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Abstract— Nowadays there are many elderly people who need assistance to walk. For that purpose, an
exoskeleton is a type of wearable mechanism that can help them in both rehabilitation and locomotion tasks. In
its autonomous form, an exoskeleton is required to be both lightweight and sturdy. However, there is a trade-off
between these two characteristics. The mechanical design of its parts usually require simulations and stress tests
to determine the best shapes that reduce weight and obey a safety factor, which are contradictory criteria. This
mechanical design demands highly skilled professionals and is time and cost consuming. In this context, this
work proposes the use of multi-objective optimization algorithm to automate mechanical simulations and assist
mechanical designers. A case study of the modelling of an exoskeleton part is presented. The multi-objective
optimization is performed using finite element analysis by simulating the part under external forces while altering
its dimensional parameters. At each iteration, a cost function evaluates the solutions based on the safety factor
and the mass of the resulting model. Finally, multiple results in the Pareto Front are presented and discussed.

Keywords— exoskeleton, sizing optimization, multi-objective search, finite element analysis, differential evo-
lution.

Resumo— Atualmente existem muitas pessoas idosas que precisam de assistência para se locomover. Neste
contexto, um exoesqueleto é um tipo de mecanismo vest́ıvel que pode ajudá-los tanto nas tarefas de reabilitação
quanto de deslocamento. Em sua forma autônoma, um exoesqueleto deve ser tanto leve quanto forte para suportar
os esforços. No entanto, existe um trade-off entre estas caracteŕısticas. O projeto mecânico de suas peças requer
simulações e testes de esforços para determinar o formato ótimo que seja leve e ao mesmo tempo obedeça a um
fator de segurança, critérios que são contraditórios. O desenvolvimento de um projeto mecânico que satisfaça
os requisitos de projeto, demanda profissionais qualificados e longo tempo de análise, o que incorre em altos
custos. Neste contexto, este trabalho propõe o uso de uma técnica de otimização multi-objetivo bio-inspirada a
fim de automatizar o processo de simulações mecânicas e desta forma assistir o projetista. Um estudo de caso do
modelo de uma peça para um exoesqueleto é apresentado. O algoritmo de otimização multi-objetivo é empregado
juntamente com a técnica de análise de elementos finitos para simular a peça sob esforços externos com várias
configurações de dimensões. A cada iteração do algoritmo, uma função custo é utilizada para avaliar as soluções
baseado no fator de segurança e na massa total da peça. Finalmente, múltiplas soluções são apresentadas em
forma de uma Fronteira de Pareto e os resultados discutidos.

Palavras-chave— exoesqueleto, otimização de dimensionamento, busca multi-objetivo, análise de elementos
finitos, evolução diferencial.

1 Introduction

Wearable robots can be defined as those worn
by human operators addressed to supplement the
function of a limb or to replace it completely. In
this context, wearable robots may operate along-
side human limbs, as in the case of exoskele-
tons, or they may substitute missing limbs, for
instance following an amputation. Exoskeletons
have been defined as a class of robots that extend
the strength of the human limb beyond its natu-
ral ability while maintaining human control of the
robot. A specific and singular aspect of extenders
is that the exoskeleton structure maps on to the

human anatomy (Rocon and Pons, 2012).

A relevant application of exoskeletons is in the
medical rehabilitation area, which develops pro-
cesses by which human functions (be it physical
or cognitive) are restored, at least partially, to
their normal conditions. In this sense, the assis-
tance and recovery of elderly people can be greatly
benefited by the use of exoskeletons (Kong and
Jeon, 2006).

In robotic exoskeletons, the kinematic com-
patibility has paramount importance specially
when working on the principle of internal forces.
The typical misalignment between exoskeleton
and anatomical joints results in uncomfortable in-



teraction forces where both systems are attached
to each other. Given the complex kinematics
of most human anatomical joints, this problem
is hard to avoid. The issue of compliant kine-
matics claims for bioinspired design of wearable
robots and imposes a strong need for control of the
human-robot physical interaction (Panich, 2012).

