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Abstract— This work aims to study and address the problem of choosing the reference model within a model
reference control design problem for disturbance rejection. Existing theory on the design of the reference model
for disturbance is revisited, and adaptations for data-based applications, in which the process’ mathematical
model is unknown, are proposed. Finally, this paper presents an alternative way of accounting for this choice
directly in a data-based control tuning method. Simulation results show that a sensible choice of reference model
improve controller tuning and that the proposed strategy is able to manage this choice in a systematic manner
without using the process’ model.

Keywords— Data-driven control, model reference control, Disturbance rejection, PID control.

Resumo— Este trabalho tem como objetivo estudar e resolver o problema da escolha de modelo de referência
em um problema de projeto de controle por modelo de referência para perturbação. A teoria existente sobre a
escolha do modelo de referência para perturbação é revisitada, e adaptações para aplicações baseadas em dados,
nas quais o modelo matemático do processo é desconhecido, são propostas. Finalmente, este artigo apresenta
uma forma alternativa de considerar esta escolha diretamente em um método de controle baseado em dados.
Resultados em simulação mostram que uma escolha sensata de modelo de referência melhora a sintonia do
controlador e que a estratégia proposta é capaz de lidar com esta escolha de forma sistemática sem utilizar o
modelo do processo.

Palavras-chave— Controle baseado em dados, controle por modelo de referência, rejeição à perturbação,
controle PID.

1 Introduction

Model reference control design has become an
usual approach in control tuning, for its ability to
incorporate performance specifications in a direct
manner. In this technique, the desired closed-loop
behavior is specified as a transfer function between
output and, in most cases, the reference signal,
which is called reference model. The controller is
therefore tuned aiming to achieve in closed-loop
the desired dynamics, e.g. by minimizing a cer-
tain criterion.

This strategy has been explored for model-
based scenarios, and successfully developed in
data-driven and adaptive control (Goodwin and
Sin, 2014; Hjalmarsson et al., 1998; Campi et al.,
2002), where usually the reference tracking prob-
lem is tackled. Being the most important design
variable, the choice of the reference model has a
major impact on the resulting controller. This
choice is addressed partially in Aguirre (1993),
Bazanella et al. (2012) and Bazanella et al. (2008)
and is further detailed in Gonçalves da Silva,
Bazanella and Campestrini (2018) for reference
tracking. It is shown in the literature how critical
it is to specify the reference model in a sensible
manner, i.e. so that the desired behavior is (ap-
proximately) achievable by the available control
structure, given the process’ characteristics.

The literature on model reference control
strategies concerning the disturbance rejection

problem is limited compared to reference track-
ing. As in the analogous problem, the choice of the
reference model for disturbance is also important
to improve closed-loop stability. This choice has
been studied for model-based scenarios, in which
the process’ parametric model is known (Szita and
Sanathanan, 1996; Szita and Sanathanan, 2000).
However in data-driven control methods for dis-
turbance rejection, where such model is unavail-
able, this choice remains challenging.

In this work, the design of the reference
model for disturbance will be explored, partic-
ularly for data-based approaches. The method
Virtual Disturbance Feedback Tuning (VDFT)
(Eckhard et al., 2018), which consists in a data-
based model reference control method for distur-
bance, is used so as to illustrate the effect of refer-
ence model choice on the resulting closed-loop per-
formance. An adaptation to the VDFT method is
proposed so as to handle the choice of the refer-
ence model for disturbance systematically.

This work is divided in the following manner:
section 2 introduces the model reference control
problem for disturbance with a motivational ex-
ample. Section 3 explores the existing guidelines
for the choice of reference model for disturbance
and when the process model is known. Later, in
section 4, a systematic procedure in defining a ref-
erence model, with some free parameters, is pre-
sented and the data-driven control method VDFT
is adapted in a flexible formulation to handle the



reference model choice issue; in section 5, simula-
tion results are presented to support the flexible
VDFT method. Finally, section 6 presents some
conclusions from the work.

Notation: In this work, the operator Γ[·] rep-
resents the relative degree of a transfer function
and Deg[·], the degree of a polynomial, e.g. for

a given transfer function X(q) , y(q)
z(q) , Γ[X(q)] =

Deg[z(q)]−Deg[y(q)].

