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Abstract— In the literature, methods are available to obtain positively invariant sets for continuous-time
and discrete-time systems using the shift operator. However, there are not references showing how to develop
methods using the delta operator. In this work, positive invariance relations of polyhedral sets are proposed in
the context of the delta operator model for linear discrete-time systems. The delta operator approach is known to
be of interest when using high sample rates and it also allows to unify discrete-time and continuous-time concepts
and results. In this context, the proposed delta operator positive invariance relations which are obtained from
the classical shift operator results, are also shown to recover the continuous-time invariance relations when the
sample period tends to zero. Due to the interest of using the positive invariance property and polyhedral sets
in constrained control, a linear programming optimization approach is also proposed in the context of the delta
operator to solve a discrete-time linear constrained regulation problem. A numerical example is exploited to
show that the proposed delta operator solution closely follows the continuous-time one.
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1 Introduction

Positively invariant sets are a well used object in
the stability, control and preservation of dynami-
cal system’s constraints, playing a key role in the
theory and applications of dynamical control sys-
tems (Horvath et al., 2017). A set of the space
state is positively invariant if the state trajectories
remain inside this set when the initial state be-
longs to it. Methods to characterize algebraically
the positive invariance of non-symmetrical and
symmetrical sets, named invariance relations,
were developed for linear continuous-time systems
(Castelan and Hennet, 1993; Kiendl et al., 1992)
and linear discrete-time systems using the shift op-
erator (Hennet, 1995; Dorea and Hennet, 1999).

If a system is subject to constraints on the
state vector and/or on the control inputs, a state
feedback regulation law can stabilize it by main-
taining the state vector inside a positive invari-
ant set included in an admissible domain of ini-
tial states. In this context, the Linear Con-
strained Regulation Problem (LCRP) consists in
finding a stabilizing state feedback control law for
linear systems under linear state and/or control
constraints. This problem has been intensively
studied, with classical results in e.g. (Vassilaki
et al., 1988; Castelan and Hennet, 1993; Hen-
net, 1995). Nevertheless, recent results have
been reported on, for example, convergence to
an equilibrium situated on the boundary of the
feasible region (Bitsoris and Olaru, 2013; Bit-

soris et al., 2014), extensions to systems subject
to information and physical constraints (Wang
et al., 2016) and synthesis of state-feedback con-
trollers based on delay-dependent positively in-
variant sets (Bensalah, 2015).

While the continuous-time systems approach
is useful for a theoretical analysis, discrete-time
systems allow for easier computational imple-
mentation (Yuz and Goodwin, 2014). However,
discrete-time systems are usually obtained by dis-
cretization of a continuous-time system by the
shift operator, which shows some disadvantages
such as poles attracted to the border of the unit ra-
dio circle in high sampling frequencies, and trun-
cation and rounding errors (Yang et al., 2012).

First proposed by (Middleton and Goodwin,
1986), the delta operator, also named δ-operator,
tries to unify both approaches, continuous and
discrete-time, presenting a discrete-time systems
behavior that tends to the continuous-time sys-
tems one as the sampling time decreases. Also,
in high sampling frequencies, the systems poles
and zeros get close to the continuous-time systems
poles and zeros, while the zeros introduced by the
sampler tends to minus infinity (Yang et al., 2012).
This makes the representation in this domain bet-
ter approximate the physical model.

Algorithms are available to construct con-
trollers in a positively invariant domain based on
Linear Programming (LP), which allows the in-
clusion of constrains, or based on eigenstructure
assignment (Hennet, 1995). These algorithms can



be extended to discrete-time systems in the per-
spective of the δ-operator.

In the literature, studies about relations
between the δ-operator and the shift operator
(Neuman, 1993b; Kalman and Bertram, 1993), the
formulation, properties and applications of the δ-
operator in physical systems (Neuman, 1993a),
and many other applications including systems
subject to actuator saturation and model uncer-
tainty (Soh, 1991; Yang et al., 2015) can be found.
However, concise studies investigating the proper-
ties and the relations of the positive invariance
concept in linear dynamic systems under the per-
spective of the δ-operator can not be found. Such
a study would be useful for implementation in
physical devices that need faster sampling rates.

