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Abstract⎯ In recent decades, the development of model free control techniques, whose control is based on measured data dur-

ing the execution of the process, has intensified.  In this context, the data-driven control technique called Model-Free Adaptive 

Control has been highlighted because its applications include linear and nonlinear systems, SISO or MIMO. In this paper, we 

dealt with an open question in this technique, which is the choice of controller parameters that provide better performance to the 

control system. To solve this problem, we used a metaheuristic based in a multi-objective differential evolution algorithm to tune 

the controller parameters. The results confirmed the validity of the proposed strategy, to define the controller parameters, for ex-

amples already presented in the literature.  

Keywords⎯ Data-driven control, Model-free adaptive control, Nonlinear systems, Multi-objective optimization, Differential 

evolution. 

Resumo⎯ Nas últimas décadas, intensificou-se o desenvolvimento de técnicas de controle livre de modelo, cujo controle é ba-

seado nos dados medidos durante a fase de operação do processo. Neste contexto, a técnica de controle baseada em dados, de-

nominada Controle Adaptativo Livre de Modelo, tem sido destacada porque suas aplicações incluem sistemas lineares e não-

lineares, SISO ou MIMO. Neste artigo, abordamos uma questão aberta nesta técnica, que é a escolha dos parâmetros do contro-

lador que fornecem melhor desempenho ao sistema de controle. Para resolver esse problema, usamos uma metaheurística basea-

da no algoritmo de evolução diferencial multi-objetivo para ajustar os parâmetros do controlador. Os resultados confirmaram a 

validade da estratégia proposta, para definir os parâmetros do controlador, para exemplos já apresentados na literatura. 

Palavras-chave⎯ Controle baseado em dados, Controle adaptativo livre de modelo, Sistemas não-lineares, Otimização multi-

objetivo, Evolução diferencial. 

1    Introduction 

The complexity of modern industrial processes af-

fects the use of control techniques based on models, 

e.g., Linear Quadratic Control, Robust Control, and 

Stochastic Control, whose efficiency is closely relat-

ed to the hypothesis that the dynamics of the model 

used in the controller design must behave as the actu-

al system. However, the conception of the model is 

normally based on abstractions, which may cause 

errors to the control design, reason for undesired be-

havior of the controlled system. One can increase the 

complexity of the model, resulting in more complex 

controllers, which are more difficult to design and 

use in practical situations. Moreover, this option does 

not eliminate the possibility of failure due to absence 

of matching between the model and the real plant. 

Currently, control techniques that are model free 

and simple to be implemented and maintained are 

desired. The increased capacity of handling data of 

modern industrial processes, has allowed the devel-

opment of a number of control techniques, that are 

based on data collected during the operating phase. 

Nowadays, these techniques are part of a new branch 

of control theory called Data-Driven Control – DDC 

(Hou and Wang, 2013). 

Amongst the DDC families of models, the tech-

nique called Model Free Adaptive Control - MFAC 

stands out for its flexibility, with applications to con-

trol nonlinear, time-varying, SISO and MIMO sys-

tems (Hou and Jin, 2014). In addition, the MFAC can 

adjust the design of the controller according to the 

degree of complexity of an actual system and its 

structure allows the combination of MFAC with other 

model-free or model-based control techniques. 

The MFAC was introduced by Hou and Huang 

(1997) for SISO systems, with the premise of build-

ing in every operating point a dynamic linearized 

model of the plant, considering an estimation of the 

Pseudo Partial Derivative - PPD. In the method, the 

PPD and the corresponding control signal are calcu-

lated using only the I/O data of the plant and the ref-

erence signal.  

After that, the MFAC has received several con-

tributions in this theory. For example, Hou and Jin 

(2011) demonstrated the application of MFAC for 



MIMO systems and proved the stability for regula-

tion problems in some cases. In 2013, Hou and Zhu, 

extended the concept of dynamic linearization to the 

controller, defining an optimal dynamic linear con-

troller that vanishes the error signal in the future. 

