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Escola Politécnica da USP

São Paulo, SP - Brasil

Emails: arthur.castello.oliveira@usp.br, angelico@lac.usp.br

Abstract— In this paper it is studied the effect of using a linearized model based on a rigorous non-linear
mechanical model on the design of a LQR control for a 3-d.o.f. Helicopter. It is presented a simpler model
and one obtained with the Newton-Euler iterative algorithm. Iti s noticeable that the complete model, when
linearized, shows a diferent structure than the simpler one, rather than just different parameters. This difference
implies changes in the behavior of the model and results in better controllers for this system. To validate the
superiority of the complete model it was applied both controllers on the real system and present the results.
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Resumo— Neste trabalho é estudado o efeito de usar um modelo linearizado baseado em um modelo mecânico
não linear rigoroso no design de um controlador LQR para um helicóptero de bancada com três graus de liberdade.
Apresenta-se um modelo mais simples e um obtido com o método iterativo de Newton-Euler. Nota-se que o
modelo completo, quando linearizado, apresenta uma estrutura diferente do mais simples, ao invés de apenas
diferentes parâmetros. Esta diferença implica em mudanças no comportamento do modelo e resulta em melhores
controladores para este sistema. Para validar a superioridade do modelo completo, foram aplicados ambos
controladores na planta real e apresentados os resultados.

Palavras-chave— LQR, Método Iterativo de Newton-Euler, Helicóptero de 3 graus de liberdade.

1 Introduction

The 3-dof helicopter is a plant frequently used in
laboratories around the world and it is very non-
linear and coupled besides being sub-actuated and
unstable. This system presents a control challenge
and the fact that it is available commercially mo-
tivates works with it.

In (Zheng and Zhong, 2011) and (Liu et al.,
2013) the authors use the system to test robust
designs based on LQR. Both solve the problem of
robust attitude control for the 3-d.o.f. helicopter
for the elevation and roll angle, but present no
results for the travel angle.

In (Liu et al., 2014) the authors propose a
hierarchical control of all three helicopter angles.
This method consists in using the controlled pitch
angle as an actuator for the travel angle. The pa-
per uses the same control structure as the previous
ones, but applied also on the travel and obtains
great results for all angles.

In other works such as (Boby et al., 2014)
and (Choudhary, 2014) the authors use LQR-
derived controllers in the same system, but present
only simulation results. In (Pereira and Kienitz,
2014) the author proposes a generalization of the
LQG/LTR controller and obtains great practical
results for all three angles as well.

In most of the works presented the authors
use the Quanser system to test the control algo-
rithms, which already has ready computer-system
communication, a consolidated model and good
sensors for all three angles.

In this work, a 3-d.o.f. system is built and a
mathematical model is developed. The LQR is ap-
plied in two different models: one calculated using
simplified models of each angle and the other one
developed in this work using the Newton-Euler it-
erative method. The control algorithm was em-
bedded in a LPC1768 microcontroller and the sen-
sors were not as good as the ones at the Quanser
system, which resulted in performance limitations.

2 Model and System Overview

This section revises the steps taken on the devel-
opment of both models used on the paper, as well
as studies the hardware limitations, such as en-
coders quantization and IMU noises.

The notations used during the modeling are
presented below:

λ(t) Travel Angle;
ξ(t) Elevation Angle;
p(t) Pitch Angle;
ωf (t) Front motor rotation speed;
ωb(t) Back motor rotation speed;
Ke Force conversion constant;

It is considered that the relation between
angular speed and generated force is perfectly
quadratic in a helice-motor system, i.e.

Ff,b = Ke · ωf,b2

2.1 Simplified Linear Model

As can be seen in Figure 1, if it is assumed that the
Center of Mass (CM) of the link is aligned with



its rotation axis, the pitch joint can be modeled as
an inertial system with a binary as actuator and
an inertia of Jp, as shown in Equation 1.
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Figure 1: Pitch Angle Modeling

Jp · p̈ = Ke · (ω2
f − ω2

b ) · dm (1)

Considering this model, the pitch angle can be
simplified as not being coupled and having quicker
dynamics if compared with the other angles. Lat-
ter in this paper it is shown that the assumption
that the pitch CM is aligned with its rotation
axis is not entirely correct for the system built,
but this equation is the same presented in (Liu
et al., 2013), (Zheng and Zhong, 2011) and (Boby
et al., 2014). Therefore, this simplified model was
considered here.

