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Abstract— This paper proposes the use of regularization on the multivariable formulation of the Virtual
Reference Feedback Tuning (VRFT). When the process to be controlled has a significant amount of noise, the
standard VRFT approach, that uses the instrumental variable technique, provides estimates with very poor sta-
tistical properties. To cope with that, this paper considers the use of regularization on the estimation procedure,
reducing the covariance error at the cost of inserting a small bias. Also, this paper explains different types
of regularization matrices and presents the methodology to tune these matrices. In order to demonstrate the
benefits of the proposed formulation, a numerical example is presented.
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1 Introduction

Data-driven control methods are a class of tech-
niques used to design a controller without deriv-
ing a mathematical model of the process. Instead,
it is assumed that the user can run experiments
on the system and collect signals that will be
used to adjust the controllers (Bazanella et al.,
2011). Several techniques use this idea where
the most notorious are: Iterative Feedback Tun-
ing (IFT) (Hjalmarsson et al., 1998), Correlation
based Tuning (CbT) (Karimi et al., 2004), Vir-
tual Reference Feedback Tuning (VRFT) (Campi
et al., 2002) and Optimal Controller Identification
(OCI) (Campestrini et al., 2017). While the first
two are iterative by nature, i.e. a sequence of ex-
periments is used to iteratively refine the gains of
the controller, the last two are non-iterative (di-
rect), i.e. the controllers are obtained from just
one set of experimental data.

Virtual Reference Feedback Tuning is proba-
bly the most used data-driven technique due to
its simplicity. The method solves a convex op-
timization problem using only one or two set of
experimental data. Moreover, under some ideal
conditions the obtained controller is optimal. The
method has been applied to many different ap-
plications from combustion motors, to chemical
plants, and even to unmanned aerial vehicles.
Also, several extensions have emerged in the liter-
ature allowing its use with non minimum phase
(Campestrini et al., 2011) and MIMO systems
(Campestrini et al., 2016). However, it is widely
known that under non-ideal conditions, for in-
stance measurement noise on the signals, the con-
troller parameter estimate presents a large vari-
ance and that it often results on an unstable closed

loop system.

In order to mitigate some problems of the
single-input single-output (SISO) VRFT method,
the article Rallo et al. (2016) proposes to add a
regularization term to the objective function, re-
sulting still in a convex problem that may pro-
duces biased estimates to the controller param-
eters but with a lower variance. The article
presents a Bayesian perspective to the problem
using similar ideas of Pillonetto and De Nicolao
(2010) and Chen et al. (2012). A priori informa-
tion about the parameters is estimated, assum-
ing that they are Gaussian distributed with zero
mean, and incorporated to the regularization pro-
cedure.

In this work we propose to use the same ideas
presented in Rallo et al. (2016) to extend the
MIMO VRFT technique to include a regulariza-
tion term. We also give a Bayesian perspective
to the problem and compare four different param-
eterizations to the regularization term. The pro-
posed technique is evaluated in a numerical exam-
ple where it’s shown that the regularization term
improves the performance of the closed loop sys-
tem, improves the stability of the method and re-
duces the variance of the obtained controllers.

The paper is organized as follow. Section 2
presents the preliminaries describing properties of
the system, controller and desired closed loop per-
formance. Section 3 describes the state of the art
MIMO VRFT method, while Section 4 presents
the proposed modification including the regular-
ization term and its Bayesian perspective. A nu-
merical example is given in Section 5 and the ar-
ticle finishes in Section 6 with a brief conclusion.



2 Preliminaries

Consider a MIMO discrete-time linear time-
invariant (LTI) system:

y(t) = G0(q)u(t) +H0(q)e(t), (1)

where q is the forward-shift operator, y(t) ∈ Rn

is the system’s output vector, u(t) ∈ Rn is the
input vector, G0(q) is the process transfer func-
tion matrix, H0(q) the noise transfer function ma-
trix and e(t) ∈ Rn a white noise vector, with
zero mean and covariance matrix E[e(t)e(s)T ] =
Σ = diag(σ2

e1, σ
2
e2, ..., σ

2
en). The matrices G0(q)

and H0(q) are n×n and their elements are proper
rational transfer functions.