Leng et al (2014) presented a concept of contractive 

MFAC, by the introduction of a contraction constrain 

to force the error signal to decay exponentially. In 

this strategy, the MFAC control became an optimiza-

tion problem using quadratic programming. 

The combination of the MFAC with other tech-

niques has also been addressed in the literature. For 

example, Jalali et al (2013) used a MFAC Fuzzy 

Sliding Mode controller optimized by Particle Swarm 

Algorithm to control a robot manipulator. Bu et al 

(2013) presented the validity of combination of the 

MFAC with Interactive Learning Control technique 

(MFAILC) for path control of a farm vehicle. Xu et 

al (2014) used the concept of State Observer for PPD 

matrix estimation in MIMO systems. Zhu and Hou 

(2014) presented the combination of MFAC and neu-

ral networks with radial basis function kernel.  

Parameter tuning of MFAC is currently an open 

problem; the choice of values affects the control per-

formance. In 2014, Ji et al tuned their MFAC control-

ler parameters using the concept of minimum entro-

py. Sousa et al (2015) presented the off-line optimi-

zation of MFAC parameters for SISO systems, using 

a differential evolution multi-objective optimization 

algorithm. Recently, Roman et al (2016) addressed 

the tuning of controller parameters, combining 

MFAC with other DDC technique called Virtual Ref-

erence Feedback Tuning for MIMO systems.  

The design of a control system is often a chal-

lenge because it may require a number of decision 

criteria. This multiplicity added difficulty to apply 

conventional optimization tools for control design of 

the problems with the treatment of nonlinear and sto-

chastic systems, favoring the use of meta-heuristics 

such as Evolutionary Algorithms - EA to solve these 

problems (Reynoso-Meza et al, 2013).       

In this paper, we present the integration between 

MFAC and multi-objective EAs for off-line tuning of 

the controller parameters. This article is a continua-

tion of the work presented by Sousa et al (2015), but 

here the estimated initial PPD is added to problem of 

MFAC parameter optimization. Moreover, a new 

objective function is introduced, aiming to reduce the 

overshoot of the output signal, and a new case using 

this strategy is tested. The performance of the optimal 

parameters and other parameters found in the litera-

ture is compared using the Pareto dominance criteri-

on.  

2   Model Free Adaptive Control - MFAC 

The DDC technique Model-Free Adaptive Control - 

MFAC uses the I/O data measured from the process 

to consider the dynamic linear behavior for the plant 

at each instant. The MFAC theory employs the con-

cept of Pseudo Partial Derivative - PPD, an estimate 

of the partial derivative of the equation for the plant, 

calculated at a certain operation point. Unfortunately, 

the PPD cannot be calculated analytically, however, 

it can be estimated using the I/O data. Based on that, 

the MFAC uses the linear dynamic model generated 

to calculate the control signal to the real system. 

2.1 A Discrete-time Nonlinear System 

Consider a nonlinear, discrete time, and SISO 

system described by: 

 

( ) ))(),...,(,)(...)((1 uy nkukunky,,kyf=+ky −−  (1) 

 

where, u(k) and y(k) are the input and output of the 

system, at time instant k, and nu and  ny are two un-

known positive integers, and f(...) is an unknown non-

linear function. 

2.2 Assumptions 

The system (1) satisfies the generalized Lipschitz 

condition or similar conditions (Hou and Wang, 

2013), for all k fixed: 

 

               ( )   )(1 kub+ky                              (2) 

 

where b   is a constant, y(k+1) = y(k+1)−y(k) and 

u(k) = u(k) - u(k−1) ≠ 0. Then (1) can be expressed 

as a dynamic linearization data model, and the PPD is 

uniformly bounded. 

2.3 Compact Form Dynamic Linearization – CFDL 

For SISO systems, the MFAC theory presents 

three dynamic linearization data models (Hou and 

Jin, 2014). In this paper, we considered only the 

Compact Form Dynamic Linearization – CFDL : 

 

            ( ) )()()(1 kuk+ky=+ky                     (3) 

 

where (k) is the PPD at k instant. 

