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Abstract— This paper proposes a construction of the Unscented Kalman FIlter (UKF) in which the system
state propagates on a Lie Group. It is presented a parametrization for 2D-radar targets on Lie group to tackle
the filtering tracking problem. By assuming concentrated Gaussian distributions on Lie groups rather than the
conventional Gaussian distributions in Euclidean space, it is shown that the presented parametrization is a better
approximation to the curved-shape distribution of the position of moving targets with noise in the linear and
angular speeds. The parametrization is applied to the proposed UKF on Lie groups and to an Extended Kalman
Filter (EKF) on Lie groups found in the literature. The conventional UKF and EKF, in Euclidean space, were
also implemented. The considered system dynamics is a constant linear speed and constant turn rate model
adapted to a Lie group structure. The Discrete Lie Group UKF presented the best performance among the
implemented filters.

1 Introduction

The two most basic functions of a radar are detec-
tion and ranging. Over time, the target azimuth
has been included as a basic function, and very
often the Doppler velocity is also included (Frencl
et al., 2017; Nathanson et al., 1999). Additional
functions such as mapping, missile guidance and
tracking are also incorporated to some radar sys-
tems, most on military radars.

In the context of target tracking, there are
many techniques to filter the measurements in
order to determine the target’s trajectory, such
as the Extended Kalman Filter, the Unscented
Kalman Filter, the Particle Filter, the Minimum
Mean Square Error Filter, etc. Many of theses
techniques assume that both the system noise and
the measurement noise are white Gaussian noise
in the Euclidean space. However, previous work
(Long et al., 2013) has shown that the pose of a
moving body might present a curved-shape prob-
ability distribution, so-called banana-distribution,
when subject to white Gaussian noise in transla-
tional and rotational speed. The authors in (Long
et al., 2013) also verified that expressing the sys-
tem in a Lie group structure is a better way to
handle such systems as the noise in the coordi-
nates of the Lie algebra are Gaussian.

Recently, a generalization of the Discrete Ex-
tended Kalman Filter was proposed on Lie groups
(D-LG-EKF) (Bourmaud et al., 2013), which de-
scribes both the system state and measurements

as elements of Lie groups. The filter is devel-
oped directly on Lie groups, so that the noise
is considered Gaussian in the Lie algebra space
and banana-shaped on the Lie group. Also,
adaptations of the Unscented Kalman Filter (D-
LG-UKF) were also proposed to work on Lie
groups (Loianno et al., 2016; Brossard et al., 2017;
Brossard et al., 2018). This work contributes with
a slightly new approach, in which the mean is cal-
culated in a way that the final distribution con-
structively obeys a concentrated Gaussian distri-
bution.

The D-LG-EKF and the proposed D-LG-UKF
are both applied to the tracking of radar targets
in the 2D plane, which will also take advantage of
the Doppler measurements provided by the radar
system. The considered target’s dynamic model is
the constant linear speed and constant turn rate
model in the original coordinate space. The per-
formance of the proposed D-LG-UKF is compared
to the D-LG-EKF and to the conventional D-EKF
and D-UKF, in Euclidean space. It is expected
a performance improvement than the D-LG-EKF
and the D-EKF since the D-LG-UKF can provide
a better approximation of the non-linear system
model; and also a better performance than the
D-UKF, brought by the better parametrization of
the Lie group.

The ensuing sections are organized as follows:
section 2 presents the mathematical background,
in which the Lie Group theory is introduced in



2.1, the conventional Unscented Transform (UT)
and Discrete Unscented Kalman Filter (D-UKF)
are presented in 2.2 and 2.3, respectively, and the
proposed UT on Lie groups (LG-UT) and UKF on
Lie groups (D-LG-UKF) are shown in 2.4 and 2.5,
repectively; section 3 applies the D-LG-UKF to
the constant linear velocity and constant turn rate
model (3.1) and illustrates how the concentrated
Gaussian distribution is a better approximation to
the system state than the Gaussian distribution
in the Euclidean space (3.2); section 4 presents
the simulated results and a comparison with the
D-EKF, D-UKF and D-LG-EKF; and section 5
brings the conclusions.