Thus, the objective of this paper is to for-
mulate the positive invariance properties of poly-
hedral sets for a linear system in the δ-operator
representation and to show the relations with the
associated continuous-time system and the shift
operator discrete-time system model. In particu-
lar, the known LCRP will be formulated and anal-
ysed in the δ-operator context, showing how con-
trol and state constraints can also be treated in
the δ-operator setting.

The paper is organized as follows: next sec-
tion presents the description of a discrete-time sys-
tem using δ-operator and introduces the positive
invariance of polyhedral sets. The third section
presents a theoretical review about the invariance
relations for discrete-time systems with shift op-
erator which is the basis to obtain the positive in-
variance relations for discrete-time δ-operator sys-
tems. Thus, in section 4, the proposed invariance
relations for δ-operator discrete-time systems are
formulated. Section 5 describes a LCRP in the δ-
operator context with the associated Linear Pro-
gramming problem. To show the effectiveness of
the proposal when the sampling time is small, Sec-
tion 6 shows a numerical example.

Notations: Vectors are represented by lower-
case letters and matrices by capital ones. The
elements of a vector z ∈ Rn are denoted by
zi, ∀i ∈ {1, . . . , n}, and the elements of a ma-
trix Z ∈ Rn×m by Zij , ∀i ∈ {1, . . . , n} and
∀j ∈ {1, . . . ,m}. Equalities and inequalities be-
tween vectors and matrices are considered to be
elementwise. The elements of matrix |Z| are the
absolute values of the elements of Z. A matrix Z
is non-negative if Zij ≥ 0 ∀i ∈ {1, . . . , n}, ∀j ∈
{1, . . . ,m}, and it is essentially non-negative if
Zij ≥ 0 ∀i 6= j. The identity matrix with dimen-
sion n ∈ N is denoted by In. A dynamical variable
z ∈ R is represented zk = z(kT ), with k ∈ N and
T ∈ R+ being the sampling time. Also, a 0 in a
vector or matrix inequality means the null vector
or matrix with appropriate dimension.

2 Problem Formulation

In this work, we consider linear discrete-time in-
variant systems represented by:{

δxk = Aδxk +Bδuk

yk = Cδxk
(1)

where k ∈ N is the discrete-time instant, xk ∈ Rn
is the state vector, uk ∈ Rm is the control vector
and yk ∈ Rp is the output vector, with associated
matrices Aδ ∈ Rn×n, Bδ ∈ Rn×m and Cδ ∈ Rp×n,
m,n, p ∈ N∗ and δxk is the delta operator, defined
as follows (Middleton and Goodwin, 1986; Yuz
and Goodwin, 2014):

δxk =
xk+1 − xk

T
(2)

with T ∈ R+ being the sampling period (in sec-
onds) used to discretize, using Zero-order Holder
(ZoH), continuous-time systems represented by:{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3)

By construction, the system’s matrices in (1)
are related to the ones in (3) as follows:

Aδ =
eAT − In

T
, Bδ =

1

T

∫ T

0

eA(T−s)Bds,

and Cδ = C.

(4)

Thus, when the sampling period tends to zero, the
following holds true:

(i) lim
T→0

δxk = ẋ(t) since, by definition, xk =

x(kT ); and

(ii) lim
T→0

Aδ = A and lim
T→0

Bδ = B.

Furthermore, if the spectrum of matrices A
and Aδ are, respectively, σ(A) = {λi, i = 1, ..., n}
and σ(Aδ) = {λδi , i = 1, ..., n}, then:

λδi =
eλiT − 1

T
, ∀i = 1, ..., n (5)

and it also implies that limT→0λ
δ
i = λi.

Equation (5) implies that the eigenvalues of
Aδ belong to a circle with radius 1

T and centered
(in every case) in − 1

T (see (Yuz and Goodwin,
2014; Neuman, 1993a; Middleton and Goodwin,
1986)). Figure 1 depicts the location of the eigen-

values of Aδ obtained from A =

[
−0.3 2
−2 −0.3

]
for different sampling periods (T = 1, T = 0.3 and
T = 0.1), where the eigenvalues of A are depicted
by dots.

