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Abstract— This work investigates a control strategy based on the combination of poles assignment and
geometric approach to detect and reject disturbances in an active suspension system. The design procedure
has two steps. The first step consists in determining the invariant subspaces for the system according to linear
algebra concepts, and use such descriptions to design a full order state observer, which will aid the disturbance
detection. The second step is designing a state feedback controller together with a static gain in order to reject the
disturbance. After designing the state observer and state feedback controller, some experiments were performed
on the active suspension system manufactured by Quanser® Consulting. The experiments resulted in a useful
disturbance detection and rejection strategy for implementing in systems where the disturbances are unknown
and their rejection is desired.
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Resumo— Este trabalho investiga uma estratégia de controle baseada na combinação de alocação de polos e
abordagem geométrica para detecção e rejeição de distúrbios em um sistema de suspensão ativa. O procedimento
de projeto possui dois passos. O primeiro consiste em determinar os subespaços invariantes do sistema, de acordo
com os conceitos de algebra linear, e usar esses subespaços para projetar um observador de estados de ordem
completa, o qual auxiliará na detecção da entrada de distúrbio. O segundo passo visa projetar um regulador
de estados combinado com um ganho estático para rejeitar os distúrbios. Depois de projetar o observador de
estados e o regulador de estados, alguns experimentos foram realizados no sistema de suspensão ativa fabricado
pela empresa Quanser®. Por fim, os experimentos resultaram em uma estratégia útil de detecção e rejeição de
perturbações para implementação em sistemas onde os distúrbios são desconhecidos e sua rejeição é desejada.
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1 Introduction

Ride quality and comfort are goal attributes in car
design. Suspensions have an important role, not only
because they help to achieve those, but because they
improve the vehicle stability and avoid rollover con-
ditions (Rath et al., 2017). In general, suspensions
transfer the force and torque between the wheels and
the frame, and attenuate the impact load caused by
the pavement and the system vibration.

Passive suspensions are used in most of the con-
ventional cars, and provide disturbance rejection in
all frequencies by spring damping systems, but can-
not provide attenuation in low and high frequencies.
On the other hand, active suspensions are able to dy-
namically change the damping force according to the
sensors measurements and achieve overall better per-
formance. These systems are used in car competitions
and some expensive commercial cars (Prattichizzo
and Mercorelli, 2000). Moreover, active suspensions
aim to absorb the ground and system irregularities
and exert null strain on the vehicle body(de Jesús Ru-
bio et al., 2014).

Concerning the application of active suspension
systems, different types of control methods for dis-
turbance rejection have been studied. For instance,
robust techniques as H∞ control, and full-order sli-
ding mode control show good results. However,
such approaches do not include any system monitor-

ing that allows the detection of some operation va-
lues. In this sense, a strategy based on the combina-
tion of a controller to reject the disturbance, with a
state estimator to detect the disturbance is suitable.
There are some approaches that deal with the distur-
bance detection and rejection problems (see the paper
(de Jesús Rubio et al., 2014) and references therein).
Typically, such methods involve complex mathema-
tical manipulations, while a simple pole placement
design for observer and state feedback controller may
be used.

In this context, the main contribution of this pa-
per consists in the practical investigation of a pole
placement strategy based on geometric approach to
detect and reject disturbances in an active suspen-
sion system. On this approach, the concept of in-
variance of a subspace for controllability and obser-
vability of a linear system is explored. The didactic
plant used herein was produced by Quanser® Consul-
ting and has been widely studied in previous articles
(da Silva et al., 2013; de Oliveira et al., 2014; Pereira
et al., 2017). Its dynamics can be described by a
fourth-order system by two masses and two springs,
which are independent storage elements that repre-
sents a quarter-car model.

This paper is structured as follows: Section 2
presents the concepts of the geometric approach. Sec-
tion 3 describes the target system of this paper,



its mathematical model and parameters. Section 4
presents the observer and the controller design via
geometric approach and the experimental results ob-
tained. Finally, the conclusions are given in Section
5.

1.1 Notation and Definitions

The geometric approach is an alternative theory of
control for multivariable linear systems, and uses the
concept of subspaces invariance with respect to a li-
near transformation (Basile and Marro, 1992; Prepal-
iţă et al., 2012).

Definition 1 Given a vector space X over the field
of real numbers Rn, a subset V is subspace of X if (1)
and (2) are true.

