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Abstract— An usual approach to deal with system imperfections on the control design is the H∞ control
theory. The H∞ theory has already been applied for controlling several systems, and their efficiency was verified
in many practical experiments. Despite many advantages, the classic nonlinear H∞ approach presents limitations
in order to control the closed-loop transient behavior. Therefore, a new formulation of this controller in the
Sobolev space was presented. In this new approach the cost variable and its time derivative are considered
into the cost functional. In order to verify the advantages and disadvantages of both formulations, this paper
develops nonlinear H∞ controllers in the Lebesgue and Sobolev spaces for a two-wheeled self-balanced vehicle,
and performs comparisons over the results.

Keywords— Mechanical systems, Robust control, nonlinear H∞ control, Galerkin Approximation, Sobolev
space.

Resumo— Uma abordagem usual para lidar com imperfeições do sistema no projeto de controle é a teoria de
controle H∞. Controladores H∞ já foram aplicados em vários sistemas, e sua eficiência verificada por vários
experimentos. Apesar das vantagens, a abordagem não linear clássica apresenta limitações no sentido de controlar
o comportamento transiente do sistema em malha fechada. Portanto, uma nova formulação desses controladores
no espaço de Sobolev foi apresentada para lidar com esses problemas. Nessa nova formulação a variável de
custo e a sua derivada temporal são consideradas dentro do funcional de custo. Portanto, este artigo desenvolve
controladores H∞ não linear nos espaços de Lebesgue e Sobolev para um véıculo de duas rodas baseado em
pendulo invertido. Adicionalmente, os resultados são comparados para verificar as vantagens e desvantagens de
cada controlador.

Palavras-chave— Sistemas mecânicos, Controle robusto, Controle H∞ não linear, Aproximação de Galerkin,
Espaço Sobolev.

1 INTRODUCTION

An usual approach to deal with system imper-
fections on the control design is the H∞ theory
(Başar and Bernhard, 2008; Van Der Schaft and
Van Der Schaft, 2000). Although it has been
originally formulated on the frequency domain,
in Doyle et al. (1989) it was reformulated in the
Lebesgue space to deal with systems represented
in the state-space, which received considerable at-
tention in the past decades. H∞ controllers have
already been applied for controlling several sys-
tems, and their efficiency was verified in many
practical experiments. Despite many advantages,
this classic formulation presents deficiencies in or-
der to control the closed-loop transient behavior.
Therefore, to overcome this issue, in Aliyu and
Boukas (2011) a new formulation of this controller,
in the Sobolev space, is presented. In this new
approach, the cost variable and its time deriva-
tives are considered into the cost functional. It
is expected that the resulting controller presents

improved transient and steady-state behavior.1

As the classic approach, the nonlinear W∞
controller can also be formulated via dynamic-
programing, from which the optimization problem
results in solving the nonlinear first-order partial
differential equation (PDE) called the Hamilton-
Jacobi-Bellman-Isaacs (HJBI) equation. For lin-
ear systems, the HJBI equation results in a Riccati
matrix equation, in which efficient computational
methods can be used to compute the solution.
However, for nonlinear systems the resulting HJBI
equation is hard to solve analytically. In particu-
lar, according to Aliyu and Boukas (2011), the re-
sulting HJBI PDE from the W∞ control problem
is considered to be “horrendous and impossible to
compute the solution”.

Since the HJBI equation is difficult to solve
analytically, it is interesting to approximate its
solution using a numerical method. This re-
search subject is divided into four different cat-
egories: the method of characteristics (Wise and
Sedwick, 1996); series approximation (Huang and

1Through the text we use H∞ and W∞ to refer to the
approaches formulated in the Lebesgue and Sobolev spaces,
respectively.



Lin, 1995); regularization (Freeman and Koko-
tovic, 1995); finite difference element approxima-
tion (Fleming and Soner, 2006); and the Succes-
sive Galerkin Approximation Algorithms (SGAA)
(Beard, 1998). In order to select the numerical
procedure to be used, the main features to be con-
sidered are: 1) have guaranteed stability for finite
truncations of the approximation; 2) result in a
simple closed-loop control to be implemented; 3)
guarantee that the approximation error goes to
zero as the order of the approximation increases;
4) have a well-defined region of the state-space
where the approximation is guaranteed to work;
5) have low run-time computation and memory
requirements; 6) effectively deal with the curse of
dimensionality; 7) give explicit bounds on the ap-
proximation error. Taking into account these is-
sues, the SGAA is the one that provides the most
interesting features.

