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Abstract— This paper proposes a study about finite control set model-based predictive control (FCS-MPC)
applied to a non-event based process. A theoretical background is provided, presenting the pros and cons with
this control technique. Some improvements for the conventional FCS-MPC are proposed, such as dynamic set
range. Simulation results are presented to corroborate the developed theory.
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Resumo— Esse artigo propõe o estudo do controle preditivo baseado em modelo de conjunto de ações de
controle finito applicado a um processo não baseado em eventos. Uma fundamentação teórica é fornecida, apre-
sentando os prós e contras da técnica de controle. Algumas melhorias à estratégia convencional são propostas,
como variação dinâmica do conjunto. Resultados de simulação são apresentados para corroborar a teoria desen-
volvida.

Palavras-chave— Controle preditivo, FCS-MPC, controle de processos

1 Introduction

Finite control set model-based predictive con-
trol (FCS-MPC) is a particular class of model-
based predictive control (MPC) that was devel-
oped in the power electronics field (Rodriguez
et al., 2007; Rodriguez et al., 2013). Essen-
tially, FCS-MPC technique and its variations are
used to treat process with an event-based char-
acteristics, as the commutated converters seen in
power electronics, due to their intrinsic property
to deal with a finite control action set (Vazquez
et al., 2014; Vazquez et al., 2017).

Thus, FCS-MPC is characterized to have a
countable, and usually finite and pretty limited,
control set, that comprehends all possible control
actions for the process. Therefore, FCS-MPC is in
opposition to other MPC techniques, also called as
convex control set model-based predictive control
(CCS-MPC), which treat process with the entire
real number set, or at least a constrained convex
set, as control action possibilities (Bordons and
Montero, 2015; Preindl, 2016).

In the power electronics field, the main ad-
vantage of FCS-MPC is its capability to treat di-
rectly the commutation nonlinearity instead of us-
ing a modulator (Young et al., 2014), which also
implies problems as variable switching frequen-
cies and higher total harmonic distortion rates
(Vazquez et al., 2014). However, as other MPC
techniques, FCS-MPC has the capability to treat

process constraints in the control design and to
handle with multi-variable problems in its formu-
lation. In addition, FCS-MPC may have a sig-
nificant lower computational burden if compared
with other MPC techniques that treat process
constraints (Bordons and Montero, 2015; Negri
et al., 2017). It also can treats directly some pro-
cess nonlinearities without linearization and al-
lows to employ a significant variety of cost func-
tionals. Indeed, FCS-MPC usually has small pre-
diction horizons (about one or two steps ahead
prediction), which reduces its computational bur-
den (Mayne, 2014).

Although FCS-MPC is essentially related to
process with finite control set, that are usually
event-based, it is not necessarily restricted to
them. It is possible to apply FCS-MPC to any
process that could have its control set quantized
(Aguilera and Quevedo, 2013). Therefore, it is
possible to explore the benefits proportioned by
it, as the treatment of process constraints with
low computational burden, to almost every phys-
ical or industrial process. The main drawback is
the switched control action, proportioned by this
control, which could reduce process actuator life
cycle and could propagate noise and internal res-
onances of the process and its sensors (Aguilera
and Quevedo, 2013).

Other problems caused by the FCS-MPC are
the non steady-state stabilization. This control
technique stabilizes in a limit cycle. Due to this,



in some cases, there is a steady-state error, with
average value of the process output being different
of the output reference (Lezana et al., 2009; Aguil-
era et al., 2013).

Therefore, this paper proposes an investiga-
tion of which is the use of FCS-MPC to control a
fluid-flow process, a non intrinsic event-based pro-
cess. A similar idea of an optimal switched con-
trol strategy was explored by (Kirk, 2004), in the
context of pure optimal control instead of model-
based predictive control.

Furthermore, a dynamic set range to reduce
the problems caused due to cycle limit steady
state and other minor improvements are proposed.
Therefore, this paper main contributions are re-
lated to the application of FCS-MPC in a non
event-based process, as the fluid-flow. Also, there
is the presentation of three improvements for FCS-
MPC algorithm considering its application in a
non event-based process, and other minor im-
provements and analysis.