2 Mathematical Background

2.1 Lie Group Theory

A Lie group is a group whose set G also has a
structure of a smooth manifold, so that the prod-
uct map

p : (g, h) ∈ G×G 7→ p(g, h) = gh ∈ G (1)

is smooth (San Martin, 2016), where ◦ is the group
operation.

This paper is based on a particular type of Lie
group, the real matrix Lie group G ⊂ GL(n,R), in
which each element of the group is a square n×n
invertible matrix with real elements and the group
operation is the matrix multiplication (Chirikjian,
2010). As consequence, the identity element of the
matrix Lie group is the identity matrix Idn×n.

Because of the structure of a smooth mani-
fold, a Lie group locally resembles the Euclidean
space. In particular, the vector space in an open
neighbourhood of the tangent space at the identity
element is called the Lie algebra g. The exponen-
tial map expG : g → G establishes a local dif-
feomorphism between an open neighbourhood of
0n×n in the Lie algebra and an open neighbour-
hood of Idn×n in the Lie group, so that g ∈ G
can be written as g = expG(X) for some X ∈ g
with ||X|| � 1. The Lie algebra can also be seen
as the set af all matrices {X} such that the ex-
ponential map of each X results in an element of
the Lie group (Chirikjian, 2010). In the context
of matrix Lie groups, the exponential map is the
matrix exponential

expG(X) =

∞∑
k=0

Xk

k!
(2)

The inverse of the exponential map is the log-
arithm map logG : G→ g.

As the Lie algebra g is a vector space, it’s
possible to write every element X ∈ g as a linear
combination of an orthonormal basis {Ei}.

X =

p∑
i=1

xiEi (3)

for a p-dimensional Lie algebra (associated to a
p-dimensional Lie group). For matrix Lie algebra,
the elements Ei of the basis are n×n real matrices.

Hence, there is a isomorphism between g and
Rp denoted as [·]∨G : g → Rp and defined as
(Chirikjian, 2010)

[X]
∨
G =

[
p∑
i=1

xiEi

]∨
G

= [x1 x2 · · · xp]T (4)

The isomorphism [·]∧G : Rp → g is the in-
verse map. The economic notations exp∧G (x) =
expG

(
[x]
∧
G

)
and log∨G (g) = [logG (g)]

∨
G are also

used.

2.2 The Unscented Transform

Let x be a random vector of dimension L, mean x̄
and covariance matrix Pxx. Lef f : x 7→ y = f(x)
be a nonlinear function. The Unscented Trans-
form is a method for calculating the statistics of
y based on the know statistics of x. In order
to do this, the following sigma points (and the
corresponding weights) are chosen as (Julier and
Uhlmann, 1997; Julier, 2002; Wan and Van Der
Merwe, 2000):

X (0) = x̄ (5)

X (i) = x̄ +
(√

(L+ λ)Pxx

)
i
, i = 1, . . . , L

X (i+L) = x̄−
(√

(L+ λ)Pxx

)
i
, i = 1, . . . , L

W (0)
m = λ/(L+ λ) (6)

W (0)
c = λ/(L+ λ) + (1− α2 + β)

W (i)
m = W (i)

c = 1/[2(L+ λ)], i = 1, . . . , 2L

where L = q + r, λ = α2(L + κ) − L is a scaling
parameter, α determines the spread of the sigma
points around the mean (0 ≤ α ≤ 1), κ is a sec-
ondary scaling parameter usually set to 0, and β
incorporate prior knowledge about the distribu-
tion of x (for Gaussian distribution, β = 2 is op-
timal). The operator (

√
A)i is the i-th column of

the matrix square root of A.

