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Abstract— Mobile robotics is a multidisciplinary field involving both computer science and engineering. In this application the
exact knowledge of the position and speed of a vehicle is a fundamental problem that has been taking the attention of researchers
and engineers. In this paper, we propose a method to identify the model and to estimate the speed of hobby DC motor based on a
state estimator. The proposed method is evaluated with simulations and experimental results. The results show that performance
state estimator is as good as an encoder system.
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Resumo— A robótica móvel é uma ciência multidisciplinar que engloba a ciência da computação e engenharias. Nessas apli-
cações o exato conhecimento de posição e velocidade de um robô é um problema fundamental que vem tomando a atenção de
pesquisadores e engenheiros. Neste trabalho é proposto um método para identicar o modelo e estimar a velocidade de um motor
de corrente contínua baseado em um estimador de estados. O método proposto é avaliado por simulação e em experimento. Os
resultados demonstram que o desempenho do estimador de estados é tão bom quanto um sistema com encoder.

Palavras-chave— Robótica Móvel, Sistemas Mecatrônicos, Estimador de Estados.

1 Introduction

The study of mobile robots involves two disciplinary
fields, computer science and engineering. Address-
ing the design of automated systems, it lies at the in-
tersection of artificial intelligence, computational vi-
sion, and robotics (Dudek and Jenkin, 2010). The abil-
ity of mobile robots to move around autonomously in
their environment determines the best possible appli-
cations of such robots: tasks that involve transporta-
tion, exploration, surveillance, guidance, inspection,
etc. In particular, mobile robots are used for applica-
tions in environments that are inaccessible or hostile
to humans. Examples are underwater robots, plane-
tary rovers, or robots operating in contaminated en-
vironments (Nehmzow, 2003). Therefore, to navi-
gate reliably in indoor environments, a mobile robot
must know where it is (Dellaert et al., 1999). Exact
knowledge of the position and speed of a vehicle is
a fundamental problem in mobile robot applications.
In search for a solution, researchers and engineers
have developed a variety of systems, sensors, and
techniques for mobile robot positioning (Borenstein
et al., 1997).

For instance, in (Liang et al., 2016) it is proposed
a leader-following formation control method for mo-
bile robots with a directed tree topology, without the
direct use of accurate global or relative position mea-
surements. An adaptive observer is developed based

on the feedback information from a perspective cam-
era, the odometry and AHRS sensors. On the other
hand, theoretical and practical results show that the
performance of automatic control systems can often
be improved by using some type of velocity feedback
control techniques. However, it may not always be
possible to measure velocities due to costs and noisy
environment (Su et al., 2016). To solve this problem
in (Okuyama et al., 2015) it is proposed a method
that uses a low cost acquisition setup and uses a fre-
quency domain analysis based on the Bode diagram
technique. To improve the identification accuracy of
a hobby DC motor. A new scheme is proposed to de-
sign an adaptive virtual velocity controller and torque
control law. Meanwhile, a disturbance observer is ap-
plied to estimate the lumped disturbance to achieve
the feedforward compensation in (Huang et al., 2016).
Recently, a new topology with a robust and an efficient
tracking controller based on model reference adaptive
system (MRAS) technique is performed for mobile
robot in order to get the accurate trajectory tracking
performance is shown in (Dumlu and Ayten, 2017).

Motivated by (Okuyama et al., 2015), in this pa-
per we propose a method to identify the model and
to estimate the speed of hobby DC motor based on
state estimator. The state estimator is developed to es-
timate the speed from the dc voltage and current mo-
tor. This solution has shown lower costs than encoder
systems. The simulation and experimental validation



showed that method can be used to estimate the speed
with accuracy of a mobile robot system.

The remainder of this paper is organized as fol-
lows: in the next section (Section 2) we introduce the
DC motor modeling and a review of the methods used
in this paper. Then, in Section 3, we show the DC mo-
tor measurement problem and the solution proposed.
In Section 4, we describe in detail the real DC motor
modeling and show the experimental results illustrat-
ing the performance of the solution proposed. Finally,
Section 5 contains the conclusion to this paper.

2 Preliminaries

2.1 Brushed DC motor Modelling

A DC motor is any of a class of electrical machines
that converts direct current electrical power into me-
chanical power (Rizzoni, 2005). Therefore, all electric
motors are governed by the laws of electromagnetism,
and are subjected to essentially the same constraints
imposed by the materials (copper, iron and insulation)
from which they are made (Hughes and Drury, 2013).
The brushed DC motor can be described to diagram as
shown in the Figure 1 (Ogata, 2010).
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Figure 1: Schematic diagram of the DC motor

Where V is the armature voltage in (V ), i is the ar-
mature current in (A), e is the electromotive force of
the motor, TM is the motor torque, ω(t) is the angular
speed in (rad/s), R armature resistance in (Ω), L is
the armature inductance in (H) and b is the coefficient
of viscous friction.

