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Abstract— The basic principles of a multivariable Smith Predictor controller tuning method for stable pro-
cesses is presented. Originally developed for PID tuning, this automatic method formulates the tuning procedure
as a convex optimization problem, where convergence to a local minimum is guaranteed. It can be readily ex-
tended in many ways to more complex applications. In this paper, besides adapting the algorithm to a Smith
Predictor controller, an additional constraint regarding disturbance rejection is added, and its robustness is
increased via polytopic approach. The method is tested on simulated multivariable processes with constant
transport delays.
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Resumo— Os prinćıpios básicos de um método de sintonia de controladores multivariáveis baseados em Predi-
tor de Smith para processos estáveis são apresentados. Originalmente desenvolvido para sintonia de controladores
PID, este método automático formula o procedimento de sintonia como um problema de otimização convexa,
onde a convergência para um mı́nimo local é garantida. Ele pode ser facilmente estendido de várias maneiras,
para aplicações mais complexas. Neste trabalho, além de adaptar o algoritmo para um controlador baseado no
Preditor de Smith, uma restrição adicional relacionada à rejeição de perturbações é adicionada, e sua robustez
é melhorada através de abordagem politópica. O método é testado em processos multivariáveis simulados com
atraso constante.

Palavras-chave— Preditor de Smith, otimização convexa, controle robusto, abordagem politópica.

1 Introduction

Many processes in industry (e.g. heating, man-
ufacturing supply chain, some chemical and flow
processes) present dead-times in their dynamics,
which may be caused by the flow of information,
energy or mass, among other reasons. For them,
every action executed in the manipulated variable
of the process will only affect the controlled vari-
able after the process dead-time. Because of this,
analysing and designing controllers for dead-time
systems is more difficult.

For processes with significant dead-time, the
Smith Predictor - presented at the end of the 1950s
in Smith (1957) - is the automatic control strategy
most widely used in practice, specially because of
its simplicity. Being a predictive controller, the
Smith Predictor includes a model of the process
in the structure of the controller, in order to cope
with the dead-time.

Multiple-input multiple-output (MIMO) pro-
cesses with reasonably well decoupled dynam-
ics can be controlled through single-input single-
output (SISO) controllers. When this is not the
case, MIMO controller design should be used. The
controller parameters to tune then become matri-
ces. As the number of process inputs and outputs
increases, it becomes very difficult, if not impos-
sible, to tune the controller manually.

The researches on automatic tuning tech-
niques did start some decades ago, linked to adap-
tive control strategies. Some examples are the
self-tuning techniques for SISO processes with

PID controller parameters obtained as functions
of identified process parameters (Warwick and
Kang (1998), Yamamoto et al. (1999), He and Xu
(2008)).

The advance of computational power allowed
the development of automatic tuning techniques,
with recent algorithms capable of handling hun-
dreds of constraints in the same optimization
problem. SISO PID tuning is obtained via heuris-
tic optimization in Mercorelli (2015), optimized
pole placement in Ciganek et al. (2015), Fuzzy
pole placement in Dey and Ayyagari (2016), ge-
netic algorithms in de Castro et al. (2016) and
Puchta et al. (2016), data-driven design in Tesch
et al. (2016) and Tanaskovic et al. (2015), not to
mention other techniques.

When it comes to MIMO controller tuning,
the number of available techniques reduce drasti-
cally. MIMO PID is obtained via convex optimiza-
tion in Boyd et al. (2016) and extremum seeking
in Oliveira et al. (2014). Finally, a MIMO Smith
Predictor tuning technique via convex optimiza-
tion is presented in Nicoletti and Karimi (2016).

The main idea of this paper is to propose a
practical and easily comprehensible method for
automatic robust tuning of MIMO Smith Predic-
tor controllers, with constraint satisfaction. As it
relies on convex optimization algorithms, which
can solve practical high-dimension problems in
a reliable and efficient way (Hindi (2004)), this
method would be of great interest for application
on processes with high number of inputs and/or
outputs, where controller tuning might be consid-



ered a challenge.
The rest of the paper is organized as follows.

The original MIMO PID tuning method is briefly
described in Section 2. Section 3 describes the
extension of this method to MIMO Smith Predic-
tor controllers, the inclusion of a new constraint
related to disturbance rejection, and the improve-
ment of its robustness via polytopic approach. Fi-
nally, simulation examples are presented in Sec-
tion 4.

