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Abstract— In the paper, we tackle the H2 Fault Detection Filter (FDF) problem for a Markov Jump Linear
System (MJLS) in the discrete-time domain. The main novelty is the synthesis of H2 FDF for a MJLS in the
form of Linear Matrices Inequalities (LMI). We also provide results for the so-called mode-independent case and
the design of robust H2 filter in the sense that the system matrices are uncertain. For the sake of illustrating the
suitability of the proposed approaches, a numerical example is presented.
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1 Introduction

The systems are becoming more complex every
day, and this increase in the complexity brings
new challenges in engineering. An important
field of application is the fault-resilient systems.
There is a multitude of strategies that aim to in-
crease the resilience of a system like as reported
in (Venkatasubramanian et al., 2003; Kim and
Bartlett, 1996; Favre, 1994; Isermann et al., 2002).
A possible way to increment the resilience of a sys-
tem is to implement the Fault Detection and Iso-
lation (FDI) approach. This concept has the main
goal of sensing and rearranging the system in or-
der to minimize any kind of loss, see for instance
(Hwang et al., 2010).

The FDI framework can be separated into two
main stages: i) a residual signal is generated by a
filter; ii) the residual signal evaluation. This eval-
uation process is accomplished by comparing the
residue with a pre-determined threshold, so that
whenever the residual signal surpasses the thresh-
old it is considered that a fault occurred. The
threshold is usually obtained via the observation
of the plant in the nominal situation. Fig.1 shows
a block diagram representing the FDI framework.
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Figure 1: Fault detection framework.

In (Chen and Patton, 2000) two important
properties that the filter responsible for generat-
ing the residue must have are: i) the high amount
of sensibility regarding to the fault and ii) high

resilience concerning to the inputs and noise, in
order to guarantee a fast detection and low occur-
rence of false alarms.

The elements that compose the plant and the
Fault Detection Filter (FDF) are interconnected
via a network (represented by a green arrow in
Fig.1), and in some cases, this network is imple-
mented as a wireless network, and it is well known
that this kind of networks is more susceptible to
communication loss. Aiming to consider this im-
portant aspect in the design of a fault detection
filter, the usage of Markovian Jump Linear System
(MJLS) seems as a suitable choice, as it is possi-
ble to model the network behavior in the MJLS
framework see, for instance, (Palma and Duran-
Faundez, 2016).

Some examples in the literature that tackle
this same subject are (Zhong et al., 2003), (Zhong
et al., 2005) and (Wang and Yin, 2017), to name
a few. In (Zhong et al., 2005), the FDI prob-
lem is solved under the MJLS framework and the
design of an H∞ filter working as a residual gen-
erator is provided. More recently, in (Wang and
Yin, 2017) the design of an H∞ residual filter in
the continuous-time domain was presented. Con-
cerning the works previously cited, as far as the
authors are aware of, there is still some research
to be made in this field.

In this paper, the main novelty is the syn-
thesis of an H2 residual mode-dependent filter for
the discrete-time domain under the MJLS frame-
work in order to cope with a fault detection prob-
lem. Moreover, we also investigate the mode-
independent residual filter and the case of uncer-
tain transition probability matrices. In order to
illustrate our approach, a numerical example is
provided at the end of the paper.

This paper is organized as follows: Section 2
presents the notation used in this work, Section 3
presents a theoretical background, Section 4 de-
scribes the FD problem, Section 5 presents the
main results which consists of an FDF considering
the H2 norm. Section 5.2 presents the result for



the mode-independent case, Section 5.3 presents
the case of designing robust H2 filters, Section 6
presents a numerical example, and Section 7 con-
cludes the paper.