In the context of mechanical design of ex-
oskeletons (specially for elderly people) the bal-
ance between weight and safety factor is a very
important issue because the elderly can not carry
heavy weight. For many years, design dimension-
ing was closely related to the experience of its de-
signers. A classic example of this is the robustness
of ancient buildings, where high safety factors are
found far beyond today’s standards. This charac-
teristic can be justified by the rudimentariness of
the techniques used to develop these projects, as
well as the severe penalties applied in the occur-
rence of failures, which could be the death penalty
(Pollio, 1914).

Therefore, projects in some mechanical engi-
neering areas are mainly verified through compu-
tational simulations, where critical failure tests
are not even performed either because of the cost
of their execution or the scale of the project.
In this case, the simulation procedures tries to
express the physical behaviour of the mechani-
cal structure through mathematical equation sys-
tems.

In the case of an exoskeleton mechanical
project, for instance, the system that models the
features of a solid design has fifteen equations in
which nine of them are partial differential equa-
tions (Cook et al., 1989). As such, solving this
kind of mathematical system is the bottleneck of
the simulation process, and the exact solution can-
not be found for most geometries.

In this way, the discretization technique called
Finite Element Analysis (FEA) is used to solve
this problem. It consists of sectioning the model
part into a set of pieces, named elements. This
procedure aims to approximate the solution of the
original system of equations by solving a set of
linear equations describing the displacements and
stresses in each of these elements.

The accuracy of this approximation is directly
related to the mesh elements created by the dis-
cretization of the model part. The appropriated
procedure for the creation of the representation
mesh is one of the main subjects of study in the fi-
nite element analysis. However, for the most rudi-
mentary mesh creation techniques, these are de-
scribed by the number of elements used in their
construction as well as the size of these elements.

The mechanical design of an exoskeleton is
complex and full of challenges. The first diffi-
culty is to identify the project’s requirements. The
second is the selection of transmission and drive
components, respectively the pulleys, belts, mo-

tors, gearboxes and transmissions. The latter be-
ing the construction of a frame that is capable of
housing off-the-shelf components and meeting the
requirements of the project.

In this context, off-the-shelf components are
chosen from catalogs, since the manufacturing
of customized items to the requirements of this
project is economically infeasible. Therefore, the
models contained in these catalogs of each com-
ponent are then classified according to criteria
of cost, ergonomics, weight, resistance and even
availability in the market. Based on this process,
the designers perform the selection of the set of
components to be used in the project.

The next step consists of the suitability of the
frame to the shape and fixture characteristics of
the commercial components. Thus, despite the
imposition of different restrictions on the shape
of the frame, this is the only element of the ex-
oskeleton in which designers have the freedom to
show their potential. Therefore, it is of utmost
importance to apply an appropriate methodology
for this purpose.

This work aims to demonstrate a methodol-
ogy to tune the design parameters of one part of
an exoskeleton design by using the Multi-objective
Differential Evolution (MODE) technique in con-
junction with finite element analysis, in order
to evaluate both weigh and safety factor as ob-
jective functions (Robic and Filipc, 2005; Deb
et al., 2001).

2 Model Part Simulation

The model part to be optimized was previously
built in SolidWorks 2017, as shown in Fig. 1. This
is similar in shape to a circular head wrench, disre-
garding the characteristic contact grooves, as well
as the presence of the two fixation points at the
end of its handle.

Figure 1: Shape of the Exoskeleton Frame.

During the simulations, it was considered that
the material used to manufacture the model part
was an aluminum alloy 7075-O (SS), of which
mechanical properties were obtained from Solid-
Works 2017 materials library, as shown in Table
1.