According to the Kirchhoff’s voltage law, the
electrical equation of the DC motor is described as

V (t) = Ri(t)+ e(t)+L
di(t)

dt
. (1)

The electromotive force of the motor, e, is proportional
to the angular velocity of the rotor in the motor, ex-
pressed as

e(t) = Kbω(t), (2)

where Kb is the electromotive force constant. More-
over, the brushed DC motor generates a torque, T , pro-
portional to the armature current, given as

TM(t) = KT i(t) (3)

where KT is the torque constant. Besides, if the DC
motor is apllied to drive an external torque, TL(t) of

payload then its mechanical behavior can be described
as

JM
dω(t)

dt
(t)+BMω(t) = TM(t)−TL(t) (4)

where JM is the rotor moment of inertia in (kg ·m2) and
BM is the motor viscous frictional coefficient in (N ·

m · s). Accordingly, based on (1) to (4), the dynamic
of the brushed DC motor can be expressed as (Bolton,
2016)

V (t) = Ri(t)+KMω(t)+L
di(t)

dt

TL(t) = KMi(t)− JM
dω(t)

dt
(t)−BMω(t)

(5)

where KM = Kb = KT .

2.2 State Estimator

The State Estimator is a tool responsible for esti-
mating the states of a system when they are not ac-
cessible for direct connection or because sensing de-
vices or transducers are not available or very expen-
sive (Chen, 1999).
Considering a state-space equation:

ẋ(t) =Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(6)

if we have information about the input u(t), the out-
put y(t), and the parameters A, B, C and D, but don’t
have the state x(t), we can duplicate the system into an
open-loop state estimator, creating a estimation ˙̂x(t),
and using it as our state x(t).

˙̂x(t) = Ax̂(t)+Bu(t) (7)

However, there are disadvantages in using this the
open-loop state estimator. To upgrade it, the closed-
loop estimator will compare the output y(t) with it es-
timation (Cx̂(t) +Du(t)), and multiply by a constant
L. Therefore, the state estimator will be represented
by:

˙̂x(t) =Ax̂(t)+Bu(t)

+L(y(t)−Cx̂(t)−Du(t))
(8)

In addition, the Figure 2 (Chen, 1999) shows the
closed-loop state estimator. To design the constant L,
it is necessary to analyze the dynamics of the estima-
tion error, given by (Chen, 1999):

e(t) =x(t)− x̂(t) (9)

ė(t) =(A−LC)e(t) (10)

Thus, L must be chosen so that the eigenvalues of (A−

LC) have a negative real part, causing estimation error
converges to zero.
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Figure 2: Closed-Loop State Estimator

2.3 Step Method Response

Process identification is a key element in process con-
trol and it needs some kinds of tests, such as step,
pulse, pseudo-random binary sequence, sinusoidal or
other deterministic signals (Bi et al., 1999), (Åström
and Hägglund, 1995). The step response based meth-
ods are most commonly used for system identification,
especially in process industries (Ahmed et al., 2007).
Usually, this method is used to describe simplest para-
metric models of process dynamics as given by

G(s) =
K

1+ sτ
e−sL (11)

where K is the static gain, τ is the time constant and
L is the dead time. This parameters can be determined
graphically (Ljung, 1999) as shown in Figure 3. Ac-

Figure 3: System Response

cording to Åström and Hägglund the static gain (K) is
obtained from the final steady-state level of the pro-
cess output. On the other hand, the dead time (L)
is the time between the start step at the intercept of
the tangent to step response that has the largest slope
with the time axes or horizontal axes (see Figure 3).
Lastly, the time constant (τ) have different ways to
be determined. One method determines τ from the
distance AB, where B is the time when the step re-
sponse has reached the value 0.63K. Another proce-
dure determines τ from the distance AC, where C is
the time when the tangent intersects the line s(t) = K.
More details about step method response are available
in (Åström and Hägglund, 1995, p. 11).

Once the model system is describes as (11), we
can rewrite the model on the time domain. To do
so, we applied (11) at the Inverse Laplace Transform
(Ogata, 2010), this results in

ẋ(t) =−
1
τ

x(t)+
K

τ
u(t) (12)

where x(t) is the state of the system and u(t) is the
control signal.