2 PID design via convex optimization

In the PID design method proposed by Boyd
et al. (2016), process and controller are connected
within a classical feedback control loop as shown
in Figure 1, where r is the reference input, e is the
tracking error and y is the output.

Figure 1: Classical feedback controller.

P is the process transfer function and the pri-
mary controller C used is a parallel PID given by
Equation 1,

C(s) = KP +
1

s
KI +

s

1 + τs
KD (1)

where KP ,KI ,KD ∈ Rm×p are the proportional,
integral and derivative gain matrices, respectively.

It consists of a simple, automated and prac-
tical tuning method, that relies initially on the
following assumptions:

• The MIMO process P is linear time-invariant
and has m inputs (actuators) and p outputs
(sensors).

• p ≤ m

• Process transfer function P is known.

• Process is stable and strictly proper, that is,
P (s)→ 0 as s→∞.

• The process may include transport delay.

• Inputs and outputs are already scaled1.

• Controller parameter τ > 0 is the derivative
action time constant, which is assumed to be
fixed and accordingly chosen.

1Normalization is not performed in this work, but it can
be done.

According to Boyd et al. (2016), upon fur-
ther development, some assumptions, among oth-
ers, might be relaxed and other objectives reached:

• Other objectives and constraints could be
used (e.g. main optimization objective could
be disturbance rejection, instead of reference
tracking).

• Other closed-loop transfer functions could be
used.

• Other variations of linearly parametrized con-
trollers and PID’s could be used.

• Method could be applied on unstable plants,
as long as the initial controller stabilized and
also satisfied the constraints.

• Process with p > m (more outputs than actu-
ators) could be controlled, nonetheless with-
out perfect static tracking.

• Robustness to plant variations could be
achieved through polytopic approach.

Some of these ideas were explored in this pa-
per, in order to achieve practical and robust tun-
ing of predictive controllers for stable linear pro-
cesses, specially the ones with large dead-times
and higher dimensions (high number of inputs
and/or outputs).

3 Smith Predictor design via convex
optimization

In this section, the method proposed in Boyd
et al. (2016) is extended to a predictive control
strategy. Control architectures based on predic-
tors, as the Smith Predictor, represent generally a
natural choice to processes with significant dead-
time (transport delay). Figure 2 shows the archi-
tecture for MIMO processes with multiple dead-
times (Normey-Rico and Camacho (2007)), used
throughout this paper.

Figure 2: Smith Predictor controller.

The following closed loop transfer functions
are obtained, with Pn(s) representing the model
of the process with multiple dead-times, and Gn

representing the process Pn without dead-time (as
in the full DTC fast model presented in Santos
et al. (2014)):



• From reference input r to tracking error e:
S = (I +GnC)−1

• From reference input r to output y:
T = PnC(I +GnC)−1

• From reference input r to control signal u:
Q = C(I +GnC)−1

• From disturbance d to tracking error e 2:
R = −Pn(I + CGn)−1

Restrictions are imposed to guarantee closed-
loop stability and reduced control effort. The ob-
jective is to attain the best possible low-frequency
sensitivity S, which means ||Pn(0)KI ||−1 will be
minimized. The design problem then becomes:

minimize ||Pn(0)KI ||−1

subject to ||S||∞ ≤ Smax,

||T ||∞ ≤ Tmax,

||Q||∞ ≤ Qmax,

||R||∞ ≤ Rmax,

(2)

Design parameters Smax, Tmax, Qmax and
Rmax must be provided. The variables to be found
are the coefficient matrices KP , KI and KD. This
problem is not convex.

Then, the constraints are expressed as semi-
infinite constraints (e.g. ||S(iω)|| ≤ Smax), con-
sisting of an infinite number of constraints (one
for each ω ≥ 0). They can be handled by choos-
ing a reasonable finite (but large) set of frequen-
cies samples 0 < ω1 < . . . < ωk, and replacing
the semi-infinite constraints with the finite set of
constraints at each of the given frequencies (e.g.
||S(iωk)|| = ||Sk|| ≤ Smax, k = 1, . . . , N). Figure
3 shows an example of closed-loop transfer func-
tion T respecting Tmax over all discrete frequen-
cies.
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Figure 3: Constraint ||T ||∞ ≤ Tmax.