In the present work we are primarily inter-
ested in deriving algebraic conditions that guaran-
tee the positive invariance property of given poly-
hedral sets with respect to δ-operator systems and
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Figure 1: Spacial distribution on complex plane
of the spectrum of Aδ for sampling times T = 1,
T = 0.3 and T = 0.1. The dots represents the
continuous-time eigenvalues of matrix A.

to show a way of using the proposed invariance
relations to deal with a linear constrained regula-
tion problem. For this purpose, consider a convex
polyhedron in the state space, defined as:

Definition 1 A nonempty convex polyhedron of
Rn is defined by:

R[Q, ρ] = {x ∈ Rn;Qx ≤ ρ} (6)

with Q ∈ Rr×n, ρ ∈ Rr, and r, n ∈ N∗.

In particular, we can consider the case when a
convex polyhedral domain is symmetrical around
the origin point and defined by:

Definition 2 A convex polyhedron symmetrical
around the origin S(G,ω) is defined by:

S(G,ω) = {x ∈ Rn;−ω ≤ Gx ≤ ω} (7)

with G ∈ Rs×n, s ≤ n, ω ∈ Rs, ωi > 0 for i =
1, . . . , s.

By definition (Hennet, 1995), positive invari-
ance is a property characterizing some function of
time generated by a dynamical system such that
any trajectory of this function starting in a region
of space always remains in that region along the
system evolution. In the case of discrete-time sys-
tems, the positive invariance of any set Ω ⊂ Rn is
obtained if:

xk ∈ Ω =⇒ xk+1 ∈ Ω (8)

The algebraic relations that characterize the
positive invariance of the polyhedral sets (6) and
(7) for classical linear discrete-time systems can

be obtained by applying, for instance, Farka’s
Lemma to relation (8) and are firstly recalled in
the next section. Thus, the algebraic relations for
δ-operator discrete-time systems are proposed in
section 4.

3 Preliminary Results

From the previous presentation, we can verify
that, when using high sampling rates, the δ-
operator representation (2) is more appropriate to
represent discretized linear systems than the clas-
sical shift operator representation given by:{

xk+1 = Adxk +Bduk

yk = Cdxk
(9)

where Ad = eAT , Bd =
∫ T
0
eA(T−s)Bds and Cd =

C. In this case, one has: lim
T→0

Ad = I, lim
T→0

Bd = 0

and, by considering σ(Ad) = {λdi , i = 1, ..., n}:

λdi = eλiT , ∀i = 1, ..., n

and, in consequence, lim
T→0

λdi = 1.

It is important to recall that (1) and (9) rep-
resent the same discretized system obtained from
continuous-time system (3). These two discrete-
time models are related by the following relations:

Ad = In + TAδ, Bd = TBδ,

and λdi = 1 + Tλδi , ∀i = 1, ..., n.
(10)

Besides the interest of using the δ-operator
model to deal with small sampling time periods,
it also allows to present continuous and discrete-
time concepts and results in a unified way, since:

(Aδ, Bδ, λ
δ
i ) =

{
(A,B, λi), when T → 0

(Ad − In, Bd, λdi − 1), when T → 1

The following two results related to an au-
tonomous shift operator system (see (Hennet,
1995)):

xk+1 = Adxk (11)

will be used to obtain the positive invariance re-
lations for δ-operator systems.

Proposition 1 The polyhedral set R[Q, ρ] is a
positively invariant set of (11) if and only if there
exists a non-negative matrix Hd ∈ Rr×r such that:

HdQ = QAd (12)

Hdρ ≤ ρ (13)

Also, for the symmetrical polyhedral set
S(G,ω) to be invariant for (11), there is the fol-
lowing proposition.