2 Problem description

Consider the linear time-invariant discrete single-
input single-output (SISO) system described as

y(t) = G(q)u(t) + ν(t) (1)

where q is the forward shift operator, such that
qx(t) = x(t+ 1) for a signal x(t). Moreover, G(q)
represents the process’ transfer function, while
y(t), u(t) and ν(t) are the output, input and noise
signals respectively.

It is assumed that, in closed-loop, the system’s
input is subject to a disturbance signal d(t), such
that u(t) = d(t) + uc(t), where uc(t) is the ma-
nipulated variable. In this context, the controller
design problem aims to attenuate the disturbance
effect over the process’ output, by tuning a set
of controller parameters ρ ∈ Rm, characterizing
a linear time-invariant controller C(q, ρ), so as to
achieve a desired closed-loop response regarding
the disturbance behavior.

Considering the feedback control framework,
uc(t) = C(q, ρ)(r(t) − y(t)), the input signal
u(t) can be thus expressed as u(t) = d(t) +
C(q, ρ)(r(t) − y(t)), with r(t), the reference sig-
nal. The closed-loop response is then represented
according to

y(t) = T (q, ρ)r(t) +Q(q, ρ)d(t) + S(q, ρ)ν(t) (2)

with

T (q, ρ) ,
G(q)C(q, ρ)

1 +G(q)C(q, ρ)
(3)

Q(q, ρ) ,
G(q)

1 +G(q)C(q, ρ)
(4)

S(q, ρ) ,
1

1 +G(q)C(q, ρ)
(5)

In the model reference approach, the desired
closed-loop response is specified through a de-
sired closed-loop transfer function, i.e. a reference
model: Td(q) for reference tracking and Qd(q), for
disturbance. Then, an H2 performance criterion is
minimized in order to find a controller that mini-
mizes the difference from the desired behavior and
the obtained behavior. In the disturbance rejec-
tion problem, this criterion is defined as

min
ρ
JDM (ρ)

JDM (ρ) ,
∑
t

{[Q(q, ρ)−Qd(q)]d(t)}2 .
(6)

which represents an adapted formulation from
model reference control for reference tracking
(where the controller is tuned to approximate
T (q, ρ) and the reference model Td(q) (Bazanella
et al., 2012)).

The ideal controller Cd(q) which provides the
exact desired behavior in closed-loop Qd(q) is
given by

Cd(q) = Q−1
d (q)−G−1(q) (7)

whose expression was derived from (4), where
C(q, ρ) was substituted by Cd(q) and Q(q, ρ) by
Qd(q). In order to obtain a causal ideal controller
and an internally stable closed loop, Qd(q) cannot
be chosen freely, as we will show in next section.

Data-driven control design can be seen as the
identification of the ideal controller, which is per-
formed as: collect input-output data from the pro-
cess, define a desired closed-loop behavior (Qd(q)
in the case dealt in this work) and choose a fixed
controller class, i.e. C = {C(q, ρ) : ρ ∈ Ω ⊆ Rp};
minimize a performance criterion in order to find
the controller C(q, ρ) without deriving a process
model.

In most cases the ideal controller is not achiev-
able, i.e. Cd(q) /∈ C, however a good design prac-
tice is to choose sensibly design parameters so that
Cd(q) is drawn closer to the controller class C.
This can be done by choosing a more flexible con-
troller structure, or a reference model Qd(q) con-
sidering some information on the process, since
the mathematical process model is unknown.

It is well known for the reference track-
ing problem that the choice of Td(q) affects the
achieved optimization results of (6): if the desired
performance is unrealistic for the given controller
class and process order, the optimization can lead
far from the best controller within C (Bazanella
et al., 2012).

Throughout the examples here presented, the
data-driven control method Virtual Disturbance
Feedback Tuning (VDFT) (Eckhard et al., 2018)
is used in order to tune PID controllers based on
closed-loop data collected from the system. As
most data-driven control methods, this method
aims to tune a linearly parametrized controller,
with fixed poles, by solving a quadratic optimiza-
tion problem. This framework can be restrictive
since the ideal controller Cd(q) will hardly belong
to C. It is nonetheless important to choose Qd(q)
wisely so that Cd(q) lies close to C and the ob-
tained closed-loop behavior is not excessively far
from the desired one.

The following example illustrates how a poor
choice of reference model for disturbance Qd(q)
leads to an also poor performance in a data-driven
control approach.