The optimization computational effort then
grows linearly with N , which permits that a large
– but reasonable – value of N be chosen. The

2The transfer function R might include a robustness fil-
ter (Normey-Rico and Camacho (2009)) and allow the con-
trol of unstable processes, which will be subject of future
developments.

frequency sampling must be fine enough to catch
any rapid changes in the closed-loop transfer func-
tion with frequency, and also cover an appropriate
range. The sampled problem, with 4 × N con-
straints, becomes:

minimize ||Pn(0)KI ||−1

subject to ||Sk|| ≤ Smax,

||Tk|| ≤ Tmax,

||Qk|| ≤ Qmax,

||Rk|| ≤ Rmax,

k = 1, . . . , N

(3)

This problem is then converted to quadratic
matrix inequalities (QMI), where new variables
are introduced, the objective function and every
constraint has the form Z∗Z � Y ∗Y , and both Z
and Y are affine functions of the variables:

min||Pn(0)KI ||−1 ⇒Z = Pn(0)KI

Y = tI

||Sk|| ≤ Smax ⇒Z = I +GnkCk

Ys = (1/Smax)I

||Tk|| ≤ Tmax ⇒Z = I +GnkCk

Yt = (1/Tmax)PnkCk

||Qk|| ≤ Qmax ⇒Z = I +GnkCk

Yq = (1/Qmax)Ck

||Rk|| ≤ Rmax ⇒Zr = I + CkGnk

Yr = (1/Rmax)Pnk

(4)

The QMI problem has the form:

maximize t

subject to Z∗kZk � Y ∗k Yk
k = 1, . . . ,M

(5)

with M = 4 × N + 1, and where Z∗ denotes the
Hermitian conjugate transpose of matrix Z.

The QMI is already convex in Y . Introduc-
ing an arbitrary matrix Z̃, the matrix inequality
Z∗Z̃ + Z̃∗Z − Z̃∗Z̃ � Y ∗Y , which is convex in
(Z,Y), represents a convex restriction of the QMI
obtained at the point Z̃.

The problem finally becomes:

maximize t

subject to

[
Z∗k Z̃k + Z̃∗kZk − Z̃∗k Z̃k Y ∗k

Yk I

]
� 0

k = 1, . . . ,M
(6)

This problem has linear objective and LMI
constraints, and so it is a semidefinite program
(SDP). The optimization algorithm is initialized
with values of KP , KI and KD, and at each it-
eration the LMI restrictions are formed using the
current value of Zk as Z∗k . The iterations can stop
when not much progress is being made. Conver-
gence to a local minimum is guaranteed, as the it-
erates are all feasible, there is closed-loop stability



since ||Q||∞ is finite, the objective is nonincreas-
ing and nonnegative.

3.1 Robust design via polytopic approach

Up to this moment, the controller tuning method
has not taken into account process uncertainties
(e.g. variations on transport delay, static gain or
response time). If these variations are consider-
able, the dynamics of the process nominal model
Pn used for the controller tuning becomes much
different than that of the real plant. As a con-
sequence, the response of the real plant in closed
loop may violate the constraints or even become
unstable.

To prevent this, several process models PL

may be provided with the nominal model for the
optimization problem (6). The number of con-
straints increase linearly, as now M = (4 × N ×
L)+1. But if a solution is found, it will be valid for
all processes located within the polytope formed
with PL on its vertices.

To resume, instead of designing the controller
based only on the nominal plant model, the design
will require that the constraints hold also for sev-
eral or many plausible values of the plant transfer
function.

4 Numerical examples

In this section, the developments described in Sec-
tion 3 are applied to classic MIMO processes. The
simulatiosn were performed in Matlab, with the
optimization algorithm using the convex frame-
work CVX and the SDPT3 solver.

4.1 Wood-Berry distillation column

The Wood-Berry binary distillation column, de-
scribed in Wood and Berry (1973), is a two-input
two-output stable process with quite coupled dy-
namics. The process transfer function is

P (s) =

12.8e−1s

16.7s+1
−18.9e−3s

21.0s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.2s+1


It must be mentioned that the same bench-

marking process used in the previous develop-
ments was used, to ease the comparisons.3

The design parameters used were:

Smax = 1.4, Tmax = 1.4, Qmax = 0.738

τ = 0.3, N = 300, ω ∈ [10−3, 103] rad/s

3As this initial development was based on a PID-tuning
method, this process does not present a significant dead-
time, where the Smith Predictor structure would be more
useful. The application on processes with higher dead-
times will be presented later in this paper.

4.1.1 Smith Predictor tuning

The PID tuning found in Boyd et al. (2016) was:

KP =

[
0.1750 −0.0470
−0.0751 −0.0709

]

KI =

[
0.0913 −0.0345
0.0402 −0.0328

]
KD =

[
0.1601 −0.0051
0.0201 −0.1768

]
The algorithm converged in 7 iterations and

took 18 seconds to run in our standard computer
with an Intel Core I7 processor.