Proposition 2 A necessary and sufficient condi-
tion for the symmetrical polyhedral set S(G,ω) to
be invariant for (11) is the existence of a matrix
Hd ∈ Rs×s such that:

HdG = GAd (14)

|Hd|ω ≤ ω (15)

4 Invariance Relations with δ-Operator

The theorems formulated in this section present
the proposed invariance relations for an au-
tonomous δ-operator system:

δxk = Aδxk (16)

Theorem 1 The polyhedral set R[Q, ρ] is a pos-
itively invariant set of (16) if and only if there
exists an essentially non-negative matrix Hδ ∈
Rr×r, with − 1

T ≤ Hδii ≤ 0 ∀i = 1, ..., r, such
that:

HδQ = QAδ (17)

Hδρ ≤ 0 (18)

Proof: From (10), we can rewrite (12) as HdQ =
Q(TAδ + Ir). Then,

(
Hd−Ir
T

)
Q = QAδ and we

obtain (17) by defining:

Hδ =
Hd − Ir

T
(19)

From this definition, we can also rewrite (13)
as (THδ + Ir)ρ ≤ ρ⇔Hδρ ≤ 0.

From Proposition 1 and (19), we must also
have:

Hd = Ir + THδ ≥ 0⇔Hδ ≥ −
Ir
T

Since, by definition, Hδij =
Hdij

T , ∀i 6= j, it
is then required from (18) that:

− 1

T
≤Hδii ≤ 0

2

From the above Theorem and its proof, when
T → 0 we get the positive invariance relations
for continuous-time system, since Aδ → A and
Hδ tends to an essentially non-negative matrix
without any restriction on its diagonal elements:
Hδ → H . Then, we have (see (Castelan and
Hennet, 1993)): R[Q, ρ] is positively invariant for
ẋ(t) = Ax(t) ⇔ ∃ an essentially non-negative
H ∈ Rr×r such that:{

H G = GA

H ρ ≤ 0
.

The positive invariance relations for the sym-
metrical polyhedral set S(G,ω) is given by the
following Theorem:

Theorem 2 A necessary and sufficient condition
for the symmetrical polyhedral set S(G,ω) to be
positively invariant for (16) is the existence of ma-
trix Hδ ∈ Rs×s such that:

HδG = GAδ (20)

Ĥδω ≤ 0 (21)

H̄δω ≥ −
2

T
ω (22)

with Ĥδ =

{
Hδij , if i = j

|Hij |, if i 6= j
, i, j = 1, ..., s

and H̄δ =

{
Hδij , if i = j

−|Hij |, if i 6= j
, i, j = 1, ..., s

Proof: From (10) and (14), we have HdG =
G(TAδ + Is), which is equivalent to

(
Hd+Is
T

)
G =

GAδ. Thus, by defining

Hδ =
Hd − Is

T
(23)

we get (20).
Also, from (23), inequality (15) can be written

as |THδ + Is|ω ≤ ω ⇔ |Hδ + Is
T |ω ≤

1
T ω. Writing

this inequality for each row, we have:

|Hδii +
1

T
|ωi ≤

1

T
ωi −

∑
j 6=i

|Hδij |ωj

which is equivalent to:

−
1

T
ωi+

∑
j 6=i
|Hδij |ωj ≤ Hδiiωi+

1

T
ωi ≤

1

T
ωi−

∑
j 6=i
|Hδij |ωj

For the right inequality, we can see that

Hδiiωi +
∑
j 6=i

|Hδij |ωj ≤ 0, thus obtaining (21);

and for the left one, − 2
T ωi ≤ Hδiiωi−

∑
j 6=i

|Hδij |ωj ,

thus obtaining (22).
2

The positive invariance relations for
continuous-time system are also verified from the
Theorem 2 when T → 0, since Aδ → A and the
constraint (22) on Hδ disappears and only (21)
remains active. Thus, Hδ → H and the following
known result for continuous-time systems is en-
countered (see (Castelan and Hennet, 1993))(see
(Castelan and Hennet, 1993)): S(G,ω) is posi-
tively invariant for ẋ(t) = Ax(t) ⇔ ∃ a matrix
H ∈ Rs×s such that:{

HG = GA

Ĥω ≤ 0

where Ĥ =

{
Hij , if i = j

|Hij |, if i 6= j
, i, j = 1, ..., s.

