j +AjY
TBT

i ,ΓT
ij+ΓT

ji = XAT
i +XAT

j +γ(2X+
Y TBT

i + Y TBT
i ). The state derivative feedback gain

can be given by

K = Y X−1. (11)
Proof: Multiplying by βk, k = 1, 2, ..., p, summing
all terms and applying the Schur complement (more
details about the Schur complement can be seen in
(Boyd et al., 1994)) in LMI (8), it has been

x0(β)
TX−1x0(β) ≤ µ. (12)

In many practical situations, the objective (8) can
be modified by (12), where µ is the specified upper
bound and X−1 = P . More details can be seen in (Ge
et al., 2002; Beteto et al., 2018).

Now, multiplying (9) by α2
i and summing all

terms in i, with i = 1, 2, ..., s, multiplying (10) by αiαj

and summing all terms in i, with i = 1, 2, ..., s− 1 and
j, with j = i+ 1, ..., s, and summing both

s
∑

i=1

α2
i (Ψii) +

s−1
∑

i=1

αi

s
∑

j=i+1

αj(Ψij +Ψji) < 0. (13)

Generically
∑s

i=1
αi

∑s

j=1
αj(MiNj) =

∑s

i=1
α2
i

(MiNi) +
∑s−1

i=1
αi

∑s

j=i+1
αj(MiNj + MjNi), from

(13), (14) follows.

s
∑

i=1

αi

s
∑

j=1

αj











Λij ∗ ∗ ∗ ∗

ΓT
ij −rX ∗ ∗ ∗

ΩT
j 0 −X/(2γ) ∗ ∗

XAT
i 0 0 −Q−1 ∗

Y AT
i 0 0 0 −R−1











⇔













Λ(α) ∗ ∗ ∗ ∗

Γ(α)T −rX ∗ ∗ ∗

Ω(α)T 0 −X/(2γ) ∗ ∗

XA(α)T 0 0 −Q−1 ∗

Y A(α)T 0 0 0 −R−1













< 0,

(14)

where, taking the sum in (14), the following equiva-
lences are obtained: Λij = AiX + XAT

i + BjY AT
i +

AiY
TBT

j ⇔ Λ(α) = A(α)X+X(α)T +B(α)Y A(α)T +
A(α)Y TB(α)T , ΓT

ij = XAT
i + γ(X + Y TBT

j ) ⇔
Γ(α)T = XA(α)T + γ(X + Y TB(α)T ) and ΩT

i =
X + Y TBT

i ⇔ Ω(α)T = X + Y TB(α)T .
Applying the Schur complement recursively, re-

placing Y = KX and organizing

(I +B(α)K)XA(α)T + A(α)X(I +B(α)K)T+

(A(α)X + γ(I +B(α)K)X)(1/r)X−1(A(α)X+

γ(I +B(α)K)X)T + ((I +B(α)K)X)(2γ)X−1

((I+B(α)K)X)T+A(α)X(KTRK+Q)XA(α)T < 0.
(15)

Now, applying Propriety 1 in (15) it is concluded
that matrices (I+B(α)K), X and A(α) are invertible.
Then, premultiplying by A(α)−1 and posmultiplying
by A(α)−T :

A(α)−1(I+B(α)K)X+X(I+B(α)K)TA(α)−T+

(X + γA(α)−1(I +B(α)K)X)(1/r)X−1(X + γA(α)−1

(I +B(α)K)X)T + (A(α)−1(I +B(α)K)X)(2γ)X−1

(A(α)−1(I +B(α)K)X)T +X(KTRK +Q)X < 0.
(16)

Using the dual form [(A(α)−1+A(α)−1B(α)K)X]
→ [X(A(α)−1 + A(α)−1B(α)K)T ], and considering
X = P−1:

P−1(I+B(α)K)TA(α)−T +A(α)−1(I+B(α)K)P−1+

(P−1 + γA(α)−1(I +B(α)K)P−1)T (1/r)P (P−1 + γ

A(α)−1(I+B(α)K)P−1)+(A(α)−1(I+B(α)K)P−1)T

(2γ)P (A(α)−1(I +B(α)K)P−1)+

P−1(KTRK +Q)P−1 < 0. (17)

Premultiplying by A(α)T (I + B(α)K)−TP , pos-
multiplying by P (I + B(α)K)−1A(α) and replacing
Acl(α) = (I +B(α)K)−1A(α)

Acl(α)
TP+PAcl(α)+(Acl(α)+γI)T (1/r)P (Acl(α)+

γI) + 2γP + Acl(α)
T (KTRK +Q)Acl(α) < 0. (18)

Supposing the LMI (9) feasible, the portion
Acl(α)

T (KTRK +Q)Acl(α) is positive. Then

Acl(α)
TP+PAcl(α)+(Acl(α)+γI)T (1/r)P (Acl(α)+

γI) + 2γP < −Acl(α)
T (KTRK +Q)Acl(α), (19)

⇓

Acl(α)
TP+PAcl(α)+(Acl(α)+γI)T (1/r)P (Acl(α)+

γI) + 2γP < 0. (20)



Applying the Schur complement in (20), (21) fol-
lows.
[

Acl(α)
TP + PAcl(α) + 2γP (Acl(α) + γI)T

(Acl(α) + γI) −rP

]

< 0,

(21)
which is equivalent to (7).