The SGAA has been proposed in Beard
(1995), with the purpose to solve the Hamilton-
Jacobi-Bellman (HJB) equation. In Beard (1998),
it was extended to solve the HJBI equation that
arises from the classic formulation of the nonlin-
earH∞ controller. In Cardoso and Raffo (2018), it
was extended to approximate the solutions of the
HJBI PDE that arises from new formulation of the
H∞ controller in the Sobolev space. The SGAA
deals with fully and underactuated systems, being
a suitable way to solve the problem.

In this work the nonlinear H∞ and the W∞
controllers are designed in order to control a two-
wheeled self-balanced vehicle. Numerical experi-
ments are conducted to highlight the advantages
and disadvantages of each control approach.

Vehicles based on inverted pendulum can be
found in many different variations as: the Furuta
pendulum (Acosta et al., 2001), Pendulum on a
cart (Gordillo and Aracil, 2008), the pendulum on
a two-wheeled vehicle (Madero et al., 2010). They
have been made popular by the vehicle called
Segway c©2, which is a practical way of locomotion.
From the control engineering point of view, de-
sign controllers for this type of vehicles remains a
challenge. It is an underactuated and coupled me-
chanical system. In general these vehicles are usu-
ally affected by external disturbances, unmodeled
dynamics, parameter estimation errors and noise
added to the measurement reported by sensors.
As a benchmark system, in the literature it is easy
to find works that propose linear and nonlinear
controllers for this class of vehicles, as for exam-
ple LQR (Wang et al., 2010), PID (Wang, 2011),
Forwarding (Madero et al., 2010), and nonlinear
H∞ (Raffo et al., 2015).

The following sections are structured as: Sec-
tion 2 presents the nonlinear H∞ and W∞ con-
trol approaches; Section 3 presents the Succes-
sive Galerkin Approximation Algorithms; Section

2http://www.segway.com/

4 presents the Galerkin approximation and how
it is applied with the SGAA to approximate the
solutions of the H∞ andW∞ control problems; In
Section 5 both controllers are designed for a two-
wheeled self-balanced vehicle, from which numeri-
cal experiments are conducted and the controllers’
performances are evaluated; Section 6 concludes
the work.

2 Nonlinear H∞ control approaches

In this section the nonlinear H∞ control approach
is formulated in the Lebesgue and Sobolev spaces.
Consider the class of systems represented by

ẋ = f(x) + g(x)u+ k(x)w, (1)

in which x(t) ∈ Rn is the state vector, u(t) ∈ Rm
is the input vector, and w(t) ∈ Rd is the distur-
bance vector. Assume that (1) is controllable and
all states are measured.

2.1 Nonlinear H∞ control approach formulated
in the Lebesgue space

The classic nonlinear H∞ control is stated in
terms of the L2 gain of the system, in which sys-
tem (1) is said to have L2 gain less than or equal
to γ if, for all tf ≥ 0 and w ∈ L2(0, tf ), there
exists a H∞ index γ > 0 such that the following
inequality is satisfied∫ tf

0

||y(t)||2dt ≤ γ2
∫ tf

0

||w(t)||2dt, (2)

where ||.|| denotes the Euclidean norm, and

y(t) =

[
Q 0
0 R

] [
x
u

]
is the cost variable, beingQ andR symmetric and
positive definite matrices, that must be tuned to
achieve the control requirements, and 0 is a zero
matrix with appropriate dimension. The aim of
this control problem is to achieve a bounded ratio
between the energy of the cost variable and the
energy of external disturbance signals.

It can be shown that the performance index
associated with (2) is (Bernhard, 1995)

JL =
1

2

∫ tf

0

(
||y(t)||2 − γ2||w(t)||2

)
dt. (3)

Therefore, the classic nonlinear H∞ control can
be stated as the optimization problem

VL(x, t)= min
u∈U

max
w∈W

{
1

2

∫ ∞
0

(
||y(t)||2−γ2||w(t)||2

)
dt

}
,

(4)

where U and W are the domains where the control
inputs and disturbances are defined.