The same design parameters were applied to
the Smith Predictor tuning, and the results ob-
tained were:

KP =

[
0.6127 −0.1596
−0.5277 −0.6242

]
KI =

[
0.1243 0.0240
0.0667 −0.0088

]
KD =

[
−0.0118 −0.0352
0.1443 0.0001

]
The algorithm converged in 12 iterations and

took 30 seconds to run.
Figures 4 and 5 compare the responses of the

PID and the Smith Predictor. They do not show
a great difference in the performance because, as
mentioned earlier, the process does not present
a significant dead-time. This example was inten-
tionally chosen, in order to validate the algorithm
after the modifications in the closed loop transfer
functions.

4.1.2 Disturbance rejection

Figures 6 and 7 compare the responses of the
Smith Predictor with different values of the con-
straint Rmax. They show how the response to a
disturbance may vary without modifying signifi-
cantly the reference tracking (as Smax and Tmax

were kept constant).

4.1.3 Robustness to process uncertainties

The robustness to process uncertainties was eval-
uated under the following significant variations:

• +100% on the process dead-times;

• ± 20% on the process static gains;

• ± 70% on the process time constants.

Figure 8 shows the step response, in closed
loop, of the Wood-Berry process under the above
mentioned variations, but controlled by a Smith
Predictor tuned considering only the nominal pro-
cess. It is an example of how constraints - Tmax in
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Figure 4: PID and Smith Predictor output.
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Figure 5: PID and Smith Predictor control signal.

this case - could be violated in some cases. Some
variations could even cause unstable behavior.

The results obtained for a Smith Predictor
tuning via polytopic approach (with Smax = 1.4
and Tmax = 1.4) were:

KP =

[
0.4386 0.0142
−0.5699 −0.6132

]

KI =

[
0.0525 0.0141
0.0288 −0.0017

]

KD =

[
0.0435 −0.1038
0.1661 0.0291

]
The algorithm converged in 13 iterations and

took 170 seconds to run, much longer compared
to previous tunings because the number of con-
straints in the optimization problem is multiplied
by the number of uncertainties (five in this case).

Figure 9 shows the step response, in closed
loop, of the Wood-Berry process under variations
controlled by the polytopic Smith Predictor. It
can be seen that, the controller not only stabilizes
the system, but respects the constraint Tmax (as
long as the other constraints).
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Figure 6: Reference tracking for different Rmax.
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Figure 7: Disturbance rejection for different
Rmax.

4.2 Shell process 2× 3

The industrial Shell problem, described in Rao
and Chidambaram (2006), presents a bigger con-
trol challenge, as it is a highly coupled system with
large dead-times. This heavy oil fractionator is a
process mostly used in the petrochemical indus-
try. The simplified 2 × 3 stable process transfer
function, with augmented dead-times4 and time
scale in minutes, is

P (s) =

4.05e−81s

50s+1
1.77e−84s

60s+1
5.88e−81s

50s+1

5.39e−54s

50s+1
5.72e−42s

60s+1
6.90e−45s

40s+1


The same process was simulated in Nicoletti

and Karimi (2016), using a method similar to the
one presented in this paper. In resume, their
method also designs Smith Predictor controllers
via convex optimization, respecting H∞ robust
performance, but prioritizing controllers that de-
couple the MIMO system.

The simulation considered a possible dead-
time variation of 20%, and the design parameters
used were:

Smax = 1.2, Tmax = 1.2, Qmax = 0.5, Rmax = 5.0

τ = 5.0, N = 200, ω ∈ [10−4, 101] rad/min

4In this case, just a part of the process is simulated,
and the dead-times are augmented to emphasize the effect
of the compensator.



Figure 8: Step response of processes with uncer-
tainties and constraint Tmax.

Figure 9: Step response of robust Smith Predictor.

The Smith Predictor tuning obtained in this paper
was:

KP =

 0.1328 0.0217
−0.3028 0.2757
0.2902 −0.0114


KI =

 0.0016 0.0006
−0.0049 0.0042
0.0037 −0.0005


KD =

 0.7481 1.2513
0.2559 0.5820
−0.0004 0.1903


Figures 10 and 11 compare the responses ob-

tained in this paper and in Nicoletti and Karimi
(2016) (with a PI as primary controller). The re-
sults are very similar, but the way they were ob-
tained differ in some terms. The method proposed
in this paper does not focus on decoupling the sys-
tem, but obtain the same results without specify-
ing desired closed-loop dynamics, with a simple
cost function and defining closed-loop constraints
more straightforwardly.
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Figure 10: Smith Predictor reference tracking.
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Figure 11: Smith Predictor disturbance rejection.