Some remarks about Theorem 2 are of interest
at this point:



(i) From the above proof, we have that (21) and
(22) are equivalent to |Hδ + Is

T |ω ≤
1
T ω,

which, by defining W = diag(wi) (a positive
diagonal matrix which diagonal elements are
the elements of vector ω > 0), can be rewrit-
ten as follows, for some positive scalar εδ ≤ 1:

‖W−1HδW +
Is
T
‖∞ ≤

εδ
T

(24)

Thus, from (24) we have that the eigenvalues
of matrix Hδ belong to a circle centered in
− 1
T with radius equals to εδ

T .

(ii) When εδ < 1, the following Lyapunov func-
tion associated to the positively invariant set
S(G,ω) is decreasing along the trajectories of
the discrete-time system (11) or (16):

V (xk) = ||Gxk||∞ = max
i=1,...,s

|G(i)xk| (25)

where G(i) stands for the ith row of matrix G
(Hennet, 1995).

(iii) When T → 0, (20) and (22) or, equivalently,
(24) reduce to Ĥω ≤ 0, which can be rewrit-
ten as follows, for some non-negative scalar
ε:

Ĥω ≤ −εω ⇔ µ∞(W−1HW ) ≤ −ε

where µ(.) stands for the infinity matrix mea-
sure (Kiendl et al., 1992). Thus, for ε > 0,
it can be deduced that eigenvalues of H will
have real parts less than or equal to ε.

(iv) For 0 ≤ εd ≤ 1, in the shift operator case we
have:

|H|ω ≤ εdω ⇔ ||W−1HdW ||∞ ≤ εd

and, hence, the spectrum of Hd belongs to
the classical unit circle centered in the origin.

5 LCRP Using δ-Operator

Aiming at illustrating the use of proposed re-
sults for discrete-time control synthesis, let us
consider the classical linear constrained regulation
problem, here formulated to be applied to the δ-
operator discrete-time model.

For system (1), let us consider that the states
are all measurable (Cδ = In), the states are con-
strained to belong to a given symmetrical poly-
hedron S(G,ω) and that the control inputs uk ∈
U ⊂ Rm are symmetrically bounded, as follows:

U = {uk ∈ Rm;−γ ≤ uk ≤ γ} (26)

with γ ∈ Rm and γ > 0.
Thus, the following Linear Constrained Reg-

ulation Problem can be stated: Find a state feed-
back control law

uk = Fδxk, Fδ ∈ Rm×n

such that the trajectories of the closed-loop system

δxk = (Aδ +BδFδ)xk (27)

starting from S(G,ω) converge to the origin while
respecting control constraints (26).

Thus, as in (Hennet, 1995; Vassilaki et al.,
1988), the following linear programming optimiza-
tion problem can be set to find solutions to the
stated LCRP by imposing the positive invariance
of S(G,ω) with respect to closed-loop system (27)
and the inclusion S(G,ω) ⊆ S(Fδ, γ) = {xk ∈
Rn;−γ ≤ Fδxk ≤ γ} to respect the control con-
straint:

minimize
Hδ, Fδ,M

εδ (28a)

subject to HδG = GAδ +GBδFδ, (28b)

|Hδ +
Is
T
|ω ≤ 1

T
εδω, (28c)

|M |ω = γ, (28d)

MG = Fδ, (28e)

0 ≤ εδ < 1 (28f)

In the above LP optimization problem, con-
straints (28b)-(28c) guarantee the closed-loop pos-
itive invariance of S(G,ω) and (28d)-(28e) guar-
antee the required set inclusions.

The objective function (28a) is such that the
eigenvalues of (Aδ+BδFδ) are placed in the small-
est circle centered at − 1

T . From the remarks (i)
and (iii) at the end of previous section, it is impor-
tant to stress that: i) by setting T = 1, the LP
above correspond to the shift operator solution
proposed in (Vassilaki et al., 1988), but applied
to a shifted system xk+1 = (Ad − In)xk + Bduk;
and ii) when T → 0, we can retrieve a solution
for the continuous-time LCRP (see, for instance,
(Bitsoris et al., 2014)).