In order to obtain the solution of (4), it can be
formulated via dynamic programing (Kirk, 2012),



from which the associated Hamiltonian is given
by3

HL
(
∂VL
∂x

,x,u,w

)
=
∂V ′L
∂x

ẋ +
1

2
||y(t)||2−

1

2
γ2||w(t)||2,

which in its expanded form leads to

HL
(
∂VL
∂x

,x,u,w

)
=
∂V ′L
∂x

(
f(x) + g(x)u + k(x)w

)
(5)

+
1

2
x′Qx +

1

2
u′Ru−

1

2
γ2w′w,

where Q , Q′Q and R , R′R.
The optimization problem (4) consists in com-

puting the optimal control action, u∗, that mini-
mizes the performance index (3) for the worst case
of all possible disturbances, w∗, affecting the sys-
tem. Therefore, it can be computed by maximiz-
ing and minimizing (5) with respect to these vari-
ables, respectively, leading to4

∂HL
∂u

= g′
∂VL
∂x

+Ru∗ = 0

u∗ = −R−1g′
∂VL
∂x

, (6)

∂HL
∂w

= k′
∂VL
∂x
− γ2w∗ = 0

w∗ =
1

γ2
k′
∂VL
∂x

. (7)

Furthermore, (u∗,w∗) is the saddle point solution
of the problem if the following holds

HL
(∂VL
∂x

,u∗,w
)
≤HL

(∂VL
∂x

,u∗,w∗
)
≤HL

(∂VL
∂x

,u,w∗
)
,

which can be verified by computing the second
order partial derivatives of (5) as

∂2HL
∂u2

= R > 0,
∂2HL
∂w2

= −γ2I < 0,

where clearly u∗ and w∗ are the respective min
and max values of the optimization problem, being
I an identity matrix with appropriated dimension.

The HJBI equation associated to the problem
is obtained by replacing the optimal control law
(6) and the worst case of disturbances (7) in (5),
which is written in a compact form, as

HL
(
∂VL
∂x

,x,u∗,w∗
)

= 0 (8)

with boundary condition VL(0) = 0. Therefore,
the classic nonlinear H∞ control problem results
in solving the PDE (8) in order to obtain the so-
lution VL(x).

2.2 Nonlinear H∞ control approach formulated
in the Sobolev space

Considering again system (1), the nonlinear H∞
controller, formulated in the weighted Sobolev
space, is designed in order to achieve the control

3For the sake of simplicity, throughout the text some
function dependencies are omitted.

4Throughout the text the superscript * will be used to
denote the optimal value.

law u ∈ U , for the worst case of the disturbances
w ∈W , that minimizes the cost functional5.

JW =
1

2
||z(t)||2W1,2,Σ

− 1

2
γ2||w(t)||2L2

.

in which z(t) = x(t) is the cost variable, and
Σ = (Q,S). Therefore, the optimization problem
is stated as

VW= min
u∈U

max
w∈W

∫ ∞
0

1

2

(
||z(t)||2Q+||ż(t)||2S−γ

2||w(t)||2
)
dt.

Note that, different from the classic formu-
lation in the Lebesgue L2 space, in the new ap-
proach the transient and steady-state performance
are reached by the presence of the time derivative
of the cost variable, z(t), in the cost functional,
being this latter variable independent of control
inputs. Moreover, this new approach allows to
tune component-wise the influence of the states
and their time derivatives in the cost functional.

The control design is derived by solving a Min-
Max optimization problem, which can be formu-
lated via dynamic programming. The associated
Hamiltonian is given by

HW =
(∂V ′W
∂x

)
ẋ+

1

2
||z||2Q +

1

2
||ż||2S −

1

2
γ2||w||2,

(9)

which is given in its expanded shape by

HW =

(
∂VW
∂x

)′
[f(x) + g(x)u+ k(x)w] (10)

+
1

2
x′Qx+

1

2
ẋSẋ− 1

2
γ2w′w

=

(
∂VW
∂x

)′
[f(x) + g(x)u+ k(x)w]

+
1

2
x′Qx+

1

2
f ′Sf +

1

2
f ′Sgu+

1

2
f ′Skw

+
1

2
u′g′Sf +

1

2
u′g′Sgu+

1

2
u′g′Skw +

1

2
w′k′Sf

+
1

2
w′k′Sgu+

1

2
w′k′Skw − 1

2
γ2w′w.

In order to obtain the worst case of the distur-
bance, w∗, and the optimal control law, u∗, the
partial derivatives of (10) with respect to these
variables are computed

∂HW
∂u

=g′
∂VW
∂x

+g′Sf+g′Sgu∗+g′Skw∗=0, (11)

∂HW
∂w

=k′
∂VW
∂x

+k′Sf+k′Sgu∗+k′Skw∗ (12)

−γ2w∗=0.