Table 1: Mechanical Properties.
Tensile Yield Strength 94.99E6 N/m2

Young’s Module 7.20E10 N/m2

Poisson’s Ratio 0.33
Density 2810 kg/m3

To evaluate the optimization procedure, a test
scenario was created to simulate the reaction force
caused by the midstance of a person‘s gait (see
Fig. 2). In this stance, the gross weight, includ-
ing the exoskeleton, is supported by a single leg.
Therefore, during in the simulations, the entire
weight is supported by the exoskeleton structure,
due to its user‘s leg deficient.

Figure 2: Gait Midstance (Barton et al., 2017).

In this situation, most of the load is in the
opposite direction to the Z -axis shown in Fig. 1.
The force in the Y -axis direction is caused by a
misalignment in the structure or an incorrect step,
described as the angle Θ. Regarding the X -axis,
there was no reaction force for the simulated sce-
nario. Thus, an angle of five degrees was assumed
in the misalignment of the reaction force the co-
ordinate system of the model part, and the user
and exoskeleton weighted together 100 kg.

The point of application of the resulting forces
were the two attachment points present in the
handle, equally distributed between the contact
surfaces. In addition, the effect of gravity and the
restriction of the displacement of the inner face
of the circular head of the model part were also
considered.

Therefore, the dimensional parameters se-
lected for optimization of the model part were the
model part thickness (T ), the width (W ) of the
handle and the outer diameter (D) of the circular
part, as marked in Fig. 1. Their respective search
spaces are found in Table 2.

Table 2: Search Space.
Parameters Minimum Maximum

Thickness (mm) 5 25
Width (mm) 10 50
Diameter (mm) 55 75

Due to the non-standard geometry of the
model part, techniques of discretization were used

to simulate the stress applied to its structure. Sec-
tion 3 addresses the adoption and implementation
of the Finite Element Analysis technique.

3 Finite Element Analysis

In this work, the problem of structural analy-
sis of the model part is solved by a numerical
method called “Finite Element Analysis” (FEA).
This method seeks to approximate the solution of
a complex problem by integrating a set of discrete
solutions of the evaluated domain. The applica-
tions of this technique are not restricted to solving
structural problems. In fact, it is widely used to
solve boundary value problems for partial differ-
ential equations.

The Matlab R2017b’s Partial Differential
Equation Toolbox was used to perform stress and
displacement analysis on the model part structure.
In this FEA software, the main adjustment pa-
rameter for creating the mesh is the maximum
edge length of the elements Hmax, which directly
influences the size of the mesh. The smaller the
size of the element used, the greater the number
of elements in the resulting mesh.

The Hmax parameter has no physical unit.
However, only positive real numbers can be as-
signed. Internally, the FEA algorithm relates the
overall dimensions of the geometry analysed to
this parameter and define the sizes of the elements
mesh.

One of the main metrics used to evaluate the
complexity of these meshes is its number of de-
grees of freedom (DOF). The DOF is related to
the amount of nodes used in the construction of
the mesh, that is, the vertices of each finite ele-
ment. It can also be used to estimate the compu-
tational cost in solving FEA’s system of equations
and the procedure for creating the mesh itself.

Given the iterative characteristic of the shape
optimization procedure, simulations are per-
formed to evaluate new configurations. In this
way, the adjustment parameter must be chosen so
as to allow the execution of the experiment with
a reasonable accuracy and in a timely manner.

For the definition of the mesh adjustment pa-
rameter, five configurations of the model part were
considered for the external stress scenario, con-
structed from the regular variation of the dimen-
sions described in the search space, as described
in Table 3.

Table 3: Simulations.
Parameters P1 P2 P3 P4 P5

Thickness (mm) 5 10 15 20 25
Width (mm) 10 20 30 40 50
Diameter (mm) 55 60 65 70 75

During this procedure, the values for Hmax

were evaluated in the range 3 − 10, considering
an increment of 1.0 between experiments. This



procedure aims to carry out the weighting between
the accuracy of the results and their respective
processing time.