As for the elevation joint (Figure 2), since the
CM is not aligned with its rotation axis, there is
a constant gravity force that must be compensate
in order for the horizontal to be a stability point.
To deal with this issue, incremental variables were
considered for the elevation angle.
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Figure 2: Elevation Angle Modeling

Jξ · ξ̈ = −(mξ · g · dξ +mp · g · da) · cos(ξ)
+Ke · (ω2

f + ω2
b ) · da · cos(p)

Linearizing for small angles and assuming
ω2
f + ω2

b = Ωm, with Ω̄m and Ω̂m as its fixed and

varying part, respectively. Adjusting Ω̄m to com-
pensate the gravity torque, results in:

Jξ · ξ̈ = −mξ · g · dξ −mp · g · da
+Ke · Ω̄m · da +Ke · Ω̂m · da →
→ Jξ · ξ̈ = Ke · (ω̂2

f + ω̂2
b ) · da (2)

Therefore, the elevation angle also behaves as
an inertial system, considered the fact that it is
necessary to add a constant value to the control
signal. It is worth noting that, despite coupling in
the non-linear simplified equation with the pitch
angle, the final linearized model is uncoupled.

Finally, from Figure 3, it is noticeable that
the travel angle is only actuated if the pitch angle
is not null.
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Figure 3: Travel Angle Modeling

Jλ · λ̈ = Ke · Ωm · da · sin(p)

Again, linearizing for small angles and apply-
ing the first order Taylor series for p0 = 0 and
Ωm0 = Ω̄m, results in:

Jλ · λ̈ = Ke · Ω̄m · da · p

It is worth noticing that the coupling appears
on the linear model of the travel axis and that the
control input have no effect on this state.

Finally, combining the equations in a state
space model, equation 3 is obtained.



A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

0 F̄m·da
Jλ

0 0 0 0



B =



0 0
0 0
0 0

Ke·da
Jξ

Ke·da
Jξ

Ke·dm
Jp

−Ke·dm
Jp

0 0


x =

[
ξ p λ ξ̇ ṗ λ̇

]T

(3)

Which is the exact same model presented by
Quanser on the Maple document about the 3 d.o.f.
helicopter modeling. This model is used in aca-
demic papers, such as (Choudhary, 2014).

2.2 Rigorous Nonlinear Model and Linearization

For modeling all nonlinear effects of this system
, the iterative method of Newton-Euler was used,
as described in (Craig, 2005), with the Denavit-
Hartenberg parameters of Table 1.

Table 1: Parâmetros de D-H
j α a θ d
1 0 0 θ1 0
2 −π2 0 θ2 0
3 −π2 0 θ3 L

All the joints torque are null and the inputs
of the system are the forces and torques applied
on the end of the manipulator — or in this case,
the center of the pitch joint and moving with it —
as can be seen in Figure 4.

Figure 4: System Inputs

The two inputs directly caused by the con-
troller are Fx and Nz. Nx is the drag torque
of the helices and was included in the model for
simulation purposes. It was not considered dur-
ing control design mainly due to the fact that it
is much smaller than the other inputs.

To estimate the mechanicals parameters of the
model — since system identification is very diffi-
cult due to the fact that the system is unstable
in open loop — a CAD model of the system was
built. Other parameters (like motors time and
speed-force constants) were estimated by system
identification.

As mentioned before, from the CAD model
it was observed that the CM of the pitch joint
was slightly dislocated below its rotation axis and
would behave more like a pendulum than an in-
ertial system. Therefore, the displacement of the
pitch CM, although small, was considered on this
model.

The final model obtained is shown in equation
(4).

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0, 0548 0 0 0 0 0
0 −1, 0319 0 0 0 0
0 10, 8405 0 0 0 0



B =


0 0
0 0
0 0

1, 46 · 10−5 1, 46 · 10−5

−1, 4 · 10−3 1, 4 · 10−3

0 0


x =

[
ξ p λ ξ̇ ṗ λ̇

]T

(4)

The B matrix coefficients are very small be-
cause the input variable is rotation speed squared,
so its range is much larger than the states.