The sigma points are propagated through f
as Y(i) = f(X (i)). The mean and covariance of y
and cross-covariace of x abd y are approximated
by a weighted sample mean as follows:

ȳ =

2L+1∑
i=0

W (i)
m Y(i) (7)

Pyy =

2L+1∑
i=0

W (i)
c

[
Y(i) − ȳ

] [
Y(i) − ȳ

]T
(8)

Pxy =

2L+1∑
i=0

W (i)
c

[
X (i) − x̄

] [
Y(i) − ȳ

]T
(9)



2.3 Unscented Kalman Filter

The Unscented Kalman Filter performs the state
filtering by appling the Unscented Transform in
the prediction and update steps of the Kalman
Filter.

The state at a timestep t is the p-
dimensional vector xt, and the measurements are
q-dimensional vectors yt. The system and mea-
surement model are as follows:

xt+1 = f(xt,qt) (10)

yt = h(xt, rt) (11)

with qt∼NRp(0, Pqq) and rt∼NRq (0, Prr) white
Gaussian noises.

The filter is initiated with:

x0|0 = E[x0] (12)

P0|0 = E[(x0 − x0|0)(x0 − x0|0)T ] (13)

xa0|0 = [xT0|0 01×p 01×q]
T (14)

P a0|0 =

P0|0
Pqq

Prr

 (15)

At each step, the sigma points X a,(i)
t−1|t−1 =[(

X x,(i)
t−1|t−1

)T (
X q,(i)
t−1|t−1

)T (
X r,(i)
t−1|t−1

)T]T
for

xa and weights are created as in (5) and (6) and
the prediction to the time step t is performed as:

X x,(i)
t|t−1 = f

(
X x,(i)
t−1|t−1,X

q,(i)
t−1|t−1

)
(16)

xt|t−1 =

2L+1∑
i=0

W (i)
m X x,(i)

t|t−1 (17)

Pt|t−1 =

2L+1∑
i=0

W (i)
c

[
X x,(i)
t|t−1 − xt|t−1

]
(18)

·
[
X x,(i)
t|t−1 − xt|t−1

]T
(19)

And the update step at the arrival of the mea-
surement yt:

Y(i)
t|t−1 = h

(
X x,(i)
t|t−1,X

r,(i)
t−1|t−1

)
(20)

ŷt|t−1 =

2L+1∑
i=0

W (i)
m Y(i)

t−1|t (21)

Pyy =

2L+1∑
i=0

W (i)
c

[
Y(i)
t|t−1 − ŷt|t−1

]
(22)

·
[
Y(i)
t|t−1 − ŷt|t−1

]T
(23)

Pxy =

2L+1∑
i=0

W (i)
c

[
X x,(i)
t|t−1 − xt|t−1

]
(24)

·
[
Y(i)
t|t−1 − ŷt|t−1

]T
(25)

xt|t = xt|t−1 + PxyP
−1
yy (yt − ŷt|t−1) (26)

Pt|t = Pt|t−1 − PxyP
−1
yy P

T
xy (27)

2.4 The Unscented Transform on Lie Groups

This section shows how the Unscented Transform
can be generalized to Lie groups.

Let G and H be matrix Lie groups with di-
mensions p and q, repectively, and let

f : H × Rr → G (28)

(h,v) 7→ g = f(h,v)

be a continuous map.
Suppose that v∼NRr (v̄, Pvv) and that h is

a random variable on H with a concentrated
Gaussian distribution, i.e., h∼NH(h̄, Phh) and,
thus, h can be written as h = h̄ exp∧H (δ) with
δ∼NRq (0q×1, Phh). The goal of the proposed Un-
scented Transform is to provide means for esti-
mation of the statistics of the resulting random
variable g = f(h,v) based on the statistics of h
and v.

The distribution of g is also assumed to
be a concentrated Gaussian distribution on G:
g∼NG(ḡ, Pgg); and thus: g = ḡ exp∧G (ε) with
ε∼NRp(0p×1, Pgg), with ḡ and Pgg to be deter-
mined. We also want to determine the cross-
covariances Phg and Pvg.