2.4 Control scheme CFDL-MFAC 

Hou and Jin (2014) presented the following 

scheme for CFDL-MFAC. At each k instant, first 

estimate the PPD using (4): 
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where    and ( are two parameters added to 

give more flexibility to the PPD estimation algorithm. 

Considering the following resetting conditions:    
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where  is a small positive constant and )1(̂  is the 

initial value for estimated PPD. 

Then the control signal can be determined as 
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where y*(k+1) is the desired output signal and 

 and ( are controller parameters. 

Very often, the choice of all these parameters 

and )1(̂  is made only according to qualitative analy-

sis. Therefore, in this article we propose to turn the 

design problem of the controller in a multi-objective 

optimization problem. 

3 Multi-objective Differential Evolution 

3.1 Multi-objective Optimization Problem (MOP) 

A general MOP can be defined as a search for 

each x = [x1 x2 ... xn]T within a decision space D, 

which satisfies a feasible region (FR) defined by the 

constraints of m inequalities: 

 

                        gi(x) ≥ 0;  i = 1, ..., m                   (7) 

 

and by p equalities:  

 

                          hi(x) = 0;  i = 1, ..., p                  (8) 

 

while optimizing the vector of objective functions: 

 

                       Min([f1(x) f2(x) .., fk(x)] T)              (9) 

 

The complete solution of a MOP is expressed by 

the Pareto front which is built using the dominance 

criterion (Coello et al, 2007). A solution x1 is said to 

dominate another solution x2 if the following condi-

tions are satisfied: 

 

                        i(1,2,..,k) | fi(x1) ≤  fi(x2)        (10) 

                        i(1,2,..,k) | fi(x1) <  fi(x2)         (11) 

that is, x1 is better than or equal to x2 in all objectives 

f1(x), f2(x),.., fk(x), but strictly better in at least one of 

objectives. 

3.2 Multi-Objective Differential Evolution Algorithm 

We propose a Multi-Objective Differential Evo-

lution Algorithm - MODEA, based on the previous 

approach proposed by Sousa et al (2015) to solve the 

Multi-Objective Problem - MOP. In this current ver-

sion, the MODEA is a memetic version in which the 

random initial population with NP individuals is du-

plicated using the corresponding set of symmetric 

opposite vectors. Then, the population is again redu-

ced to NP individuals in accordance with a nondomi-

nation rank criterion and a crowding distance metric. 

The nondomination ranking is constructed by 

comparing all individuals so as to determine the 

number of solutions dominated by each solution in 

the population. The nondominated individuals found 

in this process form the front F1. Next, after remo-

ving individuals in F1 from the population, the re-

maining individuals are evaluated to form the front 

F2. This process is repeated to form the other fronts 

so as to include all individuals. 

The ordering for individuals in a same front is 

made using the decreasing value of Crowding-

Distance - CD (Ali et al, 2012). To calculate this dis-

tance, the population is initially sorted in accordance 

with the value of each objective function, normalized 

in ascending order of magnitude. Thereafter, for each 

objective function, the solutions with the smallest and 

largest function values are assigned as an infinite 

distance value. For each other solution we calculate a 

distance value, the absolute normalized difference in 

the function values of two adjacent solutions, which 

is determined for all objective functions. The overall 

crowding-distance is the sum of the individual distan-

ces corresponding to each objective function. 

After initialization, the algorithm follows the 

steps of the standard Differential Evolution (DE) 

algorithm, i.e., in each generation, there is a crosso-

ver between each mutant and its target vectors so as 

to produce a trial vector. However, for a multi-

objective problem, the selection process is different. 

In this case, we use the procedure presented in Ab-

bass et al (2001), called, the Pareto Differential Evo-

lution Approach (PDEA), i.e., the targets vectors 

come from the current population and the trial vec-

tors come from the advance population. These two 

populations are grouped in a total population of 2NP 

individuals. Then, using a procedure similar to that 

used in the initialization stage, the population is re-

duced to NP individuals, the next generation. The 

procedure is repeated until the stop criterion is 

reached.  