2.3 Hardware Implementations and Limitations

The built system has two encoders and an IMU for
angle measurement. The pitch encoder has 0.18
degrees of precision and the travel angle 0.9 de-
grees, but, other than the quantization, they have
no significant noise. Alternatively, the elevation
measurement is made by sensor fusion using the
FreeIMU library. The actuators have a 8bits pre-
cision on its input.

The high quantization on the travel angle and
the noise on the elevation angle imposes a limi-
tation on the system performance and causes an
oscillation not only on the travel angle but on the
elevation angle as well (because of the coupling).

3 Linear Quadratic Regulator

The controller chosen for this paper is the LQR
augmented with integrators as in Figure 5 and de-
scribed in (Fadali and Visioli, 2012). The initial
estimation for the Q and R matrices was done
with the Bryson rule and empirically adjusted.



Figure 5: Augmented System Block Diagram

The final LQR gain matrix for the simplified
and complete model are , respectively, presented
in equations (5) and (6):

KLQRs =



−4.37 · 103 −4.37 · 103

5.48 · 103 −5.48 · 103

3.72 · 105 3.72 · 105

−6.06 · 105 6.06 · 105

−4.29 · 105 4.29 · 105

1.57 · 105 1.57 · 105

−7.08 · 104 7.08 · 104

−1.65 · 105 1.65 · 105



T

(5)

KLQRc =



−4.37 · 103 −4.37 · 103

5.67 · 103 −5.67 · 103

3.75 · 105 3.75 · 105

−5.56 · 105 5.56 · 105

−4.28 · 105 4.28 · 105

1.57 · 105 1.57 · 105

−7.08 · 104 7.08 · 104

−1.65 · 105 1.65 · 105



T

(6)

As both controllers were designed with the
same Q and R matrices, they would try to mini-
mize the same cost function.

As expected, both matrices are very alike and
are more disparate on the travel and roll angles,
and on the travel error integrator.

4 Simulation and Practical Results

To simulate this system, white noise perturbations
were considered in all three angles, the pitch and
travel angle with variance of 10−8 and the eleva-
tion angle of 10−4 due to the significantly higher
noise of the IMU sensor when compared with the
encoders. The encoders’ quantization were also
considered since the travel angle has 0.9 degrees
of quantization and it could affect the system. The
results are presented in figures 6, 7 and 8.

In Figures 6 and 7 it is presented a compar-
ison between the practical and simulation of the
system with the controller designed from the com-
plete linear model.

Figure 6: Simulation with the Complete Model
design

Furthermore, in Figure 8 it is exposed the
practical results of the controller designed with
simplified linear model. Comparing figures 7 and
8 it is possible to notice a significant increase in
oscillation when the simplified model is used.

The practical results for the control design us-



Figure 7: Experiment with the Complete Model
design

Figure 8: Experiment with the Simplified Model
design

ing the full model can be watched on Youtube1.

1https://www.youtube.com/watch?v=IddgHR0qjSQ

5 Conclusions

The complete nonlinear model resulted in a good
simulator with similar responses to the practical
results. Some disparities can be seen and are ex-
pected, since there are numerous effects in a prac-
tical experiment that were not considered on the
simulation — like the effect of the ground over the
actuator or air currents. Even so, the results were
very similar and it is possible to conclude that
the model generated by the Newton-Euler itera-
tive method is good to simulate the real system.

Further on, the good results for the nonlinear
model indicate the possibility to develop a model
based nonlinear control to this system as a future
work. This could be justified by the possibility to
increase the operating range of the system and as
a comparison between linear and nonlinear control
for this system.

The second conclusion is drawn comparing the
results of the complete and simplified design. Al-
beit both resulted in a stable system, the one de-
signed with the simplified model exhibited more
oscillations in both the travel and elevation angle.

The oscillation on the travel angle is expected
because the linear model assumes that the roll an-
gle is an inertial system when it is, in fact, a pen-
dulum. This means that there is an oscillatory
trend on this angle that is neither seen not com-
pensated by the control. Evidently, the bigger the
bias between the rotation axis of the roll angle and
its CM, the bigger these oscillations are. Still, it
is better to include this dynamics on the control
design.

In addition, the increase in the elevation angle
comes directly from the coupling between the roll
and the elevation angles, since the coupling effect
increases with an increase in the oscillations.

"https://www.youtube.com/watch?v=IddgHR0qjSQ"
https://www.youtube.com/watch?v=IddgHR0qjSQ
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