Example 1 Consider the discrete-time SISO sys-
tem given by

G1(q) =
0.1

(q − 0.8)(q − 0.4)
(8)

unknown by the user, with sampling time of 1 s,
and operating in closed-loop with the PI controller

C0(q) = 0.7(q−0.6)
(q−1) .

Using the VDFT method, we seek to improve
the controller tuning, using only data collected
from the process in order to achieve the following
reference model for disturbance:

Qd(q) =
0.09(q − 1)

(q − 0.7)2
(9)

which rejects step disturbances and imposes a
shorter settling time (20 s) and smaller peak. For
that, we choose a PID structure as controller class
C.

The careless choice of Qd(q) in (9) is equiv-
alent to trying to identify the ideal controller

Cd(q) = −10(q−1.976)(q−0.7575)(q−0.5775)
q−1 , which

does not belong to C and is not realizable. The
controller tuned using VDFT provides a disastrous
closed-loop behavior, which can be seen in Figure
1.
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Figure 1: Comparison among desired, initial and
obtained closed-loop behavior for disturbance.

Motivated by the example above, the follow-
ing sections of this work aim to determine practi-
cal guidelines for choosing the reference model for
disturbance. We first present some model-based
choices from the literature and then we adapt
these choices for the case where the process model
is unknown.

3 Model-based choice of Qd(q)

Considering the model reference problem for dis-
turbance, some results on the choice of the refer-
ence model exist in the literature based on a more
comprehensive knowledge of the plant.

A first result comes directly from the analy-
sis of the closed-loop expression in (4). Assuming
that G(q)Cd(q) is strictly proper, the relative de-

gree of Qd(q) is given as

Γ[Qd(q)] = Γ[G(q)]− Γ[1 + Cd(q)G(q)],

= Γ[G(q)]−min{0,Γ[Cd(q)G(q)], }
= Γ[G(q)],

(10)

where tropical algebra is applied to derive
this result (Gonçalves da Silva, Bazanella and
Campestrini, 2018). Therefore Qd(q) should have
necessarily the same relative degree as G(q).

In order to derive the restriction for controller
causality and stability, let the transfer functions

G(q) and Qd(q) be decomposed into G(q) , nG(q)
dG(q)

and Qd(q) ,
nQd(q)
dQd(q)

, where nG(q) and dG(q) are

coprime, and nQd(q) and dQd(q) are likewise co-
prime.

3.1 Causality

The ideal controller will be causal when

Γ[Cd(q)] ≥ 0. (11)

Substituting (7) in (11), the following theorem
can be derived:

Theorem 1 (Szita and Sanathanan (1996))
The controller Cd(q) will be proper if and only if

Deg[dQd(q)nG(q)− dG(q)nQd(q)]

≤ Deg[nQd(q)nG(q)] (12)

with Γ[G(q)] = Γ[Qd(q)]. �

Indeed (12) holds true if at least λ terms
are canceled in the expression dQd(q)nG(q) −
dG(q)nQd(q), where λ , Γ[G(q)] = Γ[Qd(q)]. It
can be noted that in order for such cancellations
to occur, some significant knowledge on the pro-
cess’ model is necessary. To deal with this issue,
consider that

nQd(q) = (α0q
a + α1q

a−1 + · · ·+ αa)× (13)

(ql + γ1q
l−1 + · · ·+ γl)

dQd(q) = qb + β1q
b−1 + · · ·+ βb (14)

with λ = b − a − l, where the polynomial γ(q)
contains zeros which are fixed by the user.

Cancellations in dQd(q)nG(q)− dG(q)nQd(q)
will occur by satisfying the following expression

1 0 . . . 0
β1 1 0
...

. . .
...

βλ−1 βλ−2 . . . 1



h1
h2
...
hλ

 =


1 0 . . . 0
γ1 1 0
...

. . .
...

γλ−1 γλ−2 . . . 1




α0

α1

...
αλ−1

 (15)



where hi corresponds to the i-th non-zero coeffi-
cient of the process’ impulse response. For a sam-
pled system, hi = gi−gi−1, where gi, corresponds
to the step response at instant i.

In a data-driven control design, the user could
thus choose both the denominator of Qd(q) ac-
cording to the desired closed-loop performance
and the fixed part of its numerator, considering
the type of disturbance that should be rejected
(step, ramp, etc.); thus determine the remaining
part of the numerator of Qd(q) (polynomial α(q))
using (15) and measured open-loop data from the
system (step response, for instance).