To promote more diversity in the population of 

solution candidates, two changes were implemented 

in the proposed MODEA algorithm. Firstly, for each 

mutant vector generated so also was its opposite 

symmetric vector. Finally, the mutant vector only 

generates the trial vector if this is not dominated by 

its opposite vector, in which case, the latter is used 

for the crossover. 

Secondly, to spread the current nondominated 

solutions, the individuals of the advance population 

were replaced by others generated both randomly and 

based on the criterion of the opposite vector. This 

occurs every pre-determined number of generations. 



3.3 MODEA - Algorithm 

1. Generate initial population P0 with NP random 

vectors;  

2. Calculate its symmetric opposed population Pop;  

3. Merge the two populations Pdup = P0 U Pop;  

4. Create a nondominant ranking for Pdup; 

5. Select NP vectors using the ranking and the CD; 

6. Initialize the generation count; 

7. While stop condition is not satisfied; 

8. Form a current population using the selected vec-

tors Pcur; 

9. For each vector of current population; 

10. Choose three others vectors; 

11. Combine the three vectors to form a mutant vec-

tor; 

12. Mate the mutant vector with the current individu-

al; 

13. The trial vector resulting is add to advance pop 

Padv; 

14. End for; 

15. Actualize the generation count; 

16. If the generation count is multiple of K; 

17. Generate NP random and opposite symmetric 

vectors; 

18. Substitute the advance population for these; 

19. End if; 

20. Merge the populations Pcur and Padv;  

21. Create a nondominant ranking for all vectors; 

22. Select NP vectors using the ranking and the CD; 

23. Increment the generation count; 

24. Evaluate the stop condition; 

25. End while; 

26. Generate the Pareto front estimated; 

27. Define the solution using Decision Maker - DM. 

 

4. Evolutionary Model-Free Adaptive Control 

4.1 Proposed scheme 

In this paper, the MODEA is used to tune off-

line the MFAC controller parameters.  In the algo-

rithm, the individuals that form the population of 

solutions to MOP are real-valued vectors in which 

each gene is a controller parameter, , ,  and  

and )1(̂ . For the evolutionary process, the fitness 

calculation for each individual is based on the res-

ponse of the controlled system, by simulating the 

system off-line, using each individual as the set of 

parameters for the MFAC controller.  

4.2 The Objective Functions 

For the optimization, two objective functions 

were considered: 
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where e(k) = y*(k) − y(k) is the error signal, e’(k) is 

the error signal derivative. 

These two functions represent different control 

objectives. Function (12) is defined by means of the 

accumulative squared error signal, which is a variable 

that is used to reduce the error of the steady state. 

Function (13), on the other hand, is calculated  by 

means of the accumulative squared error signal deri-

vative. This seeks to reduce the maximum error du-

ring the transient state. 

4.3 Decision-Maker 

As a result of the evolutionary process, a set of 

nondominated solutions that approximates the Pareto 

front are determined. The choice of a particular solu-

tion was based on the criterion of the smallest Eucli-

dian distance between each solution on the Pareto 

front and the utopia point, the solution that takes the 

two normalized objective functions to zero: 

 

( ) 2 2

1 2
1
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where xchosen is the solution adopted, and fN1(xi) and 

fN2(xi) are the normalized objective functions. 

 

5. Results 

In this Section, we present the solutions obtained by 

the evolutionary algorithm and the controlled system 

response using the parameters chosen for two exam-

ples.  

In all cases the MODEA has the following inter-

nal parameters: weighting factor for mutation F = 

0.50; crossover rate Cr = 0.80; number of population 

elements: NP = 100; maximum number of genera-

tions 2000; generation interval for replacing the ad-

vance population: K = 250. 

The initial conditions for the two examples, ac-

cording to (Hou and Jin, 2014), are u(1) = u(2) = 0, 

y(1) = −1, y(2) = 1 and  = 10-5. 

 

5.1 Example 1 

A nonlinear system that consists of two subsys-

tems in series (Hou and Jin, 2014): 
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where a(k) = round(k/500). 

 

The desired output signal is: 
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                                                                     (16) 

 

After MODEA optimization, the Figure 1 pre-

sents the Pareto front obtained using normalized ob-

jective functions. 