2.4 Least Square Method

Nowadays, the least square method is widely used to
find or estimate the numerical values of the parameters
to fit a function to a set of data and to characterize the
statistical properties of estimates (Miller, 2006). The
least square is a method used to solve overdetermined
linear systems, given by:

y1 = f (x1, θ̂ )

... =
...

yN = f (xN , θ̂ ) (13)

Where x= [x11,x12 . . .x1n], θ̂ ∈R
n is estimated param-

eter and N > n. This amounts to minimizing the ex-
pression:

ξ = ∑
i

[

yi − xT θ̂
]2

(14)

where ξ is the estimated error. Once, N > n the system
(13) can be rewritten as

y = xT θ̂ + ξ . (15)

Where y ∈ R
N , x ∈ R

N×n and ξ ∈ R
N . The solution

of the optimazation problem (14) is given by (Aguirre,
2007):

θ̂ = [xT x]−1xT y (16)

3 Problem

3.1 DC motor Measurement Problem

Generally, mechatronics systems including DC mo-
tors need to monitor motors rotation speed. A simple
solution to this problem is to use a rotatory encoder
attached to the motor axis or attached to the motor
gearbox. The function of the encoder is to translate
the motor rotation speed to a digital signal that can be
easily read (see (Ellin and Dolsak, 2008) for more de-
tails). An encoder is normally composed by two parts,
a mechanical and an electronic one. This last implies
that an encoder can occupy a significant space in the
hardware, have a non negligible weigh, it must be en-
ergized implying a battery power consumption, and it
may even need a regular maintenance.

In order to reduce costs, weigh, power consump-
tion and simplify the robot maintenance described be-
low, we propose to remove the encoder and estimate
the motor rotation speed which is the principal aim of
this work.



3.2 System Used for Implementation

For the purpose mentioned below, we assumed two
conditions: the system (5) can be described as a first
order system, once the electric pole is faster than the
mechanical pole (Okuyama et al., 2015). On the other
hand, we assume that the load torque, TL, is null
(Patané, 2008). Therefore, observing these assump-
tions, we can simplify the system (5) as:

KMi(t) = JM
dω(t)

dt
(t)+BMω(t)

V (t) = Ri(t)+KMω(t). (17)

The system (17) can be described in the state space
form, to do so the electric equation present in (17),
can be rewritten as:

i(t) =
V (t)−KMω(t)

R
, (18)

applying (18) in the mechanical equation present in
(17) and after some straightforward manipulation, we
obtain

ω̇(t) =−
K2

M +BMR

RJM
ω(t)+

KM

RJM
V (t). (19)

Moreover, from (18) and (19) we have:

ẋ(t) =

[

−
K2

M +BMR

RJM

]

x(t)+

[

KM

RJM

]

u(t) (20a)

y(t) =−
KM

R
x(t)+

1
R

u(t) (20b)

where x(t) = ω(t) is the state of the system, u(t) =
V (t) is the control signal and y(t) = i(t) is the output
of the system.

Once, we have knowledge about the input and the
output of the system (20a)-(20b), it is possible to de-
sign a state estimator to the system as design shown in
the Section 2.2. Therefore, the state estimator of the
system (20a)-(20b) can be described as:

˙̂x(t) =
[

−
K2

M +BMR

RJM

]

x̂(t)+

[

KM

RJM

]

u(t)+

L

(

y(t)+
KM

R
x̂(t)−

1
R

u(t)

)

(21)

4 Experimental Results

In this section we propose a synthesis for the state es-
timator developed in Section 2.2. First, we obtain the
numerical values of the model from Eq.(21) using the
tools mentioned in Sections 2.3-2.4. Then, the estima-
tor synthesis and validation are performed for a dif-
ferential mobile robot estimating the angular velocity
from the current and voltage of the DC motor.

4.1 The Hardware

In order to evaluate the state estimator of Eq.(21), we
intend to implement the topology described in Figure

Figure 4: The differential mobile robot.

2 on the differential mobile robot shown in Figure 4.
This robot is propelled by two brushed DC micro-
motors with 298 : 1 gearbox coupled to each back-
ward wheel. There is an omnidirectional wheel at the
front-side to guarantee a third support. Both brushed
DC micro-motors are each equipped with a magnetic
quadrature encoder. This encoder has the character-
istic to offers 3576 counts per revolution (CPR). Be-
sides, the system is also featured with a vision sys-
tem, two current sensors (INA219), an accelerometer,
an ultrasonic sensor and a limit switch. Both engines
and all the instruments are controlled and actuated by
a Raspberry Pi 3 as master controller and an Arduino
Mini as slave controller. To program the master sys-
tem we use Python language and C language to pro-
gram the slave system. The systems communicate
with each other using the I2C protocol and the robot
is powered by a LiPo (Lithium Polymer) battery with
11,1V and 2200mAH.