Therefore, by manipulating (11) and (12)
leads to

w∗ =
(
γ2I − k′Sk + k′Sgβ−1g′Sk

)−1
(13)

×
[
k′
∂VW
∂x

+k′Sf−k′Sgβ−1

(
g′
∂VW
∂x

+g′Sf
)]

,

u∗ =−β−1

(
g′
∂VW
∂x

+g′Sf+g′Skw∗
)
, (14)

5The Weighted Sobolev Wm,p,Σ − norm of a signal is

defined as ||z(t)||Wm,p,Σ =
( m∑
α=0
|| d

mz
dtm
||pLp,Σα

)1/p
such

that Σ = (Σ0,Σ1, ...,Σm) with Σ′α = Σα and Σα > 0.



with β , g′Sg, being (u∗,w∗) the saddle-point
solution of the problem, which can be verified by
computing the second order partial derivatives of
(10) as

∂2HW
∂u2

= g′Sg > 0,

∂H2
W

∂w2
= k′Sk − γ2I < 0,

where clearly, for an appropriated selection of γ,
they are the min-max extrema of the optimization
problem.

In order to obtain the HJBI equation asso-
ciated to this problem, it is necessary to replace
(13) and (14) in (10), leading to a complex partial
differential equation, which is hard to solve ana-
lytically. In Aliyu and Boukas (2011) the resulting
HJBI PDE is presented, which is assumed to be
intractable. Therefore, in this work an approxi-
mate solution to the HJBI is obtained through the
Sucessive Galerkin Approximation Algorithm.

3 Successive Galerkin Approximation
Algorithm

The HJBI equation resulting from the formula-
tion of the nonlinear H∞ control problems, in the
Lebesgue and Sobolev spaces, are in a quadratic
form, which is not suitable to apply directly the
Galerkin’s method. It presents two solutions, in
which one corresponds to the desired stabilizing
control law. Therefore, to solve this problem
the SGAA is applied. This algorithm decreases
the problem’s complexity to a non-quadratic form
leading to a single solution.

The algorithms used to solve the nonlinear
H∞ control problems in the Lebesgue and Sobolev
spaces are presented in Algorithms 1 and 2, re-
spectively. Although the number of iterations in
these algorithms goes from 1 to ∞, the stopping
criterions V (i,j) = V (i,j+1) and V (i,∞) = V (i+1,∞)

are used when seeking the optimal solution of the
HJBI equation.

In particular, u(i) will ensure stability of the
system (1) on the same region of the state space
as u(0) does. In addition, as stated in (Beard
et al., 1998), considering the algorithms 1 and 2,
it is not possible to find an admissible control that
can stabilize an initial condition that is unstable.
The convergence proof of the algorithms 1 and 2,
follows the same procedure as in (Beard, 1998).
Furthermore, the H∞ index γ must be selected
such that the problem is feasible, if it is not true
the algorithm does not converge.

In order to use the proposed algorithms and
approximate the solutions VL(x) and VW(x) of
Hamiltonians HL and HW , the Galerkin’s method
is applied. In the next section, the general for-
mulation of the Galerkin’s method is briefly de-
scribed, followed by its design to approximate a

Algorithm 1 SGAA to nonlinear H∞ control ap-
proach in the Lebesgue space.

1: Let u(0) be any initial stabilizing control law
for the system (1) with w = 0 and stability
region Ω.

2: Set w(0,0) = 0
3: for i = 0 to ∞ do
4: for j = 0 to ∞ do

5: Solve for V
(i,j)
L from:(

∂V
(i,j)
L
∂x

)′ [
f(x) + g(x)u(i) + k(x)w(i,j)

]
+

1

2
x′Qx+

1

2
u′(i)Ru(i)

−1

2
γ2w′(i,j)w(i,j) = 0

6: Update the Disturbance:

w(i,j+1) =
1

γ2
k′
∂V

(i,j)
L
∂x

7: end for
8: Update the Control:

u(i+1) = −R−1g′
∂V

(i,∞)
L
∂x

9: end for

Algorithm 2 SGAA to nonlinear H∞ control ap-
proach in the Sobolev space.

1: Let u(0) be any initial stabilizing control law
for the system (1) with w = 0 and stability
region Ω.