In order to achieve some desired performance,
e.g. reference tracking, disturbance rejection, the
system’s input vector is manipulated through a
controller, more specifically, in this work, a LTI
controller which belongs to a fixed user-defined
controller class C. The control signal u(t) can then
be written as

u(t) = C(q, P )(r(t)− y(t)), (2)

where r(t) ∈ Rn is the reference vector and
C(q, P ) is the n × n controller transfer function
matrix, parametrized through the vector P ∈ Rp.
The controller class C is defined by

C = {C(q, P ) : P ∈ Ω ⊆ Rp}, (3)

and its structure is given by

C(q, P ) =

C11(q, ρ11) . . . C1n(q, ρ1n)
...

. . .
...

Cn1(q, ρn1) . . . Cnn(q, ρnn)

 ,
(4)

where P = [ρT11 ρT12 . . . ρT1n . . . ρTnn]T . It
is assumed that each subcontroller has a linear
parametrization, i.e. they can be written as

Cij(q, ρij) = ρTijCij(q), ρij ∈ Rpij , (5)

with Cij(q) being a pij−vector of fixed proper ra-
tional functions. Observe that, for instance, PI
and PID controllers can be described by (5). No-
tice that each subcontroller may have a different
structure, provided that they are linear in the pa-
rameters.

Considering (1-2) the closed loop system be-
comes:

y(t, P ) = T (q, P )r(t) + S(q, P )v(t), (6)

with

v(t) = H0(q)e(t) (7)

S(q, P ) = (G0(q)C(q, P ) + I)−1 (8)

T (q, P ) = S(q, P )G0(q)C(q, P ). (9)

It is evident, then, the dependence of the system’s
output on the parameter vector P . Therefore,
this work deals with the problem of tuning P to
reach good closed loop performance considering
a Model Reference framework, where the desired
closed loop behavior is specified through a transfer
function, namely the reference model and denoted
by Td(q). So, the parameter vector P could be ob-
tained by solving the optimization problem:

P̂ = arg min
P

JMR(P ) (10)

JMR(P ) =

N∑
t=1

||(Td(q)− T (q, P ))r(t)||22, (11)

which intends to minimize the difference between
the desired closed loop behavior and the one
achieved with C(q, P ). However, the objective
function JMR(P ) is nonconvex and the solution
of the optimization problem is difficult to be
achieved.

The controller that leads the system to match
exactly the desired performance is known as the
ideal controller Cd(q):

Cd(q) = G0(q)−1Td(q)(I − Td(q))−1. (12)

which can only be calculated if the model G0(q) of
the process is known. It’s important to emphasize
that if Cd(q) ∈ C then ∃ P0 : C(q, P0) = Cd(q).

In this article it is assumed that the user has
access to input and output data from the process
but the model G0(q) is unknown. Using only data
from the experiment, the user desires to obtain the
gains of the controller that minimize the objective
criterion JMR(P ).

3 The multivariable VRFT

The VRFT method is a one-shot data-driven con-
trol design technique that aims to solve the prob-
lem described in (10) using only input and out-
put data measured from the system, without the
need of a mathematical model. Its original for-
mulation was developed for the SISO LTI case in
Campi et al. (2002). The method was extended for
MIMO systems in Nakamoto (2004) and a more
detailed analysis was given in Formentin et al.
(2012). However, these MIMO extensions had a
significant drawback: the same reference model
had to be chosen for each loop, in order to provide
an unbiased parameter estimate. In Campestrini
et al. (2016) a new formulation was developed, al-
lowing the user to choose a wider class of reference
models. This work aims to enhance the statistical
properties of the latter VRFT formulation using
regularization techniques. Also, it is worth men-
tioning that the standard VRFT approaches and
also the new formulation proposed here can be ap-
plied even to unstable processes.



The main idea of the VRFT method is to
rewrite the optimization problem described in (10)
as

P̂ = arg min
P

JV R(P ) (13)

JV R(P ) =

N∑
t=1

||F (q)[u(t)− C(q, P )e(t)]||22, (14)

where F (q) is a prefilter (used as an additional de-
gree of freedom), u(t) is the input signal measured
from the system and e(t) is the virtual error, de-
fined as e(t) = (Td(q)−1 − I)y(t), with y(t) being
the measured output signal. Since the controller
has a linear parametrization, JV R(P ) is convex
and the optimization problem has a trivial solu-
tion, that can be reached by the least squares al-
gorithm.