4.2 Modelling System

The brushed DC micro-motor can be modeled through
the structure described in the Section 2.1. However,
the datasheet supplied by the vendor does not provide
all the parameters needed in Eqs.(20a)-(20b). To solve
this problem, we firstly identify the Eq.(20a) unknown
parameters applying the step response method intro-
duced in Section 2.3 and we obtain the following dy-
namic equation:

ẋ(t) =−2.857x(t)+ 4.8u(t). (22)

The equivalent transfer function of this equation has
a time constant τ = 0.35s and a static gain K = 1.68.
In order to validate the model obtained, we make an
experimental test for angular speed setpoint equal to
15rad/s. Around this setpoint, a sequence of relative
steps [−3,+ 3,0]rad/s with 5s time windows length
each was submitted to both, the model and the robot.
The results of this test are shown in Fig. 5. The black
line illustrates the setpoint reference, the red line il-
lustrates the Eq.(22) response and the blue line illus-
trates the angular speed measured by the angular en-



coder attached to the brushed DC micro-motor of the
differential robot shown in Fig. 4. We can see that
the model satisfactorily reproduces the system behav-
ior with some errors in the static gain.
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Figure 5: Experimental Model Validation

Secondly, to obtain the numerical values of the
static equation EQ.(20b), we need to find KM and R

parameters. However, the datasheet of the DC micro-
motor inform just an approximation of the armature
resistance (R ≈ 15Ω). To obtain a better knowledge
of these parameters we used the least-square method
introduced in the Section 2.4. Applying (16) in (20b)
for x(t)≈ 15±3rad/s, we obtain: KM = 0.31 and R =
15.81Ω. Finally, the complete model of the brushed
DC micro-motor is given by:

ẋ(t) =−2.857x(t)+ 4.8u(t)

y(t) =−0.019x(t)+ 0.063u(t)
(23)

4.3 Syntheses of the State Estimator

The state estimator must be tuned with respect to two
criteria. Firstly, the eigenvalue of (a− lc) must have a
negative real part, so that the estimation error

ė(t) = ẋ(t)− ˙̂x(t) = (a− lc)e(t) (24)

is asymptotically stable and converges to zero. Thus:

a− lc < 0 → l <
c

a
= 143

Secondly, the state estimator must be discretized and
implemented in real time with a sampling time im-
posed by hardware limits. This implies that the time
constant of the estimation error must follow the fol-
lowing inequality: τe > 10Ts. Where Ts is the sample
time, equal to 0.01 seconds and τe = −1/(a− lc) is
the time constant of the state estimator. This leads to
the second constraint for l, l >−357. Concluding, the
constant l must be designed respecting the following
limits: −357 < l < 143.

In this paper, we want the best compromise be-
tween noise filtering and convergence rate, experimen-
tally we achieved the value of l =−50. Therefore, the
state estimator of Eq. (21) can be rewritten as:

˙̂x(t) =−3.86x̂(t)+ 7.95u(t)− 50y(t) (25)

4.4 State Estimator Validation

To verify the performance of the designed state esti-
mator, we performed open-loop tests with the robot.
In these tests, the robot navigates with predetermined
control signals at speeds θ̇ ≈ 15± 3rad/s, and, at the
same time that the state estimator is running, the speed
sensor is monitoring the angular velocity. Thus, it was
possible to compare the real speed of the robot and the
speed estimated by the state estimator. Figure 6 shows
the reference in black, the encoder measurements in
blue, and the speed estimation in red.

5 Conclusion

In this work we proposed a method to identify the
model of a hobby DC motor and a state estimator to
estimate the wheels angular speed for replacing the
encoder attached to the motor. Simulations and exper-
imental tests were performed to evaluate the quality
of the estimation. We can conclude that the perfor-
mance of the state estimator is as good as an encoder
system. This makes a viable solution to the problem
of monitoring the angular speed with the advantages of
reducing space, weigh, energy consumption and main-
tenance. However, this solution shows the same prob-
lems as an encoder regarding wheel skating.

As a future work, the extension of the here pro-
posed state estimator to monitor in real time some
model parameters will be studied in order to augment
the operational range.
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