Note that it is not possible to apply the con-
ventional unscented transform directly on f since
g and h are not in an Euclidean space. However,
based on the assumptions, and from g = f(h,v),
it is possible to write:

ε = log∨G
(
ḡ−1f

(
h̄ exp∧H (δ) ,v

))
= f∗(ξ) (29)

where ξ =
[
δT vT

]T
∈ Rq+r is and augu-

mented random vector with Gaussian distribution
NRq+r (ξ̄, Pξ) and f∗ : Rq+r → Rp is a continuous
map (because it is a composition of continuous
maps) in Euclidean vector spaces. This way, it
is possible to apply the conventional unscented
transform to estimate the desired statistics and
then an Unscented Transform can be constucted
for Lie groups.

The sigma points Ξ(i) =[(
∆(i)

)T (
V(i)

)T]T
for ξ (with the corre-

sponding weights) are created as in (5) and (6)
and propagated through f∗ with (29), so that we

obtain the following sigma points E(i) for ε:

E(i) = log∨G

(
ḡ−1G(i)

)
G(i) = f

(
H(i),V(i)

)
(30)

H(i) = h̄ exp∧H

(
∆(i)

)
The mean of ε is approximated using the

weighted sample mean:

ε̄ =

2L+1∑
i=0

W (i)
m E(i) = 0 (31)



Note that we want ε̄g = 0 for g obeys a con-
centrated Gaussian distribution. Thus we need a
value of ḡ that satisfies (31).

Let the sequence {ḡk}k=0,1,... be defined as:

ḡk+1 = ḡk expG

(
2L+1∑
i=0

α2W (i)
m logG

(
ḡ−1k G

(i)
))

= m (ḡk) (32)

ḡ0 = G(0)

Note that if {ḡk}k=0,1,... converges to a value
ḡ as k →∞ so that ḡ = m (ḡ), the condition (31)
is satisfied. Hence ḡ is determined via a fixed-
point iteration of m (ḡk), i.e., ḡ = m (ḡk) |k→∞.
The factor α2 does not change the mean value
and it was added because the scaled UT scales the
weights by a factor of 1/α2 and this can jeopardize
the condition of working in the region where the
exponential and logarithm maps are bijective.

We stress that this method for estimating ḡ
is different from the method presented in previ-
ous derivations of the Unscented Kalman Filter
on Lie groups, (Brossard et al., 2017; Loianno
et al., 2016), in which the authors approximate
ḡ to G(0), what allows ε̄g 6= 0.

The covariance Pgg and cross-covariances Phg
and Pvg are also approximated using the weighted
sample mean:

Pgg = Pεε =

2L+1∑
i=0

W (i)
c E(i)E(i)T

=

2L+1∑
i=0

W (i)
c log∨G

(
ḡ−1G(i)

)
log∨G

(
ḡ−1G(i)

)T
(33)

[
Phg
Pvg

]
= Pξε =

2L+1∑
i=0

W (i)
c

(
Ξ(i) − ξ̄

)
E(i)T (34)

Evaluating Phg and Pvg:

Phg =

2L+1∑
i=0

W (i)
c log∨H

(
h̄−1H(i)

)
log∨G

(
ḡ−1G(i)

)T
(35)

Pvg =

2L+1∑
i=0

W (i)
c

(
V(i) − v̄

)
log∨G

(
ḡ−1G(i)

)T
(36)

Summarizing, the constructed Unscented
Trasform for Lie groups (LG-UT) can approxi-
mate ḡ, Pgg, Phg and Pvg, given f defined as in
(28), h∼NH(h̄, Phh) and v∼NRr (v̄, Pvv), with the
following steps:

1. Let the augumented vector ξ be distributed
as

ξ∼NRq+r

([
0q×1

v̄

]
,

[
Phh Phv
Pvh Pvv

])
(37)

2. Choose α, κ, and β and calculate λ = α2(L+
κ)− L, with L = q + r;

3. Create the sigma points Ξ(i) =[(
∆(i)

)T (
V(i)

)T]T
and corresponging

weights with (5) and (6);

4. Propagate the sigma points through f as in
(30) and obtain G(i) and H(i);

5. Obtain the approximation of the mean ḡ =
ḡk|k→∞, with ḡk = m (ḡk−1) defined in (32);

6. Approximate the remaining desired quanti-
ties with (33), (35) and (36), obtaining Pgg,
Phg and Pvg.

2.5 Discrete Unscented Kalman Filter on Lie
Groups

In this section, we propose a generalization of the
Unscented Kalman Filter on Lie groups, using the
Unscented Transform constructed in 2.4 and anal-
ogous to the UKF presentend in 2.3.