Under ideal conditions, where there is no noise
on the system and the ideal controller Cd(q) be-
longs to the user-specified controller class C, then
P0 is the solution of (13). If the ideal controller
doesn’t belong to C, then the minimum of JV R(P )
and JMR(P ) doesn’t coincide. In this case, the fil-
ter F (q) is designed to approximate the minimum
of both cost functions. A suitable practical choice
of the filter is given by F (q) = Td(q)(I − Td(q)).
For more detailed reasoning about the filter de-
sign, see Campestrini et al. (2016).

On the other hand, if the system is corrupted
by noise, the estimates given by the least squares
algorithm for the problem (13) will be biased, even
if Cd(q) ∈ C (Campestrini et al., 2016). To cope
with that inconvenience, basic instrumental vari-
ables are used. Therefore, the parameters are
computed as

P̂iv = Sol

{
1

N

N∑
t=1

ζF (t)[ϕT
F (t)P − uF (t)] = 0

}
(15)

P̂iv =

(
1

N

N∑
t=1

ζF (t)ϕT
F (t)

)−1(
1

N

N∑
t=1

ζF (t)uF (t)

)
,

(16)

with

uF (t) = F (q)u(t), ϕF = [A1(t) . . . An(t)], (17)

Ax(t) =

Fx1(q)E1(t)
...

Fxn(q)En(t)

 , (18)

Ex(t) =

Cx1(q)e1(t)
...

Cxn(q)en(t)

 , (19)

and ζF (t) being the instrumental variable. The
instrumental variable can be generated with data
collected from a second experiment on the sys-
tem, with the same input sequence u(t). Let
y′(t) be the output of the second experiment,
then ζF (t) = [A′1(t) . . . A′n(t)] is built similarly as

ϕF (t), but with e′(t) = (Td(q)−1− I)y′(t) in (19).
In this case, P̂iv is an unbiased estimate of P0,
but as the noted in (Campestrini et al., 2016) the
estimate has a large variance. In this work we
introduce a regularization term to the objective
function aiming to reduce the error between the
estimate and the ideal controller.

4 Multivariable VRFT with Bayesian
regularization

It is a well-known fact that the instrumental vari-
able estimate has a large covariance, which can’t
reach the Cramer-Rao lower bound (Ljung, 1999).
When the variance of the noise is large, the es-
timates obtained with classical VRFT formula-
tion may lead to closed loop behavior very differ-
ent from the reference model. In Formentin and
Karimi (2014) and Rallo et al. (2016) modifica-
tions to the SISO VRFT were proposed to include
a regularization term on the objective criterion
to reduce the error between the estimate and the
ideal controller. The same idea is extended here,
where the main technical challenge is the appli-
cation of this technique to MIMO systems, that
presents more complex control structure and also
lead to a different Bayesian interpretation. To do
so, it is necessary to add a regularization term on
the objective function (14):

P̂REG = arg min
P

JREG
V R (P ) (20)

JREG
V R (P ) = JV R(P ) + PTDP, (21)

with D ∈ Rp×p being positive semi-definite, also
called the regularization matrix. Analogously to
what was done before, using the basic instrumen-
tal variable, the new regularized estimate is given
by

P̂ reg
iv = Sol

{
1

N

N∑
t=1

ζF (t)[ϕT
F (t)P − uF (t)] +DP = 0

}
(22)

P̂ reg
iv =

(
1

N

N∑
t=1

ζF (t)ϕT
F (t) +D

)−1( 1

N

N∑
t=1

ζF (t)uF (t)

)
,

(23)

with ϕF (t), ζF (t) and uF (t) as defined previously.
Equation (23) provides a new estimate of P

for the MIMO VRFT considering regularization
which is expected to provide biased estimates, but
with much smaller variance (Chen et al., 2012).
The problem now is to choose the matrix D in
order to reduce the estimate error. A Bayesian
perspective of the identification procedure will be
described in the next subsection, using the same
ideas developed on the System Identification com-
munity to tune D.