✷

Thus, sufficient conditions to assure the D-
stability of the uncertain system (1) can be obtained
using the proposed theorem.

5 Illustrative Example

Consider the active suspension of a car seat, pre-
sented in (Reithmeier and Leitmann, 2003; Assunção
et al., 2007). The dynamic equation of this system can
be described in the state-space form using the state
vector x(t) = [x1 x2 ẋ1 ẋ2]

T as:

ẋ(t) =





0 0 1 0
0 0 0 1

−30 3.3333 −1.6667 0.3333
41.6667 −41.6667 4.1667 −4.1667



x(t)+





0 0
0 0

0.0007 −0.0007
0 0.0083



u(t), y(t) =
[

1 0 0 0
0 1 0 0

]

x(t).

(22)

To solve the LMIs was used MatLab
R©

soft-
ware, together with ”LMILab”solver and the YALMIP
interface (Lofberg, 2004). The weighting matrices
and the parameters γ and r chosen were: Q =
diag(1, 1, 10, 1000), R = diag(1, 10), r = 50 and γ = 1.
The range of the states are: −0.5 ≤ x1, x2 ≤ 0.5 (m)
and −2 ≤ x3, x4 ≤ 2 (m/s). Therefore, the initial con-
ditions polytope has sixteen vertices (p = 16). For the
simulation, initial conditions are x0 = [0.1 0.3 0 0]T .
The following controllers were designed, K1 - (da Silva
et al., 2012) and K2 - Theorem 1:

K1 = 104 ×

[

1.0963 0.5172 0.1973 0.2043
−0.0420 0.0789 −0.0124 0.0144

]

,

(23)

K2 = 103 ×

[

2.5989 0.3103 −0.0765 −0.0294
0.3419 0.0526 0.0292 0.0016

]

.

(24)
Note in Figure 2 that the proposed theorem is

recommended for practical implementations, once that
have settling time similar to the result achieved by the
theorem presented in (da Silva et al., 2012), but have
lower controls signals. Stands out that the norm of
controller K2 (||K2|| = 2.6413 × 103) is smaller than
the norm of controller K1 (||K1|| = 1.2450× 104). Be-
sides, in LQR technique, when the signal control is
prioritized the states suffer a penalty and vice-versa.
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Figure 2: Comparison between controllers K1 and
K2.

In the following section, a practical application
of the proposed methodology is shown to verify the
efficiency to mitigate vibrations.

6 Practical Implementation

Consider a model of active suspension of a 1

4
of

the vehicle, produced by Quanser
R©
, whose schematic

is present in Figure 3. The system consists of two
masses, Ms represents 1

4
the mass of the vehicle body,

and Mus represents the tire assembly of the vehicle.
The mass Ms is supported by the spring ks and the
damper bs. The mass Mus is supported by the spring
kus and the damper bus. To reduce the oscillations
caused by runway irregularities the active suspension
system is used, which is composed of the masses Ms

and Mus, and a motor (actuator) connected between
them and controlled by force Fc.

bsks

Ms →
1

4
of mass of the vehicle

zr(t)

(Track)

kus bus

zs(t)

zus(t)

Active suspension

Tire

Accelerometer (⇒ z̈s(t))

Accelerometer (⇒ z̈us(t))

Fc

Mus → mass of the tire assembly

Figure 3: Model of active suspension of a 1
4 of the

vehicle.

The dynamic of the system is given by (Quanser,
2009):

ẋ(t) =





0 1 0 −1
−ρks −ρbs 0 ρbs

0 0 0 1
ks

Mus

bs
Mus

−
kus
Mus

−
(bs+bus)

Mus



x(t)

+





0 0
0 ρ

−1 0
bus
Mus

− 1
Mus



u(t). (25)

with
x(t) =





zs(t) − zus(t)
żs(t)

zus(t) − zr(t)
żus(t)



, u(t) =

[

żr(t)
Fc

]

and ρ =

1

Ms
. The value of constants can be seen in Table 1

(Quanser, 2009).