Let G be a p-dimensional matrix Lie group.
The system dynamics is modeled as

gt+1 = gt exp∧G(Ω(gt) + qt) (38)

where gt ∈ G is the state to be estimated,
qt∼NRp(0, Pqq) is a white Gaussian noise, and
Ω : G→ Rp is a non-linear C2 function describing
the system dynamics.

The measurements are considered to be ele-
ments of a q-dimensional matrix Lie group H:

ht = Φ(gt) exp∧H(rt) (39)

where ht ∈ H is a measurement arriving at the
time step t, Φ : G → H describes the measure-
ment map, and rt∼NRq (0, Prr) is a white Gaus-
sian noise.

2.5.1 Prediction

It is assumed that the posterior state distri-
bution after the arrival of (t − 1)-th measure-
ment is a concentrated Gaussian distribution
on Lie groups, i.e., gt−1∼NG(gt−1|t−1, Pt−1|t−1)
and thus gt−1 = gt−1|t−1 exp∧G (εt−1), where
εt−1∼NRp(0, Pt−1|t−1).

The prediction step is performed as a di-
rect application of the Unscented Transform on
Lie groups. Let the random vector ξt−1 =[
εTt−1 qTt−1, r

T
t−1
]T

be distibuted as:

ξt−1∼NR2p+q

0,

Pt−t|t−1 Pqq

Prr

 (40)

The sigma points Ξ
(i)
t−1|t−1 =[(

E(i)
t−1|t−1

)T (
Q(i)
t−1|t−1

)T (
R(i)
t−1|t−1

)T]T



(and weights) are created as in (5) and (6).
and progapated through (38) as shown in (30),
resulting in the following sigma points:

G(i)t−1|t−1 = gt−1|t−1 exp∧G

(
E(i)
t−1|t−1

)
(41)

G(i)t|t−1 = G(i)t−1|t−1 exp∧G

(
Ω
(
G(i)t−1|t−1

)
+ Q(i)

t−1|t−1

)
(42)

The propagation of this state will result in the
predicted state gt∼NG(gt|t−1, Pt|t−1) with mean
and covariance approximated as:

gt|t−1 = gt|t−1,k
∣∣
k→∞ (43)

Pt|t−1 =

2L+1∑
i=0

W (i)
c log∨G

(
g−1t|t−1G

(i)
t|t−1

)
· log∨G

(
g−1t|t−1G

(i)
t|t−1

)T
(44)

with gt|t−1,k = m(gt|t−1,k−1) and gt|t−1,0 = G(0)t|t−1,

m defined in (32).

This finishes the prediction step.

2.5.2 Update step

In the update step, we apply the Unscented Trans-
form to the measurement model in (39) in order
to approximate the measurement statistics. The
propagation of the sigma points results in:

H(i)
t|t−1 = Φ

(
G(i)t|t−1

)
exp∧H

(
R(i)
t−1|t−1

)
(45)

Note that instead of creating a new set os
sigma points for gt, the propagated sigma points

G(i)t|t−1 are used.

We assume that the measurement
has a concentrated Gaussian distribution
ht∼NH(ht|t−1, Phh) and can be written as
ht = ht|t−1 exp∧H (δt), with δt∼NRq (0, Phh). The
statistics, according to the Unscented Transform
on Lie groups, are approximated as:

ht|t−1 = ht|t−1,k
∣∣
k→∞ (46)

Phh =

2L+1∑
i=0

W (i)
c log∨H

(
h−1t|t−1H

(i)
t|t−1

)
· log∨H

(
h−1t|t−1H

(i)
t|t−1

)T
(47)

Pgh =

2L+1∑
i=0

W (i)
c log∨G

(
g−1t|t−1G

(i)
t|t−1

)
· log∨H

(
h−1t|t−1H

(i)
t|t−1

)T
(48)

with ht|t−1,k = m(ht|t−1,k−1) and ht|t−1,0 =

H(0)
t|t−1, m defined in (32).