αx+ βy ∈ V ∀ α, β ∈ R, ∀ x, y ∈ V (1)

A(αx+ βy) = αAx+ βAy

∀ α, β ∈ R, ∀ x, y ∈ X .
(2)

In respect to the transformation A : X → Y, let
set (3), (4) and (5)

Im(A) := {y : y = Ax, x ∈ X} (3)

ker(A) := {x : x ∈ X , Ax = 0} (4)

A−1V := {x : v = Ax, v ∈ V} (5)

where (3) represents the orthonormalization of A, (4)
represents the null space of A, and (5) represents the
inverse of a given subspace. The image, the kernel
and the invert subspace are subspaces of X and Y
(Marro, 2007). Moreover, consider V a n-dimension
vector given by (6).

V = gen [v1, v2, ..., vn] (6)

where v1, v2, ..., vn are a set of vectors that yield the
subspace V (de Jesús Rubio et al., 2014).

Definition 2 Considering the transformation A :
X → X , A is called A-invariant if and only if there
is a subspace V ⊆ X where (7) can be verified.

AV ⊆ V (7)

In other words, a system is called A-invariant, if and
only if there exists a vector space X such as

AV = AX (8)

where, given vi (i = 1, 2, ..., r) as the columns of V,
each transformed column is a linear combination of all
columns, and if exists vectors xi that yield Avi = V xi
(i = 1, 2, ..., r). Thus, (8) expresses (7) in a compact
form. In order to call A-invariant, all the vectors of
AV must be linear combinations of the vectors of V
(Basile and Marro, 1992).

2 Preliminaries and Problem Statement

Consider the system,

H :=

{
ẋ = Ax+Bu
y = Cx+Du

(9)

where x ∈ Rn is the state vector, u ∈ Rm is the
control input, y ∈ Rp is the the system output and
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are
the state-space matrices. The corresponding linear
transformations of each matrix to the subspaces of
the system are as follows: A : X → X , B : U → X ,
C : X → Y and D : U → Y.

The extended system considering the disturbance
input is given as,

Hd :=

{
ẋ = Ax+Bu+ Ed
y = Cx+Du

(10)

where d is de disturbance input, and its subspace is
given as E : E → X .

Moreover, the system (9) can be described as a
transfer function,

H(s) := C(sI −A)−1B +D (11)

where the roots of the polynomial denominator are
the poles and the roots of the numerator are the zeros.
A system is considered minimum phase, if it does not
have any zeros in the right half-plane including the
origin. If the system is minimum phase, the trans-
mission zeros are the invariant zeros of the system
(Marro and Prattichizzo, 2001).

2.1 Controlled and Conditioned Invariants

Consider the system (9) and let the subspaces C =
kerC ⊆ X and B = ImB ⊆ X .

Theorem 1 (Marro, 2007) The pair (A,B) is called
“Controlled Invariant”, if there is a friend space vector
F for the output-nulling subspace V such that (12) is
true.

(A+BF )V ⊆ V
V ⊆ ker (C +DF )

(12)

where V can be calculated from (13).

V1 = C
Vi = C ∩A−1(Vi−1 + B) (i = 2, 3, 4, ...)

(13)

The equation (13) is calculated until convergence.
The result is called maximum controlled invariant
(Marro and Prattichizzo, 2001) and is denoted as V∗.

Theorem 2 (Marro, 2007) Similarly, the pair (C,A)
is called “Conditioned Invariant”, if there is a friend
space vector L for the input-containing subspace W
such that (14) is verified.

(A+ LC)W ⊆W
W ⊇ Im (B + LD)

(14)



where W can be calculated from (15).

W1 = B
Wi = B +A(Wi−1 ∩ C) (i = 2, 3, 4, ...)

(15)

The equation (15) is calculated until convergence.
The result is called minimum conditioned invariant
(Marro and Prattichizzo, 2001) and is denoted asW∗.

Finally, consider the unassigned eigenvalues of
(13). These are called the “Invariant Zeros” of the
system, and can be considered fixed poles of the ma-
trices (12) and (14) (Basile and Marro, 1992).

2.2 Disturbance Decoupling

Consider the system (9) with the disturbance input
(10) and let the subspace E = Im (E) ⊆ X .