After its execution, for each of the dimen-
sion configurations, as performed by Liu and Glass
(Liu and Glass, 2013), the results of the experi-
ment with the lowest value for Hmax was used as
the reference value making it possible to evaluate
the error related to the use of a mesh with bigger
elements.

According to the von Mises’s theory, plastic
distortions occur when the density of the distor-
tion energy reaches the critical value of the ma-
terial. That is, when the von Mises equivalent
stress is higher than the material’s yield stress,
the model part can no longer return to its initial
shape without external actuation.

Given that the focus of the study is related
to the safety factor of the resulting model part, a
criterion that describes how much the model part
is stronger than its intended load was used. The
error related to the von Misses stress together with
the time required to execute the simulations was
used to determine the maximum edge size of the
elements.

However, tuning the parameters T , W and
D to optimize the mass and safety factor has con-
flicting objectives. Therefore a multi-objective op-
timization approach had to be applied in order to
solve this problem.

4 Sizing Optimization by Multi-objective
Differential Evolution

Figure 3 depicts the data flow of the overall
method proposed in this work, where different
tools are integrated, such as Multiobjective Opti-
mization based in Differential Evolution (MODE)
algorithm, SolidWorks, and Matlab’s FEA tool-
box. SolidWorks and FEA are used for the pur-
pose of evaluating the cost function (fitness) in
order to guide the optimization process.

Figure 3: Sizing Optimization Process.

In the context of optimization tasks, multi-
objective optimization problem (MOOP) algo-
rithms are used in problems with two or more
conflicting criteria. The sizing optimization (used
in this work) was modeled as a MOOP because

both safety factor and mass are conflicting objec-
tives. In this context, the notion of the domi-
nance concept is important to measure which so-
lutions are better, because both objective func-
tions in MOOP can have equivalent importance
to a decision maker (Coello et al., 2007).

Equation 1 represents the sizing problem
modeled as a MOOP.

Min F(T,W,D) = (FSF , FMASS)
s.t.
T ∈ [5, 25] ,W ∈ [10, 50] , D ∈ [55, 75]

(1)

where F is a vector of objective functions, FSF is
the safety factor, FMASS is the mass of the part
and T , W and D boundaries were defined as ex-
plained in Table 2.

The dominance concept is defined as: A vec-
tor u = (u1, u2, ..., uk) is said to dominate another
vector v = (v1, v2, ..., vk) (denoted by u � v) if
and only if u is partially less than v, i.e. ∀i ∈
{1, ..., k}, ui ≤ vi ∧ ∃i ∈ {1, ..., k} : ui < vi.

The solutions which do not dominate each
other are called non-dominated solutions. The
set of optimal non-dominated solutions is the
Pareto Set (PS) and the image of the PS over the
function space is called the Pareto Front (Coello
et al., 2007).

Achieving the Pareto Set of Multi-objective
problems is usually a complex problem and needs
an exhaustive exploration over the search space.
Therefore, evolutionary algorithms have good per-
formance over MOOP and often produce a non-
dominated set close the Pareto Set. Like other
evolutionary algorithms, Differential Evolution re-
peats mutation, crossover, and selection operators
generation by generation to evolve its solution to-
ward the good solutions (Tvrd́ık, 2009; Storn and
Price, 1997). In this work, the DE was adapted
to solve the sizing problem that was modelled as
a MOOP.

The MODE algorithm (like most metaheuris-
tic search algorithm) consists of an initialization
procedure and an iterative procedure, as described
in the Algorithm 1. During the execution of the
first, the initial values of the individuals are gen-
erated from the boundaries of their search spaces,
and the second consists of the optimization pro-
cedure itself.

The initialization procedure has a determin-
istic and a stochastic component. In that,
NumSearch individuals are generated from the
interspersed sweep of the search space, being the
other individuals generated from a procedure of
randomizing the particle values within their search
space boundaries.