We can not apply the filter update directly
on gt based on the measurement ht, instead we

update εt based on δt, which is obtained from the

arrived measurement ht as δt = log∨H

(
h−1t|t−1ht

)
.

ε∗t|t = εt|t−1 + PεδP
−1
δδ

(
δk − δ̄k

)
= PghP

−1
hh log∨H

(
h−1t|t−1ht

)
(49)

Pt|t = Pt|t−1 − PεδP
−1
δδ P

T
εδ

= Pt|t−1 − PghP−1hh P
T
gh (50)

Note that ε∗t∼NRp(ε∗t|t, Pt|t) has non-zero
mean, thus we write it as ε∗t = ε∗t|t + εt,

with εt∼NRp(0, Pt|t). The updated state on Lie
group is a translation of the updated ε∗t to the
predicted state, i.e., gt = gt|t−1 exp∧G (ε∗t ) =

gt|t−1 exp∧G

(
ε∗t|t + εt

)
. We can use the Baker-

Campbell-Hausdorff and approximate gt ≈
gt|t−1 exp∧G

(
ε∗t|t

)
exp∧G (εt), so that it is obtained

that gt∼NG(gt|t, Pt|t) with:

gt|t = gt|t−1 exp∧G

(
ε∗t|t

)
(51)

3 D-LG-UKF for Constant Linear
Velocity and Constant Turn Rate

Model

This section presentes the chosen model for the
targets and for the radar measurements; shows
how both the state of the target and the radar
measurement can be represented on a Lie group
and illustrates the advantage of the Lie group tra-
jectory filtering.

3.1 System and Measurement Model

A target performing a trajectory with constant
speed and constant angular rate in a plane can be
modeled by the following equations (Bar-Shalom
et al., 2001):

xt+1 = q1,t + xt

+ vt

[
cos θt

sin(ωtT )

ωt
− sin θt

1− cos(ωtT )

ωt

]
yt+1 = q2,t + yt

+ vt

[
cos θt

1− cos(ωtT )

ωt
+ sin θt

sin(ωtT )

ωt

]
θt+1 = q3,t + θt + ωtT (52)

vt+1 = q4,t + vt

ωt+1 = q5,t + ωt

where xt, yt, θt, vt and ωt are the state
parameters, corresponding, respectively to the
target x-position, y-position, heading, transla-
tional speed, and angular rate. The vector
qt = [q1,t q2,t q3,t q4,t q5,t]

T∼NR5(0, Pqq) is
white Gaussian noise.

It has been already discussed in (Long et al.,
2013) that the pose of a differential robot presents



a banana-shaped distribution and that the ma-
trix Lie Special Euclidean group SE(2) provides
better means of handling the uncertainties distri-
butions than in Euclidean space. Based on this
and assuming that moving targets with dynamics
modeled as (52) also presents banana-shaped dis-
tribution, it has been chosen the group SE(2) to
represent the pose of the target. This assumption
will be further verified. The translational speed
and angular rate will be expressed in a represen-
tation of the R2 as a matrix Lie group in which
matrix product is also the group operation, as in
SE(2). The resulting group is a 5-dimensional
matrix Lie group obtained by the cartesian prod-
uct of SE(2) and R2, i.e., G = SE(2) × R2. A
group element gt ∈ G, representing the system
state, is written as:

gt =


cos θt − sin θt xt
sin θt cos θt yt

0 0 1
03x3

03x3

1 0 vt
0 1 ωt
0 0 1


(53)

Note that although gt is a 6 × 6 matrix, G
is a 5-dimensional Lie group. This happens be-
cause we employ 3× 3 matrices to represent R2, a
2-dimentional space, on matrix Lie groups. This
choice allows us to replace the sum operation be-
tween two R2 vectors by the group operation, the
matrix product, and keep the sum properties like
commutation as such.