2: Set w(0,0) = 0
3: for i = 0 to ∞ do
4: for j = 0 to ∞ do
5: Solve for V (i,j) from:(

∂V
(i,j)
W
∂x

)′ [
f(x) + g(x)u(i) + k(x)w(i,j)

]
+

1

2

(
||z||2+||ż||2−γ2||w(i,j)||2

)
=0

6: Update the Disturbance:

w(i,j+1)=
(
γ2I − k′Sk + k′Sgβ−1g′Sk

)−1[
k′
∂V

(i,j)
W
∂x

+k′Sf−k′Sgβ−1

(
g′
∂V

(i,j)
W
∂x

+g′Sf

)]

7: end for
8: Update the Control:

u(i+1)=−β−1
(
g′
∂V

(i,∞)
W
∂x

+g′Sf+g′Skw(i,∞)
)

9: end for



solution of the HJBI equations presented in Sec-
tion 2.

4 Galerkin approximation

Galerkin’s method is commonly used to solve par-
tial differential equations (Mikhlin and Smolit-
skiy, 1967). In this work, it is applied to achieve
the solutions VL(x) and VW(x) of Hamiltonians
HL and HW , respectively. Therefore, by rewrit-
ing these PDEs in a generic compact form

A(V (x)) = 0, (15)

the first step for applying the Galerkin’s method is
to place the solution of (15) in the Hilbert space,
V (x) ∈ L2(Ω). It is obtained by constraining this
solution to a compact subset of the space Ω. The
Galerkin approach assumes that a set of functions
Φ(x) = [φ1(x) φ2(x) ... φ∞(x)] can be selected, sat-
isfying the problem’s boundary condition, with
Φ(x) being a complete basis of the space Ω. This
implies that there exist coefficients cj such that

∣∣∣∣V (x)−
∞∑
j=1

cjφj(x)
∣∣∣∣
L2(Ω)

= 0.

Nevertheless, in practice the set of basis function
is truncated with a finite number of terms

VN (x) =

N∑
j=1

cjφj(x) = cTΦ(x), (16)

which may not be a complete basis in the domain
of interest6. Thus, by applying (16) in (15), it
generates the following error approach,

A(VN (x)) = Error(x).

In the Galerkin’s method, the vector of coeffi-
cients c are determined by setting the projection
of the error on the finite basis Φ(x) equal to zero,
∀x ∈ Ω, as follows

< A(VN (x)),φj(x) >=

∫
Ω

A(VN (x))φj(x)dΩ = 0,

(17)

with j = 1, 2, ... N .
Therefore, taking into account the Algorithm

1 and the Hamiltonian (5), the procedure to
achieve an approximate solution VL(x), ∀x ∈ Ω,
is conducted as∫

Ω

[(∂Φ′c

∂x

)′[
f(x) + g(x)u+ k(x)w

]
+

1

2

(
||y||2 − γ2||w||2

)]
Φ′dΩ = 0,

leading to

c′
∫

Ω

∇Φ′
[
f(x) + g(x)u+ k(x)w

]
Φ′dΩ =

−1

2

∫
Ω

(
||y||2 − γ2||w||2

)
Φ′dΩ.

6The finite set of basis functions must be selected to
provide a small approximation error in the domain of in-
terest, ensuring the algorithms’ convergence.

Therefore, for this problem the vector of coeffi-
cients c is obtained by

c′ =
(
− 1

2

∫
Ω

(
||y||2 − γ2||w||2

)
Φ′dΩ

)
(18)

×
(∫

Ω

∇Φ′
[
f(x) + g(x)u+ k(x)w

]
Φ′dΩ

)−1

.

For the Algorithm 2 with the Hamiltonian (9),
the procedure to achieve an approximate solution
VW(x), ∀x ∈ Ω, is conducted as∫

Ω

[(∂Φ′c

∂x

)′[
f(x) + g(x)u+ k(x)w

]
+

1

2

(
||z||2 + ||ż||2 − γ2||w||2

)]
Φ′dΩ = 0,

leading to

c′
∫

Ω

∇Φ′
[
f(x) + g(x)u+ k(x)w

]
Φ′dΩ =

−1

2

∫
Ω

(
||z||2 + ||ż||2 − γ2||w||2

)
Φ′dΩ,

For the nonlinear W∞ control problem the vector
of coefficients c is given by

c′ =
(
− 1

2

∫
Ω

(
||z||2 + ||ż||2 − γ2||w||2

)
Φ′dΩ

)
(19)

×
(∫

Ω

∇Φ′
[
f(x) + g(x)u+ k(x)w

]
Φ′dΩ

)−1

.