4.1 The Bayesian perspective

The Bayesian perspective of the identification pro-
cedure provides an alternative point of view and



new insights to regularization. In the Bayesian
perspective, the parameter P itself is considered
a random variable with prior Gaussian distribu-
tion with zero mean and covariance matrix Π (also
called kernel), i.e. P ∼ N (0,Π). It has been
shown, in recent literature (Chen et al., 2012),
that this interpretation yields the same estimate
that the regularized one, if the matrix D is written
as

Di = σ2
eiΠ
−1
i , (24)

where

D =


D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...
0 0 . . . Dn

 , (25)

Π =


Π1 0 . . . 0
0 Π2 . . . 0
...

...
. . .

...
0 0 . . . Πn

 , (26)

and Πi is related to the i-th output, which means
it has dimension pi×pi, with pi =

∑n
j=1 pij . This

fact restates that regularization is closely related
to prior estimates (Chen et al., 2012).

Still, it is necessary to estimate the covari-
ance matrices Πi. Let them be unknown and
parametrized by the vector of hyper-parameters
η = [ηT11 η

T
12 . . . ηT1n . . . ηTnn]T . Also, assume that

the responses from different inputs have no mu-
tual correlation. So, it is natural to partition Πi

as (Pillonetto et al., 2014)

Πi(ηi) =



Πi1(ηi1) 0 . . . . . . 0

0
. . . 0 . . . 0

... 0 Πij(ηij)
...

...
...

. . . 0
0 0 . . . 0 Πin(ηin)


(27)

where j represents the jth input. Each matrix
Πij has dimension pij × pij .

Now, let us discuss about the structure of the
matrices Πij . Let it reflect the size and corre-
lation of the controller’s impulse response coeffi-
cients (Chen et al., 2012). If the optimal controller
is stable, then the variance of P tends to zero ex-
ponentially and it possesses a certain size λ and a
decay rate α. So, the simpler choice would be to
set Πij diagonal with the (k, k)-th element being

Πij(ηij , k) = λijα
k
ij , (28)

with λij ≥ 0, 0 ≤ αij < 1 and ηij = [λij αij ]
T .

This is also known as the Diagonal (DI) kernel
parametrization (Chen et al., 2012). Yet, more in-
formation about the controller’s impulse response
could be considered. Suppose that the controller’s

impulse response is smooth. Then, neighboring
values of the kernel matrix should have positive
and high correlation. That being said, a suitable
choice for Πij should be a matrix whose (k, l) el-
ements are

Πij(ηij , k, l) = λijα
(k+l)/2
ij µ

|l−k|
ij , (29)

with λij ≥ 0, 0 ≤ αij < 1 and |µij | ≤ 1,
ηij = [λij αij µij ]

T . This kind of parametrization
is also called Diagonal/Correlated (DC) (Chen
et al., 2012). Another type of parametrization,
described in (Chen et al., 2012), is a special case
of the DC kernel, where µ =

√
α, which gives the

Tuned/Correlated (TC) kernel:

Πij(ηij , k, l) = λijα
max(k,l)
ij , (30)

with λij ≥ 0, 0 ≤ αij < 1, ηij = [λij αij ]
T . A

fourth type of kernel, frequently used and devel-
oped in the context of Gaussian Process Regres-
sion (GPR), is known as the Stable Spline (SS)
kernel, presented in Pillonetto and De Nicolao
(2010):

Πij(ηij , k, l) = λij

(
α
k+l+max(k,l)
ij

2
−
α
3max(k,l)
ij

6

)
,

(31)

with λij ≥ 0, 0 ≤ αij < 1, ηij = [λij αij ]
T .

Now that different types of kernel
parametrizations have been discussed, the next
step should be the estimation of η and Σ (if the
latter is unknown). The most common technique
for this purpose is the Empirical Bayes approach,
where the hyper-parameters are estimated by
the maximum likelihood approach, given the
observations and its a priori distribution. More
details about this technique are argued on Chen
et al. (2012) and Pillonetto et al. (2014).

In this work it is proposed the comparison of
these four (DI, DC, TC and SS) parametrizations
to matrix D in order to evaluate their use with
the MIMO VRFT technique.