An element Xt ∈ g of the Lie algebra asso-
ciated to the matrix Lie group G is obtained via
the logarithm map, which in the case of matrix
groups is the matrix logarithm:

Xt = logG(gt) =


0 −θt px,t
θt 0 py,t
0 0 0

03x3

03x3

0 0 vt
0 0 ωt
0 0 0


(54)

with[
px,t
py,t

]
=

θt
2(1− cos θt)

[
sin θt 1− cos θt

cos θt − 1 sin θt

] [
xt
yt

]
(55)

The system model on Lie group is given by
Ω(gt) so that the state evolves as in (52) when
applied in (38). The function Ω(gt) captures the
dynamics of the system and it can be obtained by
Ω(gt) = log∨G(g−1t gt+1), with gt and gt−1, related
by (52) and (53), resulting in:

Ω(gt) =


vtT
0
ωtT

0
0

 (56)

The model in (56) is equivalent to the model
in (52) without noise. Although they represent
the same dynamics, the model on Lie group is
much more compact, which shows that the dy-
namic model fits better on the Lie group than
in Euclidean space. The first two components of
Ω(gt) can be seen as the components of the body
frame; the other componentes are, respectively,
the heading, linear speed and angular speed. This
means that the system dynamics on Lie group is
equivalent to a displacement in the x axis of the
body frame, i.e. in the direction of the heading,
and a rotation.

For the measurement model, let us consider
the measurements of a 2D radar for a single target:
azimuth (αt), range (ρt) and radial speed (vρt ):

αt = atan2(yt, xt)

ρt =
√
x2t + y2t (57)

vρt = vt cos(αt − θt)

The radar measurements arrive in polar coor-
dinates and are written in the structure of the Lie
group H: ht = expH

(
[α̃t, ρ̃t, ṽ

ρ
t ]
∧
H

)
. As stated

in (Cesic et al., 2016), their uncertainty also re-
sembles banana-shaped contours rather than the
eliptical ones. Because of that, the chosen Lie
group for the measurements will be constructed
as H = SO(2)×R2. Thus, the measurement map
Φ : G→ H is given as

Φ(gt) =


cosαt − sinαt
sinαt cosαt

02x3

03x2

1 0 ρt
0 1 vρt
0 0 1


(58)

3.2 Stochastic Distribution of System State

When a target moves according to the model in
(52), because of the system noise, the final posi-
tion of the target will not be deterministic. In-
stead, it is modeled as a joint pdf of the state
variables xn = [xn, yn, θn, vn, ωn]T , where n is the
index of the final position.

Let us initialize the system in (52) at x0 =
[0, 0, 0, 200, 0]T , so that the nominal trajectory is a
straight line along the x axis. The Gaussian noise
is added only in the linear and angular speed. The
system is propagated with T = 0.01s over 800
steps, which is equivalent to 8s, an usual value
for the period of radar measurements. The final
state, a R5 vector, is stored. This procedure is
performed a total N = 10000 times, resulting in
N data points.

The mean and covariance matrix, for the Eu-
clidean Gaussian distribution, can be approxi-



mated using the N sample data points obtained.

µ̃ =
1

N

N∑
n=1

xn (59)

Σ̃ =
1

N − 1

N∑
n=1

(xn − µ̃)(xn − µ̃)T (60)

However, this set of data points can also
be approximated to a 5-dimentional concentrated
Gaussian random variable in the Lie Groups G
presented in section 3.1. The mean and covari-
ance for the concentrated Gaussian distribution
(Long et al., 2013) can also be obtained by sam-
ple approximations:

µk+1 = µk expG

(
1

N

N∑
n=1

logG(µ−1k gn)

)
(61)

Σ =
1

N − 1

N∑
n=1

ynyTn (62)

with yn = log∨G(µ−1gn) and the mean µ obtained
recursively µ = µk|k→∞.