4.3 Shell process 7× 3

A more detailed transfer function of the Shell pro-
cess, with 3 inputs, 7 outputs and smaller dead-
times (Prett and Morari (1987)), is represented
below5.

P (s) =



4.05e−27s

50s+1
1.77e−28s

60s+1
5.88e−27s

50s+1

5.39e−18s

50s+1
5.72e−14s

60s+1
6.90e−15s

40s+1

3.66e−2s

9s+1
1.65e−20s

30s+1
5.53e−2s

40s+1

5.92e−11s

12s+1
2.54e−12s

27s+1
8.10e−2s

20s+1

4.13e−5s

8s+1
2.38e−7s

19s+1
6.23e−2s

10s+1

4.06e−8s

13s+1
4.18e−4s

33s+1
6.53e−1s

9s+1

4.38e−20s

33s+1
4.42e−22s

44s+1
7.20

19s+1


5The measurable disturbances are not considered in this

paper.



The design parameters used were:

Smax = 1.2, Tmax = 1.2, Qmax = 0.5, Rmax = 10.0

τ = 0.5, N = 50, ω ∈ [10−4, 104] rad/min

The Smith Predictor tuning obtained was:

KP =



0.0662 −0.0591 0.0837
0.0184 0.2702 0.0280
0.2216 −0.0867 0.0074
0.2539 −0.1396 0.0807
0.0985 −0.0469 0.1140
−0.0564 0.1363 0.1509
−0.1045 0.1553 0.1632



T

KI = 10−3 ×



−0.1326 −0.0245 0.0788
0.0513 0.0267 −0.0563
0.0533 0.0318 −0.0363
0.0669 −0.0419 0.0202
−0.0660 0.0083 0.0051
−0.0158 0.0227 −0.0270
−0.0371 0.0240 0.0645



T

KD =



−0.0262 0.0308 −0.0312
0.0023 −0.1167 0.0112
−0.0619 0.0472 0.0026
−0.0731 0.0749 −0.0070
−0.0044 0.0310 −0.0030
0.0474 −0.0568 −0.0054
0.0576 −0.0662 −0.0365



T

In this case, as the number of outputs is higher
than the number of actuators (p > m), perfect
static tracking cannot be achieved. The following
reference intervals are provided:

• y1, y2 ∈ [0, 0.5]

• y3, y4, y5, y6 ∈ [−0.5, 0.5]

• y7 ∈ [−0.5, 0]

Figure 12 shows that the Smith Predictor ob-
tained maintains the outputs within the desired
intervals.

5 Conclusions

This paper presented an automated tuning algo-
rithm for controllers based on the Smith Predic-
tor structure. The algorithm relies on a convex
optimization problem to obtain the PID matrices
KP , KI andKD for linear stable MIMO processes,
with or without multiple dead-times, respecting
given constraints.

The algorithm was extended to include con-
straints on the disturbance rejection, and to be
more robust to process uncertainties (by means of
polytopic approach).

The algorithm was applied on two simulated
benchmarking processes: the Wood-Berry distil-
lation column and the Shell fractionator. Com-
pared to a previous method, similar performance
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Figure 12: Smith Predictor reference tracking.

and robustness results were obtained in a more
simple way.

It is important to mention that, once the tun-
ing algorithm is created, it is quite easy to adapt it
to different processes and to some different control
architectures. As an automatic tuning method, it
is also very useful to processes with high dimen-
sions (high number of inputs and/or outputs).

The use of Model Predictive Control (MPC)
on MIMO processes with large dead-times is ex-
pected to present better performance than with
the use of Smith Predictor controllers. Never-
theless, MPC requires considerable computational
effort and its implementation in low-level Pro-
grammable Logic Controllers (PLC) may be chal-
lenging. By working with a Smith Predictor au-
tomatically tuned, the idea is to leave the low-
level automation as simple as possible, and put the
complexity of the tuning procedure - either online
or offline - on higher automation levels, running
at longer cycles.

The extension to unstable processes, and to
processes with variable dead-times, will be studied
in future works.
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Petróleo, Gás Natural e Biocombust́ıveis (ANP),
Financiadora de Estudos e Projetos (FINEP) and
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