5 A numerical example

To illustrate the efficiency of the proposed
methodology, a numerical example was devel-
oped. Consider the following process, also used
in Campestrini et al. (2016):

G0(q) =

[
0.09516

(q−0.9048)
0.03807

(q−0.9048)
−0.02974
(q−0.9048)

0.04758
(q−0.9048)

]
, (32)

H0(q) = I, and the reference model was chosen as
an uncoupled transfer function:

Td(q) =

[ 0.25
q−0.75 0

0 0.4
q−0.6

]
, (33)



that ensures null steady-state error for step refer-
ence signals. The ideal controller is given by

Cd(q) =

[
2.102q−1.902

q−1
−2.69q+2.434

q−1
1.314q−1.189

q−1
6.725q−6.085

q−1

]
, (34)

which is a full PI controller. The controller class
C was chosen also as a full PI controller, so we got

P0 = [ρT110 ρ
T
120 ρ

T
210 ρ

T
220 ]T (35)

ρ110 = [2.012 − 1.902]T (36)

ρ120 = [−2.69 2.343]T (37)

ρ210 = [1.314 − 1.189]T (38)

ρ220 = [6.725 − 6.085]T . (39)

Two open loop experiments were simulated to col-
lect the data and the instrumental variable, re-
quired to identify the controller. The input sig-
nals were defined as Pseudo-Random Binary Se-
quences (PRBS) with size N = 300. The noise
variance was specified to yield a Signal-to-Noise
Ratio (SNR) of 1.5 for each output. The filter
F (q) was computed as Td(q)(I − Td(q)) as men-
tioned beforehand.

Concerning the tuning of the different types
of kernel matrices Π(η) and the estimation of the
noise variances to determine D as in (24), the
MATLAB function arxRegul was employed. As
a matter of fact, this function implements an al-
gorithm based on the classical system identifica-
tion scenario (with additive noise on the outputs),
which is not the case here: the controller identifi-
cation is an errors-in-variables problem (the noise
is actually on the inputs) (Söderström, 2007). De-
spite that difference of characteristics, as demon-
strated in Rallo et al. (2016), the MATLAB func-
tion also allows a good kernel estimation.

To evaluate the proposed technique, 100
Monte Carlo simulations were run with distinct
noise realizations. At each run, input and out-
put data were collected and the controller gains
were estimated using the classical MIMO VRFT
via (16) and the regularized one via (23) consider-
ing the four parameterizations of matrix D. Three
different comparison were evaluated: the objective
criterion JMR(P ), stability of the closed loop sys-
tem with the obtained controller and MSE error
of the parameters.

5.1 Objective criterion

The main objective of introducing regularization
to the VRFT method was to achieve better closed
loop performance. The performance evaluation
was done through the objective function JMR(P ).
To do so, the signal r(t) was defined as two unitary
step reference signals: r1(t) occurring at t = 1 and
r2(t) occurring at t = 101 with a total of 200 sam-
ples. Figure 1 exhibits the boxplots of JMR(P̂ )
obtained on the Monte Carlo runs for each VRFT

IV REG DI REG DC REG TC REG SS
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30

35

J
M

R
(P̂

)

+19 +6 +3+10

Figure 1: Comparison of JMR(P ) for the classical
and the regularized VRFT with different choices
of kernel.

approach (classical and regularized with different
choices of kernel parametrization).

Analyzing the boxplots, it’s clear that the reg-
ularized approach overcame the classical one with
respect to variance. Another point to be empha-
sized is that, among the regularized methods, the
one with the Diagonal kernel presented the worst
performance. This outcome is coherent, since this
is the simpler structure of kernel parametrization.
On the other hand, the DC kernel presented best
performance regarding this criterion. This means
that the estimation of its hyper-parameters was
quite precise and the information of the a priori
distribution collaborated to the estimation of P .

5.2 Stability of the closed loop system

To give an idea of what happens to the closed
loop responses, a comparison of Td(q)r(t) and
T (q, P̂ )r(t) is also displayed for the 100 Monte
Carlo runs. The comparison was built for the
worst (classical VRFT) and the best (regular-
ized VRFT with DC kernel) scenarios attained.
The signal r(t) employed on these simulations
was the same used before. Figure 2 demonstrates
the closed loop responses for the classical VRFT,
while Figure 3 demonstrates the closed loop re-
sponses for the regularized VRFT with the DC
kernel. The desired closed loop responses are rep-
resented by black lines. Blue lines represent the
responses of resulting stable systems and red lines
represent responses of resulting unstable closed
loop systems.