In Section 2, the process and the prediction
are presented. The proposed control is presented
in Section 3. The control design and simulation
results are presented in Section 4. Finally, the con-
clusions and future works suggestion are exposed
in Section 5.

2 Process and prediction model

The fluid-flow process to be controlled by FCS-
MPC can be described as

ẋ(t) = f(x(t), u(t)) (1)

being x ∈ [0, xmax] the state variable of process,
in this case, the fluid level, u ∈ [umin, umax] the
control action, in this case, the voltage applied to
the pump, xmax is maximum admissible value for
x(t) without the tank to overflow, umin and umax

are the minimum and the maximum voltages ad-
missible to be applied in the pump. The nonlinear
relation f can be expressed with

f(x(t), u(t)) = − a
A

√
2gx(t) +

k

A
u(t) (2)

where A is the cross section of tank, a is the cross
section of the outlet hole, g is the gravity acceler-
ation and k is the flow rate per voltage constant.

In order to obtain a prediction model for the
control, it is necessary to discretize the nonlinear
dynamics of the process. A possible alternative is
the Euler discrete approximation, which, given a
sampling period Ts, yields

x(tk + 1) = fk(x(tk), uk(tk)), (3)

where uk ∈ Uk ⊂ [umin, umax] is the quantized
control action, with ns states, and

fk(x(tk), u(tk)) = ak
√
x(tk) + bkuk(tk)

being

ak =
(

1− a

A

√
2gTs

)
,

bk =
k

A
Ts,

uk ∈{u1, u2, . . . , uns}.

3 Proposed control theoretical
background

In this paper, the FCS-MPC use is being studied.
However, some improvements are being proposed.
Therefore, this section presents the fundamentals
of MPC, the conventional FCS-MPC algorithms,
found in the literature, and, specifically, each im-
provement in other subsections.

3.1 Fundamentals of MPC

MPC is a class of a large group of algorithms with
similar properties among them (Qin and Badg-
well, 2003; Mayne, 2014).

Essentially, a MPC algorithm solves an open-
loop finite horizon N optimization problem (usu-
ally, the minimization of a cost functional J), sub-
ject to a prediction model and, possibly, terminal
equality constraints and process inequality con-
straints (Mayne et al., 2000). Since the finite hori-
zon optimization problem is solved, only the first
term of the solution sequence also called optimal
sequence

U?
k = {u?k(tk), u?k(tk +1), . . . , u?k(tk +N−1)} (4)

is applied to the process. Then, all the opti-
mization problem is solved again in the next sam-
pling time. This process is called receding horizon
(Garćıa et al., 1989).

The horizon of an optimization problem is de-
fined as the number of future evaluated cost func-
tional samples, due to the predicted samples of the
prediction model. This horizon is also known as
prediction horizon N , in MPC literature (Mayne
et al., 2000).

3.2 Conventional FCS-MPC algorithms

The conventional FCS-MPC algorithm, as pre-
sented in (Rodriguez et al., 2007; Rodriguez et al.,
2009), assuming prediction horizon N = 1, con-
sists in

1. Measure x(tk);
2. Set Jmin ←∞;
3. For i← 0 to ns:

(a) Calculate x(tk + 1) due to ui applied in
tk;

(b) Evaluate the cost functional J ;
(c) If J < Jmin:

i. Jmin ← J ;
ii. imin ← i;



4. Set uk(tk) = u?k(tk)← uimin ;
5. Wait the next sampling time;

Many times, due to the lower sampling times
of power electronics, the main FCS-MPC algo-
rithm is adapted (Aguilera et al., 2013), assuming
prediction horizon N = 2, being employed as

1. Measure x(tk);
2. Set uk(tk + 1) = u?k(tk + 1)← uimin

;
3. Estimates x(tk + 1) due to u(tk + 1) = uimin

and x(tk);
4. Set Jmin ←∞;
5. For i← 0 to ns:

(a) Calculate x(tk + 2) due to ui applied in
tk + 1;

(b) Evaluate the cost functional J ;
(c) If J < Jmin:

i. Jmin ← J ;
ii. imin ← i;

6. Wait the next sampling time;

3.3 Dynamic set range

The dynamic set range consists in change the eval-
uated control action set Uk according to process
current conditions. Since the evaluated process is
not intrinsic event-based, it is possible to change,
even dynamically, the Uk elements. These ele-
ments are only an extra control design resource
and, therefore, can be chosen by the control de-
signer. Considering the exposed before, some
methods for dynamic set range evaluation are pro-
posed.