6 Numerical Example

Consider the following continuous-time linear sys-
tem borrowed and adapted from (Castelan and
Hennet, 1993):

A =

 9.10 0.47 −6.33
7.62 0.00 7.56
2.62 −3.28 9.91

 ,
B =

 1.82 3.61
1.24 −3.77
−4.91 0.00

 .
This unstable open-loop system has eigenval-

ues: {
9.5036

4.7532± j3.8786

The symmetrical constraints on the state vec-
tor and the vector of control bounds are defined
by:

G =

 5.69 1.97 −1.68
2.24 −1.68 5.59
2.00 0.00 0.00

 ,



ω =

 1.00
1.00
1.00

 and γ =

[
1.50
5.00

]
.

Solutions for the LCRP by using the LP op-
timization problem (28) were obtained for three
different sampling periods: T = 10−1, T = 10−3

and T = 10−5. In Table 1, we can compare the
eigenvalues obtained with the δ-operator approach
(28) to those obtained using the same optimiza-
tion problem with equations (28b) and (28c) re-
lated to the invariance relations for shift operator
discrete-time systems and for continuous-time sys-
tems commented before. It can be observed that
the eigenvalues obtained with the δ-operator tend
to the continuous-time ones while the shift opera-
tor ones tend to one.

T σ(A+BF ) σ(Ad +BdFd) σ(Aδ +BδFδ)

10−1
−1.4405
−9.9005
−19.2494

0.8588
0.1974
0.1974

−1.4118
−7.8252
−8.5175

10−3
−1.4405
−9.9005
−19.2494

0.9986
0.9920
0.9828

−1.4395
−8.2598
−15.7579

10−5
−1.4405
−9.9005
−19.2494

1.0000
0.9999
0.9998

−1.4406
−8.4917
−18.7951

Table 1: Eigenvalues found solving LCRP for dif-
ferent sampling periods.

The result obtained for T = 10−5 is compared
to the continuous-time result through the follow-
ing matrices:

• δ-operator:

Fδ =

[
0.6400 −1.5404 3.9148
−6.4153 0.6047 −1.5922

]
,

M =

[
−0.2483 0.6257 −0.3143
0.0862 −0.2589 −3.1628

]
,

Hδ =

 −6.2591 2.3665 −2.4520
1.6166 −16.3461 −13.2880
−2.2373 −2.4444 −6.1220

 .
• continuous-time:

F =

[
−0.6193 −1.6387 4.1544
−6.6861 0.5058 −1.4632

]
,

M =

[
−0.2663 0.6632 −0.2948
0.0451 −0.2482 −3.1932

]
,

H =

 −7.1756 3.2956 −2.4395
1.4810 −17.1445 −14.2229
−2.5993 −2.2306 −6.2704

 .
Figures 2 and 3 show the comparative state

trajectories and control actions trajectories, start-
ing from x0 = {0.1000,−0.0100, 0.0400}, for the
three closed-loop systems when T = 10−5. The
δ-operator closed-loop system showed to be ef-
fectively closest to the continuous-time one when
compared to the shift operator system’s response.
Also, the constraints were respected.
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Figure 2: States trajectories for T = 10−5.

7 Conclusions

In this work, the positive invariance of polyhedral
sets was considered by using the δ-operator repre-
sentation of discrete-time systems. The first inter-
est in deducing the associated invariance relations
is that the δ-operator approach allows to unify the
discrete-time and the continuous-time ones when
the sample period tends to zero.

Besides showing that the proposed δ-
operator positive invariance relations tends to the
continuous-time ones, they also have been applied
to propose a LP optimization problem to solve a
linear constrained regulation problem which con-
siders state and control constraints. The numer-
ical results showed that the δ-operator solution
closer approaches the continuous-time one than
the classical shift operator solution when the sam-
pling rate is high.

Further studies are in development for a bet-
ter understanding of the proposed δ-operator ap-
proach aiming at using it in a broader class of
constrained control problems and in practical ap-
plications.
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