The iterative part of the MODE algorithm
consists of three distinct stages of operation: mu-
tation, crossover and selection as described in Al-
gorithm 1. In this work, new candidate solutions
are generated by mutation and crossover. Follow-



Algorithm 1: MODE

Result: Pareto Front and its Solutions’s
Set

Input : SearchSpace, NumSearch,
NumPop, ScalingFactor,
CrossoverP

Output: PFront, PSet

1 Src = Initialization(SearchSpace,
NumSearch, NumPop)

2 FxSrc = CostFunction(Src, NumPop)
3 for n = 1:IterLimit do
4 Mutant = Mutation(Src,

ScalingFactor)
5 New = Crossover(CrossoverP, Mutant,

Src)
6 JxNew = CostFunction(Src, NumPop)
7 [Pop, FxPop] = Minimization(New,

FxNew, Scr, FxSrc)
8 [Src, FxSrc] = Selection(Pop, FxPop,

NumPop)
9 end

10 [PFront, PSet] = ParetoFront(Src, FxSrc)

ing the selective process is performed on this so-
lutions set. And in the final stage, after the ex-
ecution of IterLimit iterations the Pareto Set is
identified.

During mutation, three pre-existing solutions
are randomly selected to create a solution called
mutant, taking ScallingFactor as a weighting
mechanism. After completing the crossover, the
validity of this solution is verified. That is if the
search space constraints for each particle are re-
spected. If not, it is replaced by the initial value of
the individual. Finally, the individuals of the so-
lution are analysed individually. In order to eval-
uate the substitution of the pre-existing value for
an offspring one, this procedure is handled by the
probability CrossOverP .

The selection operator defines which are the
best individuals. In a MOOP context, both objec-
tive functions have the same weight, so the com-
plete dominance is used to evaluate it. The con-
cept of complete domination defines that one so-
lution is only said better than the other if all the
results of the objective functions are lower than
their counterpart, otherwise, these solutions are
then called non-dominant. If the solution is found
to be complete dominant it is added to the solu-
tion’s database, if not, both of them are included
in the database.

The Truncate function was then used to re-
duce the number of items in the solution database
to NumPop (Zitzler et al., 2001).

In short, the Pareto Set is a set of non-
dominated solutions, being chosen as optimal, if
no objective function can be improved without
sacrificing at least one other (Manne, 2018). In

an optimization context, these objectives repre-
sent the results obtained after the evaluation of
the cost function, quantified by the objective func-
tions.

The objective functions chosen to evaluate the
new configurations of the model part during opti-
mization were Mass and the critical value of the
Safety Factor (SF). However, due to the minimiz-
ing character of the MODE algorithm, the neg-
ative value of the second objective function was
evaluated during the iterative process, since it is
aimed to achieve its maximization.

Algorithm 2 describes the evaluation of the
cost function, which is performed in three stages.
In the first stage, the CAD representations (which
have not yet been previously processed) are gener-
ated in SolidWorks 2017 using the values assigned
to the individuals of the evaluated solutions, and
an integration is carried out by Matlab R2017b’s
CADLab Toolbox. In this same stage, the acqui-
sition of the geometrical characteristics of these
model parts is performed, such as the mass, the
position of the center of mass and the moments of
inertia. In the second stage (as in the first) the fi-
nite element analysis is only performed in unseen
solutions. The final stage consists of processing
the information generated in the previous stages
to assign the objective functions.