In the next section, equations (18) and (19)
are computed with Algorithms 1 and 2 in order to
design the nonlinear H∞ and W∞ controllers for
a two-wheeled self-balanced vehicle.

5 Numerical Results

To corroborate the controllers’ efficiency, in this
section numerical experiments are conducted with
a two-wheeled self-balanced vehicle, illustrated in
Figure 1.

θ

φ

Figure 1: The two-wheeled vehicle.

The vehicle’s model was obtained from Raffo
et al. (2015), which is given by

M(q)q̈ +C(q, q̇)q̇ +K(q̇) +G(q) = F (q)u+w,
(20)



with

M(q) =

[
(M +m)r2 + Ir mlr cos(θ)
mlr cos(θ) ml2 + Ip

]
, q =

[
φ
θ

]
,

C(q, q̇) =

[
0 −mlr sin(θ)θ̇
0 0

]
, K(q̇) =

[
kφ̇

−kφ̇

]
,

G(q) =

[
0

−mgl sin(θ)

]
, F (q) =

[
1
−1

]
, w =

[
w1

w2

]
,

where u ∈ R is the torque applied on vehicles’
wheels, w1, w2 ∈ L2 are disturbances applied to
the system, m is the mass of the pendulum, M
is the mass of the wheels, l is the distance from
the axle to the pendulum center of mass, r is the
wheel’s radius, Ip is the pendulum moment of in-
ertia, Ir is the inertia of the wheel, k is the static
friction of the motor, and g is the gravity acceler-
ation. The physical parameters used on numerical
simulations are presented in Table 1.

Table 1: Vehicle parameters
Parameter Value Unit of Measure

Ir 0.0421 kg ·m2

Ip 0.201 kg ·m2

k 0.00215 N ·m · s/rad
m 2.75 kg
M 3.75 kg
l 0.1435 m
r 0.25 m
g 9.8 m/s2

The equations of motion (20) are represented
in the state-space standard form (1), leading to

f(x) =

[
θ̇

−M−1(q) [C(q, q̇)q̇ +K(q̇) +G(q)]

]
,

g(x) =

[
0

M−1(q)F (q)

]
, k(x) =

[
0 0
M−1(q)

]
,

with x =
[
θ φ̇ θ̇

]′
.

With the objective of regulating the states
around their equilibrium point x = 0, the non-
linear H∞ and W∞ controllers are designed by
iterating Algorithms 1 and 2 and considering the
Galerkin’s approximations (18) and (19). A com-
plete polynomial basis with degree four is used as
basis functions, which is given by

Φ(x) =
[
θ φ̇ θ̇ φ̇θ θθ̇ φ̇θ̇ φ̇2 θ2 θ̇2 · · · θ4 φ̇4 θ̇4

]
.

The set Ω is the domain of interest in which
the controller ensures stability to the system, and
it must be selected as the region of the state-space
in which the system works in. In this paper it is
selected as Ω = θΩ × φ̇Ω × θ̇Ω = [−π

4
, π

4
] × [−3, 3] ×

[−1.2, 1.2].
The integrals presented in (18) and (19) are

computed using Gaussian quadrature with one
point ∫ b

a

ψ(ξ)dξ = (b− a)ψ(
b+ a

2
).

In order to apply the Gaussian quadrature, the do-
main Ω is split in several squares with dimension
∆ = 0.1. The integrated functions are assumed
uncoupled, such that the following holds∫ b

a

∫ d

c

∫ f

e

ψ(θ, φ̇, θ̇)dθ dφ̇ dθ̇ =∫ b

a

ψ(θ)dθ

∫ d

c

ψ(φ̇)dφ̇

∫ f

e

ψ(θ̇)dθ̇.

During the iterations of Algorithms 1 and 2,
the coefficients c of the Galerkin’s Method con-
verge asymptotically to the solution. Therefore, in
order to decrease the computational time taken to
obtain the solution, it is used the stopping criteria
||ci−1 − ci|| < 0.1. In addition, a linear state feed-
back LQR controller was designed as the initial
stabilizing control law for both controllers, which
resulted in

u(0) =
[
11.3132 1.0022 3.2589

]
x.