2 Notation

This paper uses a standard notation, with the op-
erator (′) denoting the matrix or vector transpose,
and (•) indicates each symmetric block of a sym-
metric matrix. The symbol N denotes a set of
natural numbers. We consider the convex set

Υ =

{
Q;Q =

V∑
l=1

ιlQ
l =, ιl ≥ 0,

V∑
l=1

ιl = 1

}
(1)

where V is the number of vertices in the politope.
Whenever Q ∈ Υ, we associate the index l with
the convex set (1). The set of Markov chain states
is represented by K = {1, 2, . . . , N}. The convex
combinations of the matrix Xj and the weight ρij
is given by εi(X) =

∑N
j=1 ρijXj for i ∈ K. The

symbol ε() represents mathematical expectations.
Considering the stochastic signal z(k), its norm is
defined by ‖z‖22 =

∑∞
k=0 ε{z(k)′z(k)}. The set of

signals z(k) ∈ Rn defined for all k ∈ N, such that
‖z‖2 <∞ is indicated by L2.

3 Theoretical Background

In this section, we define the concept of mean
square stability (MSS) and H2 norm, and with
that intention, we consider the following general
discrete-time MJLS as below

G :

{
x(k + 1) = Aθkx(k) + Jθkw(k)

z(k) = Czθkx(k) + Ezθkw(k)
(2)

where x(k) ∈ Rn represents the state, z(k) ∈ Rp
represents the output, w(k) ∈ Rm is an exogenous
input and θk is a Markov chain taking values in
K, with transition probability matrix P = [ρij ],
where ρij satisfies ρij = Pr[θk+1 = j|θk = i] and∑N
j=1 ρij = 1.

3.1 Mean Square Stability

In (Costa and Fragoso, 1993) the MSS for system
(2) is defined as:

Definition: System (2) is MSS if for any ini-
tial condition x(0) = x0 ∈ Rn, initial distribution
θ(0) = θ0 ∈ K it holds that

lim
k→∞

ε{x(k)′x(k)|x0, θ0} = 0. (3)

3.2 Markovian H2 norm

Considering that the MJLS G is MSS, theH2 norm
of the system (2) is given by

‖G‖22 =

m∑
s=1

N∑
i=1

µi‖zs,i‖22 (4)

where µi is the initial probability of the Markov
chain state θ0 and zs,i represents the output
z(0),z(1), . . . obtained when

• x(0) = x0 and the input is given by
w(k) = esδ(k), where es ∈ Rm is the n-th
column of the identity matrix m × m and
δi is the unitary impulse, (Costa et al., 1997).

• θ0 = i ∈ K with probability µi = Pr(θ0 =
i ∈ K)

In (Costa et al., 2006) it was shown that if the
Markov Chain is ergodic, and µi = ρi, where ρi
is the stationary probability distribuition of the
Markov chain, then the norm defined in (4) can
also be defined as

‖G‖22 = lim
k→∞

ε[z′(k)z(k)], (5)

where z(k) is the system output and w(k) repre-
sents a white noise sequence in the wide sense.

4 Problem Formulation

The MJLS we consider in this work is represented
by

Ga :


x(k + 1) = Aθkx(k) +Bθku(k) +Bdθkd(k) +Bfθkf(k)

y(k) = Cθkx(k) +Ddθkd(k) +Dfθkf(k)

x(0) = x0,

(6)

where x(k) ∈ Rn is the state, y(k) ∈ Rq is the
measured output, u(k) ∈ Rm is the known input,
d(k) ∈ Rp is the exogenous input and f(k) ∈ Rt is
the fault vector which is considered as an unknown
time function. We also consider that f(k), d(k) ∈
L2.

The Fault Detection system may be separated
into two stages: residual generation and the resid-
ual evaluation.

4.1 Residual Generator

The filter responsible for generating the residual
signal r(k) is a Markovian observer defined as:

F :


η(k + 1) = Aηθkη(k) +Mηθku(k) +Bηθky(k)

r(k) = Cηθkη(k) +Dηθky(k)

η(0) = η0

(7)

where η(k) ∈ Rn are the filter states and r(k) ∈ Rl
denotes the filter residue. We mention that this
filter also depends on the Markov mode θk, the
same index as presented in system (6).