Figure 2 shows that the high variance of the
IV estimate can result on unstable systems in
some situations. In the case presented here, 18%
of the resulting closed loop systems were unstable.
Figure 3, still, shows smaller variance of the re-
sponses and that none of the resulting closed loop
systems were unstable. It is important to high-
light that this result was achieved even without
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Figure 2: Comparison of Td(q)r(t) (black lines)
and T (q, P̂ )r(t) (blue lines = stable systems, red
lines = unstable systems) for the classical VRFT.
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Figure 3: Comparison of Td(q)r(t) (black lines)
and T (q, P̂ )r(t) (blue lines = stable systems) for
the regularized VRFT with DC kernel.

using a stability constraint on the VRFT method.
Such stability constraint can be seen at Van Heus-
den et al. (2011). This reinforces that introduc-
ing regularization to the VRFT methodology im-
proved its statistical properties.

5.3 MSE of the estimates

Besides the analysis on the closed loop perfor-
mance, it’s also interesting to observe the effect
of regularization on the parameter estimate P̂ . In
order to examine that, the 8-dimension ellipsoid
of 95% confidence interval was calculated for the
samples. Then, to turn it visible in some mat-
ter, projections of the ellipsoid were drawn on the
planes ρ011×ρ1111, ρ012×ρ112, ρ021×ρ121 and ρ022×ρ122.
Figures 4, 5, 6 and 7 exhibit these projections, also
for the best and the worst scenarios attained.

It can be seen that the estimates given by
the classical VRFT approach were approximately
unbiased, except at the projection on ρ022 × ρ122.

1ρij = [ρ0ij ρ
1
ij ]T since C is a full PI controller.
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Figure 4: Projection of the 95% confidence ellip-
soid on the plane ρ011 × ρ111.
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Figure 5: Projection of the 95% confidence ellip-
soid on the plane ρ012 × ρ112.

These bias that appears on the estimates can be
explained by the limited amount of data avail-
able and the limited number of Monte Carlo runs.
Moreover, the variance of the estimates, associ-
ated to the size of the ellipses, are really large.
Yet, the estimates given by the regularized VRFT
with the DC kernel presented bias as expected,
but a considerable smaller variance. This fact,
after all, improved the properties of the JMR(P )
criterion and, accordingly, the closed loop perfor-
mances.

Finally, other criterion that can be considered
concerning the quality of the estimates P̂ is the
size of the MSE matrix. For each method, the
MSE was estimated based on the Monte Carlo
samples as

M̂SE =
1

100

100∑
i=1

(P̂ − P0)(P̂ − P0)T . (40)

The size of the matrices was measured by some
of their fundamental quantities, as the maximum
eigenvalue (max λ), the minimum eigenvalue (min
λ), the trace and the determinant. Table 1
demonstrates these quantities, calculated for each
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Figure 6: Projection of the 95% confidence ellip-
soid on the plane ρ021 × ρ121.
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Figure 7: Projection of the 95% confidence ellip-
soid on the plane ρ022 × ρ122.

method here discussed. In general, the MSE quan-
tities computed for the classical VRFT presented
larger values. Furthermore, the DC based regu-
larization, the one that held the best results for
the JMR(P ) criterion, also gave the smaller MSE
values.

6 Conclusion

This work has proposed an extension to the
MIMO VRFT method to include a regularization
term with objective to reduce the variance intro-
duced by the instrumental variables technique. A
Bayesian perspective was presented and four dif-
ferent parameterizations for the D matrix were

Table 1: Quantities of M̂SE matrices for each
method

Type max λ min λ Trace Determinant
IV 28.21 15.61× 10−4 36.87 3.76× 10−5

DI 11.90 11.74× 10−4 14.54 4.26× 10−9

DC 8.95 6.34× 10−4 12.78 3.52× 10−9

TC 14.27 16.74× 10−4 18.04 4.71× 10−8

SS 14.23 11.44× 10−4 22.56 4.17× 10−8

evaluated. A numerical example compared the
classical MIMO VRFT with the proposed regular-
ized and it showed that the use of regularization
introduces a bias in the parameters estimation
but reduces the variance, resulting in much better
closed loop performance. The example shown that
the DC regularization reduces the JMR(P ) crite-
rion, improves the stability of the closed loop sys-
tem and reduces the MSE between the obtained
controller and the ideal one.
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