˙̃x = (A+ LC)x̃+Bu+ Ly

d̃ = y − Cx̃
(16)

To achieve disturbance decoupling via state feed-
back controller, the system must be controlled and
conditioned invariant, the invariant zeros must be in
the complex left half-plane, and the disturbance sig-
nal must be inaccessible (Marro, 2007). An option to
design a full-order state observer (16) (Figure 1) con-
sists in assigning to gain L the invariant zeros of the
system and the remaining poles freely.
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+
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Figure 1: Block diagram of the full-order state observer.
Adapted from (de Jesús Rubio et al., 2014)

The disturbance decoupling problem can be
achieved if and only if

E ⊆ V∗ + B
E ⊂ V∗ ⊂ C

(17)

Equation 17 being true, the disturbance is invisi-
ble to the state observer (de Jesús Rubio et al., 2014).

Similarly, using the detected disturbance d̃, it is pos-
sible to design a state feedback controller through the
control law (18)(Figure 2) to reject it, assigning to F
the invariant zeros of the system and remaining poles
freely. The gain G is a static gain designed arbitrarily,
such that generates a null transfer function between
y and d̃.

u = −Fx̃+Gd̃ (18)

ẋ = Ax + Bu + Ed

d

u
C

y
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G
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−
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Figure 2: Block diagram of the state feedback.
Adapted from (de Jesús Rubio et al., 2014)

3 Description of the Active Suspension
System

The active suspension system used here was produced
by Quanser® Consulting (Figure 3) and its dynamics
can be described as a proper system. The rotary
movement of the motor CC1 is converted to linear,
which simulates the axial variations of the road. The
lower platform represents the road. The middle plat-
form is an unsprung mass representing the wheel and
tire. The upper platform is a sprung mass represent-
ing the vehicle body. The electric motor CC2 is the
active suspension actuator and keeps the upper plat-
form suspended. In addition, the system has two en-
coders to indicate in a joint way the positions of the
three platforms and both have 4096 ticks per revolu-
tion (Apkarian and Abdossalami, 2013).

Consider the system (9) and the extended sys-
tem (10), the linear model provided by Quanser®

(Apkarian and Abdossalami, 2013) can be described
using state-space representation matrices:

A =


0 1 0 −1

−Ks
Ms

− Bs
Ms

0 Bs
Ms

0 0 0 1
Ks
Mus

Bs
Mus

−Kus
Mus

−Bs+Bus
Ms

 ,

B =


0
1

Ms

0
− 1

Mus

 , C =

[
1 0 0 0

−Ks
Ms

− Bs
Ms

0 Bs
Ms

]
,

D =

[
0
1

Ms

]
, ET =

[
0 0 −1 Bus

Mus

]

(19)

where the state x1 is the suspension deflection Zs −
Zus, the state x2 is the vehicle body vertical veloc-
ity Żs, the state x3 is the tire deflection Zus − Zr,
and the state x4 is the tire vertical velocity ˙Zus. The
disturbance d is given by the derivative of the road
displacement Żr (de Oliveira et al., 2014). The phy-
sical interpretation of the parameters as well as their
numerical values are given in the Table 1.



Table 1: Active Suspension Parameters

(Apkarian and Abdossalami, 2013)
Parameters

Symbol Name Value
Ms Sprung Mass 2.45 Kg
Mus Unsprung Mass 1.0 Kg
Zs Load -
Zus Wheel and tire -
Zr Road -
Ks Suspension Stiffness 900 N/m
Kus Tire Stiffness 2500 N/m

Bs
Suspension Inherent
Damping Coefficient

7.5 Nsec/m

Bus
Tire Inherent

Damping Coefficient
5 Nsec/m

Figure 3: Quanser active supension system.
Adapted from (Apkarian and Abdossalami, 2013).

Figure 4 shows the frequency response of the sys-
tem (10) considering the state-space matrices (19). It
is possible to notice that the system has two peaks
of amplification, at around 14 [rad/s] and 50 [rad/s].
These points are the critical open loop performance
points, which will be better exploited at the Section
4.3.

Figure 4: Singular values of the system with the disturbance
model.

4 Design and Experimental Results

4.1 State Observer and State Feedback Controller
Design

Consider the Single-Input-Multiple-Output system
(SIMO) composed by the matrices A, B, C and D
described in (19). Since the model describes a Linear
Time Invariant system and it is minimum phase, the
invariant zeros of (19) are equal to its transmission
zeros (11) (Marro and Prattichizzo, 2001).