This paper has the main goal of synthesize a
residual generator in the form of (7), composed
by the matrices Aηi, Bηi, Cηi, Dηi, Mηi, that is



mean square stable when u = 0, d = 0 and f = 0
and also minimize the value of γ in

N∑
i=1

µitrace(Wi) < γ (8)

In a similar way as in the continuous time
case illustrated in (Chen and Patton, 2000) and
the discrete time case in (Zhong et al., 2005), a
weighting matrix W(f) is implemented with the
purpose of restricting the frequency interval, in
which the fault should be identified leading to a
performance improvement, see for instance, (Chen
and Patton, 2000) and (Niemann and Stoustrup,

2001). A minimal realization of f̂(z) =W(z)f(z)
is

Wf :


xf (k + 1) = Awfxf (k) +Bwff(k)

f̂(k) = Cwfxf (k) +Dwff(k)

xf (0) = 0

(9)

where xf (k) ∈ Rt is the weighting filter state vec-
tor, and f(k) is the same fault as in (6). The
equivalent system represented as a diagram block
is shown in Fig.2.

Figure 2: Block diagram.

The augmented system (10) is obtained using

the augmented vector re(k) = r(k)− f̂(k) yielding
to

Gaug :

{
x̄(k + 1) = Ãθk x̄(k) + B̃θk w̄(k)

re(k) = C̃θk x̄(k) + D̃θk w̄(k)
(10)

where the augmented state is x̄(k) =

[x′(k) η′(k) x′f (k)]′ and w̄(k) = [u′(k) d′(k) f̂ ′(k)]′

and so [
Ãθk B̃θk
C̃θk D̃θk

]
=


Aθk 0 0 Bθk Bdθk Bfθk

BηθkCθk Aηθk 0 Mηθk BηθkDdθk BηθkDfθk

0 0 Awf 0 0 Bwf
DηθkCθk Cηθk −Cwf 0 DηθkDdθk DηθkDfθk −Dwf

 (11)

A feasible solution for the FDF optimization
problem is such that it is possible to obtain ma-
trices that compose the observer (7) in such a way
that system (10) is MSS and γ is made as small
as possible.

4.2 Residual Evaluation

The evaluation stage uses a evaluation function
J(r̄(k)) and the threshold Jth(k), both introduced
in the work (Zhong et al., 2005). The variable L
denotes the evaluation time, and with that, it is
possible to divide the evaluation into two distinct
cases, where the first one is defined by k − L ≥ 0
and the second one, k − L < 0. Thus, we define
the auxiliary vectors for each case as{

for k − L ≥ 0, r̄(k) = [r(k)′ r(k − 1)′ . . . r(k − L)′]

for k − L < 0, r̄(k) = [r(k)′ r(k − 1)′ . . . r(0)′]
(12)

and, given the discrepancy between the intervals,
the evaluation functions for each case are set as

for k − L ≥ 0, J(r̄(k)) =

{
k−L∑
σ=k

r̄′(σ)r̄(σ)

} 1
2

,

for k − L < 0, J(r̄(k)) =

{
0∑

σ=k

r̄′(σ)r̄(σ)

} 1
2

.

(13)

The threshold function is defined as

Jth(k) = sup
d∈L2, f=0

ε(J(r̄(k)f=0)) (14)

where r̄(k)f=0 represents the residual signal when
the system is operating on the nominal state,
meaning that no fault occurs. The occurrence of
faults can be detected by comparing the value of
J(r̄(k)) with Jth(k) as follows:

J(r̄(k)) < Jth(k), means that the system is

in the nominal mode;

J(r̄(k)) ≥ Jth(k), means that a fault

occurred at the instant k.

(15)

5 Main Results

In this section, we present the main contribution
of this paper, which is a FDF in the MJLS frame-
work. Theorem 1 allows us to design an FDF that
depends on the index θk. We also present the
mode-independent case and the FDF with uncer-
tainties in the matrices of the model.