Algorithm 2: CostFunction

Result: Objectives functions evaluation
Input : Pop, Database
Output: Objectives

1 Pop(k) = round(Pop(k))
2 Experiment = Load(Database)
3 Open(SolidWorksApp)
4 for k = 1:NumPop do
5 if !exist(Experiment(Pop(k)).Solid)

then
6 Experiment(Pop(k)).Solid =

SolidWorks(Pop(k))
7 end
8 Close(SolidWorksApp)
9 for k = 1:NumPop do

10 if !exist(Experiment(Pop(k)).FEA)
then

11 Experiment(Pop(k)).FEA =
FEA(Pop(k))

12 end
13 Save(Database, Experiment)
14 Objectives(Experiment)

Given the methodology adopted by the search
algorithm, it is expected that the solution found is
not necessarily the optimal solution to the prob-
lem. Thus, the execution of a single experiment is
insufficient to produce satisfactory conclusions for
the study. In order to provide an analysis based
on a normal distribution, 51 independent exper-
iments are performed for each of the simulation
scenarios. The information pertinent to the geom-



etry and analysis of finite elements of the model
parts were stored in a database. Thus, given a
previously held request, only the third stage is ac-
tually performed, in this case accelerating consid-
erably the time required to execute the simula-
tions.

It is worth pointing out that the sharing of re-
sults through the database does not violate the in-
dependence of the experiments since this practice
does not directly influence the internal behaviour
of the multi-objective optimization algorithm.

However, this procedure was only feasible due
to the physical meaning attributed to the individ-
uals. This feature results in restrictions on the
manufacturing process. In this way, the values of
the individuals were rounded, imposing a precision
in the millimetres. This problem then is restricted
to a finite number of solutions, 16 thousand pos-
sible configurations.

Evaluating the results of an optimization
problem is a complex task (Fonseca et al., 2006).
Therefore, in this work, two performance metrics
are used to help identify the best solution set: Hy-
pervolume (HV) and Spacing.

In the Hypervolume metric, the space de-
scribed by the objective functions of the problem
is evaluated, more precisely the relative volume
between the Pareto Front of the solution is de-
termined in relation to a reference point (Auger
et al., 2009; Bradstreet, 2011). Thus, for this
metric, it can be inferred that solution sets with
a higher hypervolume describe better trade-offs
than those with a lower hypervolume.

In turn, the Spacing metric evaluates the dis-
tribution of non-dominated solutions in the ob-
jective space, determined by the relative distance
among such solutions (Manne, 2016). Smaller re-
sults indicate a better delineated Pareto Front.

For the compatibilization of the results of
these metrics, the complement of 1 of the Hyper-
volume metric was adopted during the determina-
tion of the best solution set. These results were
then normalized. So the best set of solutions was
the one that presented the lowest value after the
sum of these two normalized metrics. In this way,
evaluating both aspects related to the diversity
and convergence of the Pareto Front (Riquelme
et al., 2015).

The configuration parameters of the MODE
algorithm previously listed are listed in Table 4.

Table 4: Settings.
ScalingFactor 0.5
CrossOverP 0.2
NumSearch 5

NumPop 30
IterLimit 100

5 Results and Discussion

The use of FEA in iterative procedures demands a
weighting between computational cost and fidelity
of the generated data. Given that decreases in es-
timated error result in an exponential growth in
mesh complexity, directly reflecting in the amount
of memory and time required to process the solu-
tions.

This work takes into account that one of the
criteria adopted to define the adjustment param-
eter for the creation of the mesh in the finite el-
ement analysis has a direct correlation with the
computational power of the machine used. As
a benchmark, the experiments in this work were
performed on a notebook using the Windows 10
operating system, consisting of an i7-6700HQ pro-
cessor and 100 GB of memory, of which 16 GB of
them was physical memory.

From a practical point of view, the use of vir-
tual memory (SWAP) should be avoided if possi-
ble due to a high increase in the processing time
of the simulations, as well as eventual peaks of
instability in the system.

To that end, three design criteria were
adopted to choose the mesh adjustment parame-
ter, respectively related to memory usage, process-
ing time and estimated error. The first restriction
states that throughout the experiment the mem-
ory used should not exceed the amount of physical
memory available. The second, a maximum time
of 60 seconds to perform the finite element anal-
ysis. And the latter, an error less than 15% over
the highest fidelity setting.