Moreover, the nominal active suspension system
has no zeros, therefore, no fixed poles. Those can be
freely assigned. Hence the geometric approach yields
(20).

P {A,B,C,D} =


−6.9453 + 58.7246i
−6.9453− 58.7246i
−0.8353 + 16.1843i
−0.8353− 16.1843i


Zi {A,B,C,D} = Z {A,B,C,D} = [ ]

(20)

Assigning to state observer the poles s1,2 =
−25.1543±53.91i, which are around four times faster
than the fastest poles of the system, and testing
s3 = −1160.5 and s4 = −0.7420, the observer gain
L is given by

L =


0.0245 −2.3824
−0.0595 −2.3161
−0.0185 −2.1042
2.1024 102.4963

 . (21)

To determine (15) and (13), it is possible to use
a geometric approach toolbox for Matlab®, designed
by (Basile and Marro, 1992). Using the toolbox to
calculate the minimum conditioned invariant condi-
tions, one obtains (22).

W∗ = gen




0
0
0
0


 ,

Im (B + LD) = gen



−0.0283
−0.0131
−0.0210
−0.9994


 .

(22)

The result in (23) shows that the solution for (15)
is a null-vector. Since the origin must be solution to
every transformation of the type A : X → Y, the
conditioned invariant problem is solved, and L can
be called a friend space vector of Wi.

(A+ LC)


0
0
0
0

 ⊆


0
0
0
0

 ⊇

−0.0283
−0.0131
−0.0210
−0.9994

 (23)

For the state feedback control design, the farther
poles s1,2 = −8.1± 46.77i were kept close to the sys-
tem poles, while the slower poles s3,4 = −5.25±13.36i
were chosen to be around 6 times faster the the system



slower poles. Now, using the pole placement strategy,
the state feedback controller F is calculated.

Figure 5: Poles placement.

F =
[
3.3272 15.0114 −13.6727 1.4781

]
. (24)

Using the toolbox to calculate the maximum con-
trolled invariant conditions, one obtains (25).

V∗ = gen




0
0
0
0


 ,

ker (C +DF ) = gen




0
0.9088
0.3488
−0.2291

 ,


0
0

0.5489
0.8359


 .

(25)

The result in (26) shows that the solution for (13)
is a null-vector. For similar reasons of the observer
analysis, the controlled invariant problem is solved,
and F can be called a friend space vector of Vi.

(A+BF )


0
0
0
0

 ⊆


0
0
0
0

 ⊆


0 0
0.9088 0
0.3488 0.5489
−0.2291 0.8359

 (26)

Finally, considering the disturbance matrix pre-
sented in (19), and using the toolbox to calculate (17),
the subspace E is given by (27).

E = gen




0
0

0.1961
−0.9806




C = gen




0
0.7071

0
0.7071

 ,


0
0
−1
0


 = {c1, c2} .

(27)

The image of E satisfies the geometric approach
requirements, as shown in (28).

E = −0.1961 c1 −
[
0 0 0 −1.3868

]
c2 (28)

Therefore, from (28), the disturbance is invisible
to the observer, and a gain G can be designed to reject
the disturbance. Hence, a static gain (29) is then
heuristically assigned.

G =
[
0− 0.32

]
. (29)

4.2 Simulation Results

In order to evaluate the control strategy, two different
road profiles were chosen and simulated in a Matlab®

environment.

The first road profile is a step response. It repre-
sents a road level variation, and shows its effects on
the wheel displacement, and on the body strain. The
step has 0.02 [m] of amplitude, length of 6.5 [s] and
duty cycle of 50%. The second road profile is a chirp
signal proposed by (de Oliveira et al., 2014). The
signal has an amplitude 0.0015 [m], and frequency
varying linearly from 1 Hz to 10 Hz, during 25 [s].
This signal aims to demonstrate the riding quality.
As discussed by (de Oliveira et al., 2014), the critical
points seen in Figure 4 represent resonance points,
which may cause excessive user discomfort, as well
as undesirable body strain and material losses. The
necessity of a frequency analysis is also discussed by
(Rath et al., 2017) and (Wang et al., 2016).

The open loop response is shown in Figure 6.
The tire and the vehicle body have an overshoot of
96.35% and 55.45%, respectively, and virtually no set-
tling time in the given range. Qualitatively, the re-
sponse has a rather oscillatory behavior throughout
the whole simulation, compromising the road han-
dling and the sense of comfort of the rider.