5.1 Mode-Dependent Filter

Theorem 1 There exists a mode-dependent FDF
in the form of (7) satisfying the constraint (8)
for some γ > 0 if there exist symmetric matrices
Zi, Xi, Wi, and the matrices Hi, ∆i, Oi, Fi, Gi
with compatible dimensions that satisfy the LMI
constraints (16), (17), (18)

inf

N∑
i=1

µitrace(Wi) < γ (16)



W 11
i • • • • • •

W 21
i W 22

i • • • • •
W 31
i W 32

i W 33
i • • • •

εi(Z)Bi εi(Z)Bdi εi(Z)Bfi εi(Z) • • •
εi(X)Bi +Hi εi(X)Bdi + ∆iDdi εi(X)Bfi + ∆iDfi εi(Z) εi(X) • •

0 0 εi(T )Bwf 0 0 εi(T ) •
0 GiDdi GiDfi −Dwf 0 0 0 I


> 0 (17)





Zi • • • • • •
Zi Xi • • • • •
0 0 Ti • • • •

εi(Z)Ai εi(Z)Ai 0 εi(Z) • • •
εi(X)Ai + ∆iCi +Oi εi(X)Ai + ∆iCi 0 εi(Z) εi(X) • •

0 0 εi(T )Awf 0 0 εi(T ) •
GiCi + Fi GiCi −Cwf 0 0 0 I


> 0 (18)

i ∈ K. If a feasible solution for (16), (17), (18) is
obtained, then a suitable FDF is given by Aηi =
(εi(Z)− εi(X))−1Oi, Bηi = (εi(Z)− εi(X))−1∆i,
Cηi = Fi, Dηi = Gi, Mηi = (εi(Z)− εi(X))−1Hi,
for all i ∈ K.

Proof: See the Appendix II.

5.2 Mode-Independent Filtering

In the mode-independent case, filter (7) does not
depend on the index θk anymore, meaning that a
single filter must be designed for all the N modes
of the system. Recalling that the solution pre-
sented in Theorem 1 is already a sub-optimized
solution, we have that, the mode-independent con-
dition adds more conservadorism in the optimiza-
tion problem.

When we refer to the LMI (16)-(18) in Theo-
rem 2 below we consider that the variables ∆i =
∆, Oi = O, Fi = F , Dηi = Dη and Hi = H no
longer vary according to the index i, and moreover
we add the following hypothesis

ρij = ρj ,∀(i, j) ∈ K. (19)

This hypothesis, the so-called Bernoulli case, al-
low us to derive an LMI constraint capable of
designing a mode-independent RFD Filter. This
new hypothesis is necessary to remove the depen-
dency on i of the filter matrices, as shown in The-
orem 2 below:

Theorem 2 There exist a mode-independent
FDF in the form of (7) satisfying the constraint
‖G‖22 < γ if there exist symmetric matrices Zi,
Xi, Wi, and matrices H, ∆, O, F , G satisfy-
ing the LMI (16)-(18). If a feasible solution is
achieved the matrices that compose the FDF are
Aη = (ε(Z)−ε(X))−1O, Bη = (ε(Z)−ε(X))−1∆,
Cη = F , Dη = G and Mη = (ε(Z)− ε(X))−1H.

Proof: The proof follows the same lines as the
proof of Theorem 1 presented in the Appendix II.

5.3 Robust FD filter with uncertainties in the
Model

The last special case we tackle is the procedure
to add parametric uncertainties in Theorem 1. In
order to describe the system (6) with polytopic
uncertainties, we consider that for vertex matrices[
Ali Bli
Cli 0

]
, i ∈ K we have that

[
Aθk Bθk
Cθk 0

]
∈ Υ (20)

where Υ is the polytope as described in (1), and
l ∈ {1, . . . , V } represents the uncertain polytopic
vertex. We replace in (17), (18), the matrices Ai,

Bi and Ci by respectively Ali, B
l
i and Cli , so that

adding this new index implies in adding V new
constraints in (17), (18) for Theorem 1. We have
the following result.