3.3.1 Fixed set with dynamic search
(FSDS)

The first idea consists in the use of a search hori-
zon Ns. Given a large number of states ns pos-
sibilities, the search horizon concept is a fixed, or
variable, search horizon that evaluates the con-
trol actions based on the current control action.
The search is performed according the following
algorithm (other parts, involving measurement et
cetera, are omitted):

1. Define ns � Ns;
2. i0 ← imin −Ns;
3. If i0 < 0:

(a) i0 ← 0;
4. if ← imin +Ns;
5. If if > ns:

(a) if ← ns;
6. For i← i0 to if :

(a) Predict x due to ui;
(b) Evaluate the cost functional J ;
(c) If J < Jmin:

i. Jmin ← J ;
ii. imin ← i;

The number of evaluations, in the worst case,

is 2Ns + 1 searches, with the approach presented
before. High Ns values imply higher computa-
tional loads for the algorithm.

3.3.2 Fixed set with dynamic subset (FS-
DSs)

A second idea for the dynamic set is to use a fixed
values set with larger voltage steps. Furthermore,
a second set, called as dynamic subset, could be
calculated considering the range between the volt-
ages previously chosen by the controller. This ap-
proach is useful to reduce the oscillations in the
control action and in the output. A possible algo-
rithm (which is not the most optimized, but one
of the simplest) to proceed with this strategy is:

1. Define ns;
2. imin,ant ← imin;
3. If (imin,ant > 0) and (imin,ant < ns):

(a) Define ns,b;
(b) uk,max(tk)← uimin,ant+1;
(c) uk,min(tk)← uimin,ant−1;
(d) du← (uk,max − uk,min)/ns;
(e) i← 0;
(f) dui ← uk,min;
(g) While i < ns,b:

i. ub,i ← dui;
ii. dui+1 = dui + du;
iii. i← i+ 1;

4. Proceed the first search (in ui);
5. If (imin,ant > 0) and (imin,ant < ns):

(a) Proceed the second search (in ub,i);

3.3.3 Dynamic set with control reference
(DSCR)

Other dynamic set idea is to rearrange the limits,
considering to use an reference value to the con-
trol action u∗k. After that, it is possible to delimit
a set based in other criteria, as the tracking error
(converted to the control unity). The reference
value could be obtained from the expected value
for u(t) in the steady state, associated to an inte-
gral effect to deal with model displacements. An
approach similar to the proposed is explored by
(Wang et al., 2016), that uses a dead-beat con-
troller to guide the FCS-MPC. This work differs
since it is proposed a dynamic set, generated by
the control reference. In the previous work, the
set was fixed and the control reference was used
to reduce the search algorithm. A possible algo-
rithm to establish the dynamic set is:

1. e(tk)← x∗(tk)− x(tk)
2. ea(tk)← e(tk) + ea((tk)− 1);
3. u∗k(tk)← a

√
2g/kx∗(tk) + ea(tk);

4. If u∗k(tk) > umax:
(a) u∗k(tk)← umax;

5. If u∗k(tk) < umin:
(a) u∗k(tk)← umin;

6. uk,amp(tk)← ne|e(tk)|umax/xmax



7. uk,max(tk)← u∗k(tk) + uk,amp(tk)
8. If uk,max(tk) > umax:

(a) u∗k(tk)← umax;
9. uk,min ← u∗k − uk,amp

10. If uk,min(tk) < umin:
(a) uk,min(tk)← umin;

11. du← (uk,max − uk,min)/ns
12. i← 0
13. dui ← uk,min

14. While i < ns:
(a) ui ← dui
(b) dui+1 = dui + du
(c) i← i+ 1

It is important to note that in this approach
the search horizon Ns is equal to the desired num-
ber of states ns.

4 Control design and simulation results

The evaluated fluid-flow process has A = 5 cm2,
a = 0.71 cm2, g = 981 cm/s2, k = 2 cm3/(Vs),
umax = 24 V and umin = 0 V. The maximum
safe tank level xmax is 1.6 cm (achieved with 24 V
applied to the pump). The pump voltage dead
zone nonlinearity is neglected. The established
sampling time Ts = 0.01 s is sufficiently small if
compared with process open-loop and closed-loop
dynamics.