Remark: In the reference tracking problem,
a causal controller was obtained by simply choos-
ing Γ[Td(q)] ≥ Γ[G(q)] (Bazanella et al., 2012).

Example 2 Consider again the system from Ex-
ample 1. The goal is to tune a PID controller
based on data collected from the process G1(q) so
as to reject in closed-loop step disturbances with
the behavior described by Qd(q). In order to em-
ploy (15), we also consider that the impulse (or
step) response of G1(q) was measured from the
system.

Since Γ[G(q)] = 2, the relative degree of Qd(q)
should also be 2, and, according to Theorem 1,
two parameters α0, α1 should be identified to as-
sure that Cd(q) is causal. Also, only the first two
elements of the impulse response must be known
(h1 = 0.1, h2 = 0.12). Therefore, the structure of
Qd(q) is chosen to be

nQd(q) = (α0q + α1)(q − 1) (16)

dQd(q) = (q − 0.6)4 (17)

Solving system (15) results in α0 = 0.1 and α1 =
−0.02 and

Qd(q) =
0.1(q − 1)(q − 0.2)

(q − 0.6)4
(18)

with the causal ideal controller

Cd(q) =
2(q − 0.4211)(q − 0.7789)

(q − 0.2)(q − 1)
.

Now employing the VDFT method, with the
reference model in (18), the following PID con-
troller is tuned:

C(q, ρ̂1) =
2.0909(q − 0.2955)(q − 0.7829)

q(q − 1)
, (19)

which provides in closed-loop the behavior observed
in Figure 2.

It should be noted that, since Cd(q) /∈ C for
the VDFT method in general, the ideal controller
is not achieved. However Figure 2 shows that the
obtained behavior is quite close to Qd(q) and sig-
nificantly improved compared to the response ob-
tained in Example 1.
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Figure 2: Comparison between desired and ob-
tained closed-loop behavior, Qd(q) and Q(q, ρ̂1)
respectively.

3.2 Internal stability

The closed-loop system will be internally stable
if the controller does not cancel out the non-
minimum phase zeros of the plant with unstable
poles.

Theorem 2 (Szita and Sanathanan (1996))
The controller Cd(q) will be stable if and only if
there exists polynomials f(q) and g(q), such that

1. nQd(q) = f(q)nG+(q)

2. dQd(q)nG
−(q) = dG(q)f(q) + g(q)nG+(q).

with{
Deg[f(q)] = Deg[dQd(q)] + Deg[nG−(q)]−Deg[dG(q)]

Deg[g(q)] ≤ Deg[dQd(q)] + 2Deg[nG−(q)]−Deg[dG(q)]

where nG−(q) and nG+(q) represent the mini-
mum phase and non-minimum phase factors of
nG(q) respectively, i.e. nG(q) = nG−(q)nG+(q).
�

In case the conditions in Theorem 2 are satis-
fied, the ideal controller is given by

Cd(q) =
g(q)

f(q)nG−(q)
.

In Szita and Sanathanan (1996), it is sug-
gested that the order of dQd(q) be chosen as

Deg[dQd(q)] ≥2
{

Deg[dG(q)]−Deg[nG−(q)]
}

+ l − 1 (20)

where l again is the number of fixed zeros in f(q),
e.g. for step disturbance rejection a zero in 1 is
fixed.

Once again, in order to assure internal stabil-
ity for the ideal closed-loop, knowledge on the pro-
cess’ explicit model is needed. While the causality
constraint can be solved in a data-based approach
by performing a second experiment, we haven’t
found a similar data-based procedure to solve the
stability constraint in order to define an appropri-
ate reference model Qd(q).

Remark: In the reference tracking prob-
lem, a stable controller was obtained by simply



adding the non-minimum phase zeros of G(q) to
Td(q) (Bazanella et al., 2012). It is possible to
identify these zeros together with the controller
parameters, without deriving a process model
(Campestrini et al., 2011; Gonçalves da Silva,
Campestrini and Bazanella, 2018).

Example 3 Consider now a non-minimum phase
plant

G2(q) =
0.1(q − 1.2)

(q − 0.8)(q − 0.4)
. (21)

In order to demonstrate the use of Theorem
2, we assume that the mathematical model G2(q)
is known and therefore we are able to determine
Qd(q) so that the ideal controller is not only causal
but also stable.