In order to perform a fair comparison of the
results, the H∞ attenuation level was set as γ =
5. Additionally, the controllers were tunned to
provide almost the same settling time, using the
criteria of 5%, as shown in Figure 2. This choice
resulted in the following adjustments Q = I, R =
1, and S = diag([0.64 0.01 0.01]).
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Figure 2: Settling time starting from initial con-
dition x = [π4 0 0]′.

By executing the SGAA, the following solu-
tions were obtained for the HJBI equations,

VL(x) =
φ̇4

500
+
φ̇3θ

125
+
φ̇3θ̇

200
−

147φ̇2θ2

1000
+

23φ̇2θθ̇

1000

−
φ̇2θ

1000
+

3φ̇2θ̇2

500
+

579φ̇2

1000
−

689φ̇θ3

1000
−

9φ̇θ2θ̇

40

−
φ̇θ2

250
+

13φ̇θθ̇2

1000
−

φ̇θθ̇

1000
+

3487φ̇θ

1000
+

3φ̇θ̇3

1000

+
991φ̇θ̇

1000
+

φ̇

500
+

θ4

200
−

43θ3θ̇

100
+

3θ3

1000

−
31θ2θ̇2

500
−

θ2θ̇

1000
+

4783θ2

500
+

3θθ̇3

1000
+

569θθ̇

125

+
31θ

1000
+

641θ̇2

1000
+

θ̇

1000
,



VW (x) =
φ̇4

1000
+

3φ̇3θ

1000
+

3φ̇3θ̇

1000
−

83φ̇2θ2

1000
+
φ̇2θθ̇

100

+
φ̇2θ̇2

250
+

231φ̇2

500
−

67φ̇θ3

125
−

77φ̇θ2θ̇

500
−
φ̇θ2

500

+
φ̇θθ̇2

200
+

69φ̇θ

25
+
φ̇θ̇3

500
+

92φ̇θ̇

125
−

φ̇

1000

−
419θ4

500
−

541θ3θ̇

1000
−

θ3

200
−

23θ2θ̇2

250
−
θ2θ̇

500

+
2869θ2

500
−

θθ̇3

1000
+

1313θθ̇

500
+

θ

1000
+

399θ̇2

1000

−
θ̇

1000
.

The system was simulated starting from the initial
condition x(0) = [π4 0 0]′. The obtained results
are presented in Figure 3.

At the beginning, the pendulum starts dis-
placed from the desired upper vertical position
and asymptotically converges to it, remaining in
this position until external disturbances are ap-
plied. Due to the coupled dynamics of the sys-
tem, the effects of external disturbances affect all
states.

Since the nonlinear W∞ controller considers
the time derivative of the cost variable on the cost
functional, it reacts faster to external disturbances
than the H∞ controller, presenting smaller over-
shoots with faster transients.

The control input and the states signals were
evaluated by means of the Integral of the Abso-
lute Value of the Control Input’s Time Derivative
(IAVU) and the Integral of the Square Error (ISE)
performance indexes, which are shown in Table 2.
Note that, although the results do not present sig-
nificant differences on states θ(t) and θ̇(t), theW∞
controller achieved considerable improvement on
the wheels’ velocity, with less control effort.

Table 2: Table of Performance Index.

P. Index Computed by H∞ W∞

IAVU
∫ tf
0

∣∣∣du(t)

dt

∣∣∣dt 16.809 16.117

ISE

∫ tf
0
θ2(t)dt 1.199 1.217∫ tf

0
φ̇2(t)dt 85.254 49.682∫ tf

0
θ̇2(t)dt 1.604 1.736

6 CONCLUSIONS

Considering the nonlinear H∞ control approaches
in the Lebesgue and the Sobolev spaces, this
work designed nonlinear controllers for a two-
wheeled self-balanced vehicle. The HJBI equa-
tions that arise from both optimization problems
were solved using the Galerkin Approximation Al-
gorithm. Numerical experiments were conducted
in order to provide a comparison analysis between
both designed control laws.

The controller resulting from the H∞ ap-
proach formulated in the Sobolev space presented
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Figure 3: Vehicle states, applied control input and
external disturbances.

smaller overshoot, faster reaction to external dis-
turbances, with less control effort.

Future works include parallelize the Sucessive
Galerkin Approximation Algorithm to overcome
the curse of dimensionality and apply it to develop
controllers for systems with higher dimension.
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