Figure 6: Open loop step response.

In closed-loop (Figure 7), the tire presents an
overshoot of 75.05% and settling time of 1.8[s]. The
vehicle body shows an overshoot of 44.1%, and a set-
tling time of 1.4 [s]. The displacement of the wheel
and the vehicle body reduces 11% and 7%, respecti-
vely. The reductions in displacement and the presence
of a steady-state ensure a better disturbance dam-
ping, and as consequence, diminish suspension travel
and enhance riding quality.



Figure 7: Closed loop step response.

In Figure 8, it can be noted that the disturbance
input was successfully detected.

Figure 8: Original and detected step profile.

Using the second road profile, the open loop simu-
lation in Figure 9 shows that the vehicle body suffers
an amplification of 8 times the original input around
14 [rads/s]. While the tire not only amplifies the in-
put in the same region, but does it 3 times the original
input around 50 [rads/s] as well.

Figure 9: Open loop chirp response.

Evaluating the closed-loop response, an improve-
ment in vehicle body behavior is noticeably observed.
However, as seen in Figure 10, the region of 50 [rads/s]
has no significant improvement. The reason is that
the detected disturbance signal suffers a rather strong
attenuation around 50 [rads/s].

Figure 10: Closed loop chirp response.

4.3 Experimental results

Herein, only the second road profile will be inves-
tigated, since many other papers have been using
the step response (Apkarian and Abdossalami, 2013;
de Jesús Rubio et al., 2014; de Oliveira et al., 2014;
da Silva et al., 2013; Pereira et al., 2017). Moreover,
the analysis procedure follows the simulation section.

In Figure 11, we can note a slight mismatch with
respect to open-loop response (Figure 9). This occurs
because the values of stiffness and damping coefficient
given in the Table 1 might vary in the experiment.

Figure 11: Open-loop response for body and tire displacement.

The disturbance was satisfactorily detected until
the most critical region of around 50 [rad/s]. But,
since here it is still open loop, the disturbance was
not rejected, as shown in Figure 12.

Figure 12: Open-loop response for disturbance detection.



Using the same disturbance signal and from the
control law given by (18), (24) and (29), the per-
formance in closed-loop is evaluated. The Figure
13 shows the tire and vehicle body displacements in
closed-loop system.

Figure 13: Closed-loop response for body and tire displace-
ment.

The Figure 14 shows the disturbance detected. It
is possible to notice that, even though there are some
differences between the original signal and the one
detected, the closed loop system improved the distur-
bance detection around 14 [rads/s] and 50 [rads/s].
This represents an overall of 64% detection improve-
ment comparing to Figure 12. Hence, the disturbance
detected was successfully rejected.

Figure 14: Closed-loop response for disturbance detection.

The active suspension system given by (Apkarian
and Abdossalami, 2013) uses the electric motor CC2
to generate the force input (19). In this sense, the
Figure 15 shows the current used to generate the re-
quired force for the experiment.

Figure 15: Control effort applied to active suspension system.

5 Conclusions

A practical investigation on the active suspension sys-
tem using the geometric approach analysis to detect
and reject disturbances was presented. To ensure that
the disturbance will be rejected is a non-trivial task,
but the geometric approach gives good resources to
safeguard that. The geometric approach algorithms
presents a straightforward theory to be analyzed, once
subspaces and linear transformations are trivial cal-
culations, and the maximum and minimum invari-
ant subspaces can be found with computational aid.
Once calculated the L and F gains from pole place-
ment strategy, the unknown disturbance observation
and decoupling problem has a solution. Finally, the
differences between the disturbance injected and the
disturbance detected are given not only by some non-
linearity of the system, but by other non-modelled
disturbances, such as vibration. Hence, the choice of
matrices E and G can also be a future study.
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Prepaliţă, V., Vasilache, T. and Doroftei, M. (2012).
Geometric approach to a class of multidimen-
sional hybrid systems, Balkan Journal of Geom-
etry and Its Applications 17: 92–103.

Rath, J. J., Defoort, M., Karimi, H. R. and
Chakravarthy, K. (2017). Output feedback ac-
tive suspension control with higher order termi-
nal sliding mode, IES 64: 1392–1403.

Wang, C., Deng, K., Zhao, W., Zhou, G. and Li,
X. (2016). Robust control for active suspension
system under steering condition, Science China
Technological Science 60: 199–208.