In this example, using (20), we choose
Deg[dQd(q)] = 4, and the structure of Qd(q) is
given as

nQd(q) = (q − 1.2)(q − 1)(f1q − f0) (22)

dQd(q) = (q − 0.6)4 (23)

where f1 and f0 represent the degrees of freedom
in the numerator of Qd(q).

Solving the system in Theorem 2, the follow-
ing reference model for disturbance is identified

Qd(q) =
0.1(q − 1)(q − 1.2)(q + 0.825)

(q − 0.6)4
(24)

which results in a causal and stable ideal controller

Cd(q) =
−10.25(q − 0.405)(q − 0.7901)

(q + 0.825)(q − 1)
.

Using the VDFT method, with reference model
for disturbance (24), the following PID controller
is obtained:

C(q, ρ̂2) =
−7.4392(q − 0.6293)(q − 0.7454)

q(q − 1)
,

(25)
which results in the closed-loop behavior seen in
Figure 3.

Once again, although the linear parametriza-
tion of C(q, ρ) in VDFT prevents it from achieving
Cd(q), Figure 3 shows a satisfactory matching be-
tween desired and obtained disturbance response.

In the example developed above, the model
G2(q) is known. In a scenario in which G2(q) is
not available and we do not intend obtaining this
model, some parameters of the reference model
Qd(q) should be let free to be identified together
with the controller parameters, as explained in the
next section.

4 Data-based solution

As seen above, choosing the reference model for
disturbance can become a tricky task, specially
when the mathematical model G(q) is unknown.
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Figure 3: Comparison between desired and ob-
tained closed-loop behavior, Qd(q) and Q(q, ρ̂2)
respectively.

Analyzing both Theorems 1 and 2, it can be
seen that the choice of the numerator of Qd(q)
is critical to assure causality and stability of the
ideal controller. As an alternative to identifying
the process’ model and then employing Theorems
1 and 2, this work proposes a flexible formulation
for data-based control tuning methods, in which
part of the numerator of Qd(q) is loosened and
identified in the method.

The idea will be here developed for the VDFT
method, in which a flexible reference model for dis-
turbance Qd(q, η) is employed, in a similar fashion
as in Campestrini et al. (2011), where

Qd(q, η) = ηT F̄ (q) (26)

where η =
[
η1 . . . ηm

]T
is a vector of m pa-

rameters, and F̄ (q), a m-vector of rational trans-
fer functions. Therefore, part of the numerator of
Qd(q, η) is let loose while the denominator is de-
fined by the user in order to attain performance
requirements.

4.1 Structure of Qd(q, η)

To design the structure of Qd(q, η) in the flexible
formulation, the following guidelines are derived:

1. Retrieve knowledge on the number of non-
minimum phase zeros in G(q), given by
Deg[nG+(q)], and its relative degree Γ[G(q)].

Note that for minimum phase systems,
Deg[nG+(q)] = 0.

2. Choose the l fixed zeros in nQd(q, η), accord-
ing to the type of disturbance to be rejected,
e.g. to reject step disturbances a zero should
be fixed in 1.

3. Determine the order of the transfer function
Qd(q, η):

Deg[dQd(q, η)] =2{Γ[G(q)] + Deg[nG+(q)]}
+ l − 1, (27)

which is derived from (20), considering that
Deg[dG(q)] − Deg[nG−(q)] = Γ[G(q)] +
Deg[nG+(q)].



4. Choose the poles from Qd(q, η) according to
the desired dynamics, e.g. desired settling
time for disturbance rejection.

5. Based on the order of Qd(q, η), determine the
number of free parameters in nQd(q, η) so
that Γ[Qd(q, η)] = Γ[G(q)]:

m = Deg[dQd(q, η)]− l − Γ[G(q)] + 1, (28)

which comes from m = Deg[f(q)] +
Deg[nG+(q)] and the definition of Deg[f(q)]
in Theorem 2.

Note that for minimum phase systems, for
Cd(q) to be causal, according to Theorem 1,
m = Γ[G(q)] and Γ[Qd(q)] = Γ[G(q)]. Both
conditions are compatible with guidelines in
(27) and (28).