Theorem 3 There exist a mode-dependent FD
Filter as in (7) satisfying the constraints in The-
orem 1, after replacing the matrices Ai, Bi and
Ci by respectively Ali, Bli and Cli , if there ex-
ist symmetric matrices Zi, Xi, Wi, and matri-
ces Hi, ∆i, Oi, Fi, Gi satisfying (16)-(18). If a
feasible solution is obtained a suitable FD Filter
is given by Aηi = (εi(Z) − εi(X))−1Oi, Bηi =
(εi(Z)− εi(X))−1∆i, Cηi = Fi, Dηi = Gi, Mηi =
(εi(Z)− εi(X))−1Hi, for all i ∈ K.

Proof : The proof is derived directly from the
proof for Theorem 1.

6 Numerical Example

The numerical example used in the present paper
was first introduced in (Zhong et al., 2005). The
example consists in an MJLS in the discrete-time
domain with two modes of operation. The dy-
namic system is composed of the matrices as in
(21), (22), (23), (24)

A1 =


0.1 0 1 0
0 0.1 0 0.5
0 0 0.2 0
0 0 0 0.2

A2 =


0.3 0 −1 0
−0.1 0.2 0 −0.5

0 0 −0.2 0
0 0 0 −0.5

 (21)

Bd =


0.8
−2.4
1.6
0.8

, Bf =


1
1
2
−2

, C =
[
0 1 0 1
1 0 1 0

]
(22)

Dd =
[
0.2
0.4

]
, Df =

[
2
−1

]
, P =

[
0.3 0.7
0.6 0.4

]
(23)

Awf = 0.5, Bwf = 0.25, Cwf = 1, Dwf = 0.5 (24)

Using Theorem 1 the obtained RFD filter is
presented in (25),(26),(27)

Aη1 =


−1.41 −0.92 0.45 −1.78
3.02 1.39 2.18 1.89
−0.86 −1.56 −1.43 −1.85
−0.84 0.98 −1.20 1.69

, Aη2 =


0.31 −0.51 −0.85 −0.53
0.72 0.37 0.74 −0.19
−0.55 −1.14 −0.81 −1.22
−0.28 0.38 −0.21 0.16

 (25)

Bη1 =


0.68 1.82
−0.53 −3.65
1.51 0.78
−1.49 1.16

, Bη2 =


0.52 −0.02
−0.15 −0.98
1.26 0.62
−0.63 0.39

, Cη1 =


−0.06
−0.02
−0.02
−0.01


′
, (26)

Cη2 =


−0.06
−0.02
−0.00
−0.00


′
, Dη1 =

[
−0.02
−0.02

]′
Dη2 =

[
−0.05
−0.03

]′, M1 = M2 =


0
0
0
0

 (27)

and the obtained H2 norm value is 4.6556.
In order to show that the theoretical results

provided in this paper are suitable solutions to the
RFD Filter problem, a simulation is presented.
The unknown signal dk(k) is a white noise se-
quence with mean equal to 0 and variance equal
to 0.7071. The weighted fault signal, denoted by
f̂(k), used in the simulation is a unitary step sig-
nal starting at k = 100 and finishing at k = 200.
The residual signal, r(k), obtained in the simula-
tion is shown in Fig. 3.

In the graphic shown in Fig. 4 the traced red
curve represents the evaluation function (15) in
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Figure 3: Residual r(k) behavior for the ‖H‖2
case.

the case where the fault occurs, the blue curve
represents the evaluation function when there is
no fault occurrence, and the magenta represents
the weighted fault itself.
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Figure 4: J(r) behavior for the ‖H‖2

As explained in Section 4.2 the evaluation pro-
cess uses the evaluation function J(r(k)) and com-
pares its value with the threshold Jth obtained via
simulation when there is no fault occurrence. It is
possible to observe that when the fault, the ma-
genta curve in Fig. 4, starts in this simulation it
was needed only k = 2 instants to detect the fault,
since the traced curve surpasses the blue curve.
These results show that our approach can be a
convenient solution to the fault detection prob-
lem.

We also performed 500 Monte Carlo simula-
tion, and calculated the average number of in-
stants k necessary to detect the fault. The average
number obtained was k = 4.3, with a standard de-
viation of 1.7840.