The level curves of both distributions
(marginalized to xy-plane) are ploted in Fig. 1
over the sample points. Note that the sample
points present a curved shape, and do not fit very
well to the Gaussian distribution in Euclidean
space. The modelling of the state as a Lie group
element provides a distribution that is a better ap-
proximation of the final state of the system, which
lead us to believe that a filter evolving the sys-
tem state as concentrated Gaussian random vari-
ables in Lie groups will present an improved per-
formance, when compared to filters that assume a
Gaussian distribution in Euclidean space.

Figure 1: Sample data points and level curves for
Gaussian distributions in Euclidean Space and Lie
Group.

This result indicates that the banana-shaped
distribution is more fitted to data than the Gaus-
sian distribution in Euclidean space. Also, the

result motivates the investigation of using the Lie
group theory to filter the trajectory of the targets
and a better performance is expected.

4 Simulation Results

In order to verify the correct operation of the D-
LG-UKF, artificial trajectories are generated, sim-
ulating the typical behavior of a target measured
by radar systems. It is considered a rectilinear
nominal trajectory, passing over the origin, with
constant speed. The filter developed in this pa-
per is compared to the conventional D-EKF and
to the conventional D-UKF, both implemented to
the state space model described in (52) with mea-
surements as vector whose components are given
by (57), and the proposed filter is also to the D-
LG-EKF, which was previously aplied to this sys-
tem model in (Magalhaes et al., 2018).

The goal of the simulation is to compare the
performance of the filters as the variance of the
azimuth’s noise increases. In order to do this,
the standard deviation of the azimuth noise varies
from 0◦ to 10◦. The variances of the measured
range and radial velocity are kept constant. Also,
a system noise is added, with 0.03ms−1 of stan-
dard deviation for the linear speed and 0.2◦ s−1 of
standard deviation for the angular speed. The in-
tegration step is 0.01 s. The radar is simulated to
operate with 7.5 rpm of rotation speed, 5◦ of an-
gular resolution, and 0.1 s between detection at-
tempts. The total duration of the simulation is
800 s. The filters are initialized with the same val-
ues, the same covariance matrix of the measure-
ment noise is used for the four filters. Although
the system noise covariance matrices are not de-
fined the same way for the filters, they are tuned
individually for the best achieved performance, so
that the results are comparable.

The result is seen in Fig. 2 shows how the
root mean square error (RMSE) varies as the stan-
dard deviation of the azimuth measurement noise
increases. For a given step of standard devia-
tion, the RMSE is calculated individually for each
of the 100 trajectories and then it is plotted the
mean RMSE and the confidence interval of 95%.
It is possible to see that the proposed D-LG-UKF
presents the lowest mean for the RMSE among
the four filters. Also, it is opssible to see that it
is the most stable in the sense that it presents the
lowest standard deviation.

5 Conclusion

This paper proposed a construction of the Un-
scented Kalman Filter to work on Lie groups (D-
LG-EKF) and applied it to a system consisting of
a moving target with constant linear speed and
constant angular rate. It was verified that the
presented Lie group representation of the system



Figure 2: Root Mean Square Error for simulated
trajectories varying azimuth standard deviation.

could capture the desired dynamics of the system
with precision and simplicity. Also, it was shown
how a concentrated Gaussian distribution is a bet-
ter approximation of the state of a target moving
with constant linear speed and constant turn rate
model.

The D-LG-UKF proved, via simulation re-
sults, to be effective in the contex of radar sys-
tems, in which the measurements are performed
in polar coordinates and the target pose can be
described in the Special Euclidean Group. The fil-
tering on Lie group presents a better performance
when compared with the D-EKF, D-LG-EKF, and
D-UKF along the entire range of azimuth noise
standard deviation. This result is a consequence
of the better approximation of the statistics that
the Unscented Transform provides and the more
proper representation of the system model on the
presented Lie group.
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