4.2 Flexible VDFT formulation

In order to identify both the controller parame-
ters and the reference model Qd(q, η), the VDFT
problem (Eckhard et al., 2018) is rewritten as

min
ρ,η

JV Df (ρ, η)

JV Df (ρ, η) ,
N∑
t=1

{K(q)[Qd(q, η)(u(t)

+ C(q, ρ)y(t))− y(t)]}2,

(29)

where u(t) and y(t) represent respectively the in-
put and output data collected in an experiment
and K(q) is the filter used to approximate the
shape of functions JV Df and JDM . In Eckhard
et al. (2018), the practical choice K(q) = Qd(q)
is suggested. The solution of (29) is given itera-
tively: the least squares problem is solved for η
and ρ alternatively, for each iteration i, as in

ηi = arg min
η
JV Df (ρi−1, η) (30)

ρi = arg min
ρ
JV Df (ρ, ηi) (31)

and ρ0 is set with the parameters of the controller
that is initially operating in the loop.

The following examples will be used to show
how this strategy can be employed for data-based
model reference control in order to obtain a closed-
loop behavior close to the desired one.

5 Simulation results

Example 4 Consider the plant G1(q) once again.
It was seen that since Γ[G1(q)] = 2, then
Γ[Qd(q, η)] = 2 and it is necessary that 2 param-
eters in the numerator of Qd(q, η) be manipulated
so that the ideal controller is causal. Also, consid-
ering the guideline in (27), Deg[dQd(q, η)] = 4.

Using the flexible formulation of VDFT, seen
in (29), with

Qd(q, η) = [η1 η2]

[
q(q−1)
(q−0.6)4

(q−1)
(q−0.6)4

]
(32)

for a PID controller class, the following results are
obtained:

Qd(q, η̂3) =
0.10087(q − 1)(q − 0.2241)

(q − 0.6)4
(33)

C(q, ρ̂3) =
2.2355(q − 0.7801)(q − 0.3351)

q(q − 1)
(34)

which are very similar to the ones obtained in Ex-
ample 2, except now a single batch of closed-loop
data was used to tune the parameters of the con-
troller and of the reference model, without using
the step response information. The closed-loop be-
havior can be seen in Figure 4.
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Figure 4: Comparison between desired and
obtained closed-loop behavior, Qd(q, η̂3) and
Q(q, ρ̂3) respectively.

Example 5 Consider the non-minimum phase
plant G2(q) in Example 3. Assume that the fol-
lowing information is available: Deg[nG+(q)] = 1
and Γ[G(q)] = 1, and let a zero of Qd(q, η) be fixed
in 1 for step disturbance rejection. According to
(27), the degree of the denominator of Qd(q, η) is
given as

Deg[dQd(q)] = 4 (35)

and the number of free parameters in the numer-
ator of Qd(q), from (28), is chosen as

m = 3. (36)

Therefore, the flexible reference model for dis-
turbance is chosen with two flexible zeros as in

Qd(q, η) =
[
η1 η2 η3

] 
q2(q−1)
(q−0.6)4

q(q−1)
(q−0.6)4

(q−1)
(q−0.6)4

 . (37)

Using the flexible VDFT method with the ref-
erence model in (37) and a PID controller struc-
ture, we obtain

Qd(q, η̂4) =
0.068235(q − 1)(q − 1.206)(q + 1.675)

(q − 0.6)4

(38)



C(q, ρ̂4) =
−7.2039(q − 0.7381)(q − 0.6287)

q(q − 1)
(39)

which resemble the results from Example 3, spe-
cially the tuned controller parameters. It is worth
noticing that in Example 3, the process’ model
was assumed to be known for the reference model
choice, whereas now this choice is embedded in the
control design procedure as an identification prob-
lem, where one batch of collected data is used and
only knowledge on the relative degree and on the
number of non-minimum phase zeros of G2(q) is
necessary.

The obtained closed-loop behavior compared
with the desired one can be seen in Figure 5.
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Figure 5: Comparison between desired and
obtained closed-loop behavior, Qd(q, η̂4) and
Q(q, ρ̂4) respectively.

6 Conclusion

In this work, we explored the design of the ref-
erence model within a data-driven control frame-
work for disturbance rejection. Contrary to the
analog problem of reference tracking, the choice of
a desired transfer function for disturbance can be
quite challenging as it often demands knowledge
on the process’ model. To cope with this prob-
lem, a data-based strategy was adapted aiming to
improve the choice of the reference model for dis-
turbance by adding some degrees of freedom to its
numerator. Some examples are presented in order
to show the advantages of properly choosing the
reference model in the convergence of the control
method.
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