All tests were performed in 6 s of total simu-
lation time. The level references were 0.8 cm from
0 to 2 s, 0.3 cm from 2 s to 4 s and 1.2 cm from
4 s to 6 s.

Several controllers were designed to explore
different resources of the proposed technique.
They are presented in the next subsections as well
their closed-loop simulation results.

4.1 Fixed set with dynamic search results

The first results were obtained with the FDSD
approach. The employed cost functional was:

J(x(tk), uk(tk)) =
1

x2max

(x∗(tk + 1)− x(tk + 1))2

+ Jconst (5)

assuming that x∗(tk +1) = x∗(tk), x(tk +1) could
be calculated using (3) and Jconst given by

Jconst =

{
µc(xmax − x(tk + 1)), x(tk + 1) > xmax

0, x(tk + 1) ≤ xmax

(6)
is the limitation cost, associated with the soft-
constraint treatment of FCS-MPC (Preindl and
Bolognani, 2013). In all tests performed the limi-
tation weighting was µc = 10000.

Figure 1 presents the results for the fixed set
with dynamic search approach for prediction hori-
zon N = 1 step ahead, ns = 120 states and
Ns = 20 states (Test 01). Figure 2 presents the

results for the fixed set with dynamic search ap-
proach for prediction horizon N = 3, considering
that the cost functional penalizes each prediction
step, ns = 120, Ns = 8 (Test 02).

As can be seen in Figures 1 and 2, the FSDS
approach for FCS-MPC is capable to control the
fluid-flow process suitably. An important fact
is the relatively low control action ripple, which
would be expected for a FCS-MPC given the
switched nature of the control. The low ripple was
a direct consequence from the FSDS approach,
which works with a large number of states, ensur-
ing a refinement in the applied voltage. The larger
prediction horizon reduces some output peaks.
However, overall, a larger Ns is preferable instead
a larger N . A larger N causes a huge increase
in the computational burden in comparison to a
larger Ns. Nevertheless, a significant dynamic
performance improvement is not observed.

4.2 Fixed set with dynamic subset results

The FSDSs approach tests were performed using
the same cost functional from the FSDS approach,
presented in (5).

Figure 3 presents the Test 03 performed with
ns = 13 and N = 1. In this test, no sub-
sets were employed, which could be characterized
as a conventional FCS-MPC approach (some dis-
crete states evaluated one step ahead). Figure
4 presents the Test 04 performed with ns = 13,
ns,b = 10 and N = 1. In the Test 04, only one
dynamic subset was employed.

As observed in Figures 3 and 4, the use of a
dynamic subset reduces significantly the control
action ripple. Since in the Test 03 there is not
a dynamic subset, but a pure FCS-MPC, and in
the Test 04 there is the dynamic subset, the im-
provement is clear, besides being greater than the
observed FDSD approach. The main advantage
for the FSDSs approach, in relation to the FSDS
one, is the considerably small ns, which means low
memory space to store the control actions states.
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Figure 1: Results from Test 01
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Figure 2: Results from Test 02

Other benefit from this approach is the faster tran-
sient, since all states from the main Uk are tested
in all control evaluations. On the other hand, this
strategy has a higher computational cost, consid-
ering that the subset is calculated dynamically
and the number of searches could be higher than
in the FSDS approach (since at least two searches
are required).

4.3 Dynamic set with control reference results

The last approach tested was the DSCR approach.
Figure 5 presents the Test 05 results, obtained
from ns = 20, N = 1 and ne = 15. The same
cost functional described by (5) was evaluated.

As seen in Figure 5, the DSCR has a lower
control ripple if compared with the previous
strategies, specially the FSDSs. The dynamic re-
sponse is as faster as FSDSs. These positive as-
pects occur due to the unfixed states idea, that
calculates the a new Uk at each sampling time,
given the u∗k existence. The error dependence in
the Uk building guarantees well spaced uk with
large errors and near located uk with small errors.
Figure 6 allows to explore these concepts. It shows
some elements from Uk, in other words, some of
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Figure 3: Results from Test 03
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Figure 4: Results from Test 04

the twenty possible uk in the time. It also shows
u∗k. In Figure 6, it is possible to see that when the
error is large, the possible choices for uk are more
spaced. In other hand, when the error is small,
the uk are near each other, reducing the voltage
ripple.