 

 

Figure 1. The Pareto front and nondominated solutions 

Using the DM criterion, the following controller 

parameters were found:  = 0.9941,  = 1.9939,  = 

0.3853, and  = 0.0938, and )1(̂ = 0.8583. 

In Figure 2, the outputs of the controlled system 

and the reference signal, for the chosen parameters 

and three other set of parameters found in the litera-

ture (Hou and Jin, 2014; Sousa et al, 2015) are pre-

sented. 

 

 

The Table 1 presents the values of objective 

functions calculated and the values for the set of cor-

responding parameters:  

 

Table 1. Objective Functions Values 

Parameters [    )1(̂ ] Set f1  f2 

[0.9941;1.9939;0.3853;0.0938;0.8583] DM 0.0073 0.0086 

[0.6; 1; 1; 0.1; 2] 1 0.0169 0.0121 

[0.6; 1; 1; 2; 2] 2 0.0265 0.0117 

[0.9913;1.537;0.1733; 2.1536; 2] 3 0.0195 0.0114 

 

4.2 Example 2 

Again, a nonlinear system that consists of two 

subsystems in series (Hou and Jin, 2014): 
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 The desired output signal is: 
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Figure 2. Graphics records of the reference signal and response of the controlled system using four set of parameters.  



 

 

 

The Figure 3 presents the Pareto front obtained. 

 

 

Figure 3. The Pareto front and nondominated solutions 

 

Using the DM criterion, the following controller 

parameters were found:  = 0.8877,  = 1.9888,  = 

0.0257, and  = 1.8762 and, )1(̂  = 2.0157. 

 

 

 

The outputs for the controlled system and the 

reference signal using the chosen parameters and 

more two other set of parameters found in the litera-

ture (Hou and Jin, 2014), can be observed in Figure 

4. 

The Table 2 presents the values of objective 

functions calculated and the values for the set of cor-

responding parameters. 

 

Table 2. Objective Functions Values 

Parameters [    )1(̂ ] Set f1  f2 

[0.8877;1.9888;0.0257;1.8762;2.0157] DM 0.3889     0.4069 

[0.6; 1; 1; 0.1; 2] 1 0.6882     0.9864 

[0.6; 1; 1; 2; 2] 2 0.6078     0.6115 

 

 

 

 

 

Figure 4. Graphics records of the reference signal and response of the controlled system using three set of parameters. 

 

In both examples, the graphics records and the 

tables values shown that the controller with the opti-

mized parameters had better performance than the 

one with parameters found in literature. 

6   Conclusions 

In this paper, we have studied an off-line tuning for 

parameters of a MFAC-CFDL controller and the ini-

tial value for estimated PPD of the system, for two 

examples, using a MODEA. The setting up of the 

parameters for MFAC is an open problem. To solve 

it, we used an evolutionary algorithm based on Multi-

Objective Differential Evolution to get optimal para-

meters. In the method adopted, vectors of possible 

parameter values formed a population of solutions 

which evolves to eventually determine the Pareto 

front. The objective functions were chosen in order to 

reduce the error in the steady-state response and the 

maximum error of the transient period of the system. 

The closest point to the utopia one is chosen as a 

solution to set the controller parameters. 



The results found by MODEA, in all examples, 

are Pareto better than other solutions presented in the 

literature. Additionally, the Pareto front, obtained at 

end of proposed strategy, provides the designer with 

a set of different solutions satisfying the control ob-

jectives at different levels of commitment between 

steady-state and transient errors. Despite the promi-

sing results, the solutions were obtained for the sys-

tem off-line, using fixed initial conditions with the 

same reference signal. Therefore, there is no guaran-

tee that the change in any of these conditions will 

make the controlled system behave optimally. An on-

line strategy might be the solution to this problem, 

but on-line application to real-time control using mul-

ti-objective evolutionary algorithm is still rare at pre-

sent (Reynoso-Meza et al, 2014). 

As a future work, we consider propose new vari-

ations for the algorithm used, also study dynamical 

systems more complex for MFAC and try to develop 

a methodology for real-time problems. 
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