Table 1: Active suspension parameters.
Parameters Symbol Value

Mass of 1
4

of the total body of vehicle (kg) Ms 2.45

Mass of the tire assembly (kg) Mus 1

Spring stiffness constant (N/m) ks 900

Spring stiffness constant (N/m) kus 2500

Damping coefficient (Ns/m) bs 7.5

Damping coefficient (Ns/m) bus 5

Note in the state space representation of the sys-
tem that there are two control inputs, one referring
to the track surface velocity (żr) and one referring to
the force (Fc) applied to the active suspension actua-
tor. For this work, only the control input (Fc) will be
taken into account.

The mass can be changed due to two equal loads
(each one weights 0.4975 kg), which make up the mass
Ms. In this way, the mass Ms can belong to the range
1.455 ≤ Ms ≤ 2.45 (kg). Considering the parameter
ρ = 1/Ms, the range can be modified to 1/Msmax ≤



1/Ms ≤ 1/Msmin ⇒ ρmin ≤ ρ ≤ ρmax ⇒ 0.4082 ≤
ρ ≤ 0.6873.

Thus, we have two polytope vertices:

A1 =









0 1 0 −1
−367.35 −3.0612 0 3.0612

0 0 0 1
900 7.5 −2500 −12.5









, (26)

A2 =









0 1 0 −1
−618.56 −5.1546 0 5.1546

0 0 0 1
900 7.5 −2500 −12.5









, (27)

and

B1 =









0
0.4082

0
−1









, B2 =









0
0.6873

0
−1









. (28)

The range of the states are: −0.02 ≤ x1, x3 ≤ 0.02 (m)
and −0.15 ≤ x2, x4 ≤ 0.15 (m/s). Therefore, the
initial conditions polytope has sixteen vertices (p =
16).

To solve the LMIs was used MatLab
R©

software,
together with ”LMILab”solver and the YALMIP inter-
face (Lofberg, 2004). The weighting matrices and the
γ parameter chosen were: Q = diag(10 0.1 10 0.1),
R = 0.1, r = 60 and γ = 0.75.

The following robust controller was designed:

K =
[

74.5819 3.1355 −70.1719 −0.2442
]

, (29)

As reference signal (zr) for practical implementa-
tion a square wave signal was adopted. Such signal has
an amplitude of 0.02 m, frequency of 1

3
Hz and pulse

width of 50%. The sampling period was 1 ms. For all
the implementations a time interval of 0 to 12 seconds
was considered, and until 5.99 seconds the system is
in open-loop, in 6 seconds the system is in closed-loop
with control law u(t) = −Kẋ(t).

Two implementations are performed. The first
one considers the robust controller K with mass Ms =
1.455 kg. The other one considers the robust controller
K with mass Ms = 2.45 kg. The result of the imple-
mentations can be seen in Figures 4 and 5. The system
is naturally stable, but it is possible to observe that
its settling time is high and have abrupt oscillations.
These abrupt oscillations or vibrations can cause dam-
age to the system and discomfort to the driver and
passengers inside the vehicle. Using the force Fc, an
active suspension system is capable of to decrease the
oscillations/vibrations.
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Figure 4: Real system behavior with mass Ms =
1.455 kg.
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Figure 5: Real system behavior with mass Ms =
2.45 kg.

Figures 4 and 5 show that the designed controller
was able to mitigate the vibrations (attenuate the os-
cillations) considering the mass Ms uncertain. Ob-
serve that the control signal has a small amplitude,
which is an advantage in practical implementations.
Lower amplitudes from control signal is a characteris-
tic of state derivative feedback.

In Figure 6 the closed-loop eigenvalues are
showed. Note that the all eigenvalues are inside of
the desired region D.

-100 -50 0
Re (λ)

-60

-40

-20

0

20

40

60

Im
(λ
)

c

λ((I +B1K)−1A1) λ((I +B2K)−1A2)

r

- γ

Figure 6: Location of the eigenvalues of the closed-
loop system.

7 Conclusions

In this paper, new conditions for the D-
stabilization of linear and time-invariant systems are
proposed. The advantage of the proposed technique
is the possibility to include uncertainties in the LQR
problem, as well as to achieve project requirements
through the pole placement constraints. Besides, the
state derivative feedback plus LQR is an important
technique in control of mechanical systems, since that
the signal of the second derivative it is available due
to accelerometers sensors and within the method, it
is possible to weight the control input and the state
derivative vector. For the practical implementation
of the active suspension system, the designed robust
controller was efficient to mitigate the vibrations even
when the mass Ms is considered uncertain. For future
works, the study of the flexibilization of constraints of
the problem and how the matrices Q and R behave
with restrictions less conservative are intended to.
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