7 Conclusion

The main contribution in this work was to de-
rive a new set of LMI constraints for the design of
an H2 fault detector filter considering a discrete-
time MJLS. We aslo analyzed the so-called mode-
independent case and the parametric uncertainties
case. The numerical example indicates that the

presented approach can provide a viable solution
to the FDF problem. The following steps in this
line of research may be to add the consideration
of variable delay in the FDF design.

Appendix I: Auxiliary Results

In (Costa et al., 1997) an LMI constraint for the
calculation of the H2 norm of a MJLS as in (2)
was derived. The LMI constraint are presented
below:

N∑
i=1

µitrace(Wi) < γ (28)

 Wi • •
εi(P )J̃i εi(P ) •
D̃zi 0 I

 > 0 (29)

 Pi • •
εi(P )Ãi εi(P ) •
C̃zi 0 I

 > 0 (30)

These constraints can be equivalently written as
follows: Wi • •

B̃i εi(P )−1 •
D̃zi 0 I

 > 0 (31)

 Pi • •
Ãi εi(P )−1 •
C̃zi 0 I

 > 0 (32)

Appendix II: Proof Theorem 1

The first step to derive the suboptimal condition
is to impose the following structure, similar to the
structure in (Gonçalves et al., 2011), for the ma-
trices P and P−1

Pi =
Xi Ui 0

U ′i X̂i 0
0 0 Ti

, P−1i =
Yi Vi 0

V ′i Ŷi 0
0 0 T−1i

, (33)

and also consider the following structure for the
matrices εi(P ) and εi(P )−1

εi(P ) =
εi(X) εi(U) 0
εi(U)′ εi(X) 0

0 0 εi(T )

, εi(P )−1 =
R1i R2i 0
R′2i R3i 0
0 0 Ti

. (34)

We define the following matrices αi and δi as

αi =
 I I 0
V ′i Y

−1
i 0 0

0 0 I

, δi =
R1i Xpi 0

0 U ′pi 0
0 0 εi(Ti)

. (35)

Considering Ui = Zi−Xi in (33), we get from
(33), (35) that Vi = V ′i and Vi = Z−1i . Along side,

Ui = −X̂i we get R−11i = εi(X + U) = εi(Z), and
so we have that

α′iPiαi =
Y −1i Y −1i 0
Y −1i Xi 0

0 0 Ti

,
δ′iÃiαi = R−11i Ai R−11i Ai 0

εi(X)Ai + εi(U)BηiCi + εi(U)′AηiV
′
i Zi εi(X)Ai + εi(U)BηiCi 0

0 0 εi(P
33)Awf

,
δ′iB̃i =



 R−11i Bi R−11i Bdi R−11i Bfi
εi(X)Bi + εi(U)Mηi εi(X)Bdi + εi(U)BηiDdi εi(X)Bfi + εi(U)BηiDfi

0 0 εi(W )Bwf

,
δ′iεi(P )−1δi =

εi(Z) εi(Z) 0
εi(Z) εi(X) 0

0 0 εi(Ti)

,
C̃iαi = [

DηiCi + CηiV
′
i Zi DηiCi Cwf

]
D̃i = [

0 DηiDdi DηiDi −Dwf

].
Applying the change of variables εi(U)′Bηi = ∆i,
εi(U)′AηiV

′
i Zi = Oi, εi(U)′Mηi = Hi, CηiV

′
i Zi =

Fi and also substituting εi(Z) = R−11i in (16), al-
low us to get the following inequalities

N∑
i=1

µitrace(Wi) < γ (36)

 Wi • •
δ′iB̃i δ′iεi(P )−1δi •
D̃zi 0 I

 > 0 (37)

α′iPiαi • •
δ′iÃiαi δ′iεi(P )−1δi •
C̃ziαi 0 I

 > 0 (38)

and the inequality (36) is equivalent to the in-
equality (16). By doing a congruence transforma-
tion with the matrix diag[I, δ−1i , I] for (37) and
diag[α−1i , δ−1i , I] for (38), we get the inequality
(31), (32) and with that we can guarantee that
‖G‖22 < γ.
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