It can be seen in Figure 4 that the processing
time has a logarithmic decrement in relation to
the variation of Hmax.

Figure 4: FEA - Processing Time.

In contrast, in Figure 5, an approximately lin-
ear growth is observed in the of the relative error
of the finite element analysis.

Unfortunately, it was not possible to plot the
memory usage during the creation of the mesh
and solution of its system of equations given that
the Partial Differential Equation Toolbox does not
provide this information, making necessary the



Figure 5: FEA - Relative Error.

use of some external tool.
Based on these restrictions (and also the time

constrains), a value equal to 4.0 was adopted for
the parameter Hmax. Therefore, a configura-
tion that provides (for most of the analysed model
parts) a processing time within 20 seconds, with a
relative maximum error of less than 12%, and an
economical use of memory was achieved.

Then the optimization of the model part was
carried out, in which the effective processing time
of these experiments was considerably reduced,
due to the sharing of results through the solution
database.

The performance metrics Spacing and Hyper-
volume were then calculated for each of these in-
dependent experiments. Table 5 lists the mean,
median, minimum, maximum and standard devi-
ation of the results of these metrics.

Table 5: Metrics.
Spacing
Mean Median Min. Max. Std.
0.047 0.047 0.031 0.061 7.18e-03

Hypervolume
Mean Median Min. Max. Std.
0.713 0.716 0.676 0.727 1.14e-02

The results of the Spacing metric show prac-
tically identical mean, median and minimum val-
ues, but they are also small. Which means that
the identified Pareto Frontiers have a good spatial
distribution of its solutions. In turn, in the Hy-
pervolume, the closeness of its mean and median,
as well as a small value in its standard deviation
indicate the convergence capacity of the MODE
algorithm in all realized experiments.

Adopting the procedure previously described,
the best solution group has been identified, as
depicted in Figure 6. Note that in the Pareto
Front (identified by the multi-objective optimiza-
tion procedure) the axis of the Factor of Safety is
negative, due to the minimizing characteristic of
the MODE algorithm. Additionally, the solutions
that resulted in Safety Factor lower than 1 (con-

Figure 6: Pareto Front.

figurations that would break given the conditions
of the simulated scenario) were excluded. This
process of exclusion automatically via the process
of identification of the Pareto Front was accom-
plished through an application of penalty for such
solutions.

The results for the safety factor criterion are
only regarding the behaviour of the structure of
the model part for a given set of mechanical pro-
prieties and to the scenario of external stresses.
The engineer (in charge of the project) must take
into consideration that mechanical proprieties of
the material (of the final product) may differ from
the values used in the simulations; as well as the
influence of the process utilized to manufacture
the model part in these proprieties. In that con-
text, a margin of safety criteria is usually applied
to prevent these problems.

Given the human-related application of an ex-
oskeleton, a safety factor of at least 2 was chosen
as the bare minimum standard. Table 6 lists the
parameters of a model part that results in a safety
factor that respects such restrictions, marked in
Figure 6 as “Case Study”.

Table 6: Case Study.
Thickness 25 mm

Width 12 mm
Diameter 55 mm

Mass 262.76 g
SF 2.06

Figure 7 demonstrates the influence that the
purpose model part has in its design process,
which is evidenced by the distribution of the safety
factor in the body of the model part. That is, due
to the design of the part, external stresses in the
direction of the Y -axis more easily affect the in-
tegrity of the model part.

6 Conclusion

In this work, the multi-objective optimization
technique MODE was applied to automate the siz-
ing procedure of a mechanical design for a given



Figure 7: Optimized Model Part.

set of external stress and material mechanical pro-
prieties. Thus allowing the fulfilment of the re-
quirements for the mechanical structure safety fac-
tor while utilizing a sub-optimum set of dimen-
sional parameters that results in a lighter model
part.

In future works, the use of a better FEA tool
that allows the creation of more effective meshes
as well as the application of more complex mesh-
ing refinement techniques is desired.
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