4.4 Stochasticity evaluation

In this subsection, a stochasticity evaluation of
DSCR approach is presented to explore some pos-
sibilities of FCS-MPC. One of the main advan-
tages of this control strategy is the flexibility with
relation to the cost functional. Usually, fluid-flow
processes have high noise level in the output mea-
sure. Therefore, a random noise, with maximum
amplitude equal to 0.25 cm, was imposed to the
output measurement and DSCR approach was ap-
plied as described in the Subsection 4.3. The re-
sult of this Test 06 is presented in Figure 7. As
this figure shows, the control algorithm causes a
huge noise propagation, spending a large control
effort to maintain the output following the refer-
ence.

To reduce this large control effort, two alter-
native functional costs were proposed to be eval-
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uated by the control algorithm.

The first functional is described by

J1(x(tk), uk(tk)) =
1

x2max

(x∗(tk + 1)− x(tk + 1))2

µv

u2max

(uk(tk + 1)− uk(tk))2

+ Jconst, (7)

where µv is the control variation weighting factor,
tuned empirically.

Therefore, the functional described by (8) also
penalizes the control effort variation. Consider-
ing µv = 0.1, ns = 20 and ne = 15, Figure 8
presents the Test 07. It is possible to notice a
significant reduction of the control effort to the
control action, for obtaining almost the same, al-
though slower, output response. Thus, for exam-
ple, one advantage of the flexibility of FCS-MPC
approach is the capability of obtaining minimum
variance control characteristics, reducing the noise
influence. These results could be improved if a sto-
castic model was employed as prediction model.

A second possible way to reduce control effort
in the proposed FCS-MPC approach is to penalize
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Figure 7: Results from Test 06
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Figure 8: Results from Test 07

the distance to u∗k(tk) in the cost functional, as

J1(x(tk), uk(tk)) =
1

x2max

(x∗(tk + 1)− x(tk + 1))2

µv

u2max

(uk(tk + 1)− u∗k(tk))2

+ Jconst. (8)

In this approach, smooth responses are ob-
tained as it is possible to see in Figures 9 and
10, referred to Test 08 (µv = 0.01, ns = 20 and
ne = 15) and Test 09 (µv = 0.05, ns = 20 and
ne = 15), respectively.
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Figure 9: Results from Test 08

According to the µv tuning, it is possible to
get a smoother, but slower response. Compared to
the previous approach, the control effort variation
is higher in frequency and smaller in amplitude.
It occurs since the control action is concentrated
around u∗k(tk).

5 Conclusion

This paper proposed the application of FCS-MPC
in a non event-based process, with some improve-
ments to reduce the inherent voltage ripple of
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FCS-MPC. A case study is performed with a fluid-
flow process, which is nonlinear, and the con-
trol algorithm was capable to guide the output to
the reference. Among the improvements to FCS-
MPC, the FSDS is the simplest, but still effective
strategy. However, this approach uses a significant
memory space and has a slower output response.
The FSDSs approach presents a faster output re-
sponse, with a higher computational burden than
FSDS one and significant less memory space stor-
age. The DSCR approach is more effective due to
the complete dynamic variation of the control set,
having lower voltage ripple if compared to previ-
ous approaches, but a higher computational load.
A stochasticity evaluation was also explored for
the DSCR case and it shows the flexibility of FCS-
MPC, in this case, to include minimum variance
control properties. Two possibilities are given and
both are effective being, one to reduce the control
ripple frequency and other to reduce the control
ripple amplitude.

Thus, it is possible to conclude that FCS-
MPC is a good alternative to control nonlinear
non event-based processes, specially, with the im-
provements presented in this paper. It main ad-
vantage is it flexibility to evaluate the suitable cost
functional for the process, also treating the pro-
cess constraints, with a low computational burden
if compared with other nonlinear model-based pre-
dictive controllers.

Acknowledgment

This study was financed in part by the Coor-
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