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Resumo— Este artigo revisa de forma comparativa os métodos de filtragem estocástica e zonotópica bem
conhecidos na literatura para estimação de estados de sistemas não lineares incertos. Para isso, uma notação
unificada entre as abordagens é proposta. Enquanto o filtro de Kalman unscented provê de forma sub-ótima
uma estimativa para a média por meio do critério de variância mı́nima e da transformação unscented, o filtro
zonotópico busca garantir que os estados exatos de um dado sistema estejam contidos nos correspondentes
conjuntos estimados. Dois exemplos numéricos ilustram os métodos revisitados.

Palavras-chave— Filtro de Kalman unscented, filtro zonotópico, estimação de estados, sistemas não lineares.

Abstract— This paper presents a comparative review on the well-known stochastic and zonotopic filtering
methods in the literature for state estimation of uncertain nonlinear systems. To achieve that, a unified notation
for both approaches is proposed. While the unscented Kalman filter provides a suboptimal estimate for the
mean based on the minimum-variance criterion and the unscented transformation, the zonotopic filter seeks
to guarantee that the true states of a given system are contained into the corresponding estimated sets. Two
numerical examples illustrate the revisited methods.
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1 Introduction

In 1960, it was introduced a method to esti-
mate states of dynamical systems, the well-known
Kalman filter (KF) (Kalman et al., 1960), which
is optimal for linear systems with Gaussian noise.
The KF presents basically two steps: forecast and
data-assimilation. However, practical systems are
nonlinear. Thereby, many variations of the KF
have been proposed to estimate states of nonlin-
ear systems such as the extended Kalman filter
(EKF) and the unscented Kalman filter (UKF)
(Särkkä, 2013).

The EKF linearizes the nonlinear model of
the system by means of first-order truncated Tay-
lor series, while the UKF is based on the un-
scented transformation (UT). The UT approxi-
mates the mean and covariance of the prior ran-
dom variable (RV) by means of sigma points,
which are deterministically chosen. In general, the
UKF presents better performance than the EKF.
Many variations have been developed based on the
UKF, as the truncated UKF (Garcia-Fernandez
et al., 2012) and the unscented Gaussian sum fil-
ter (Kottakki et al., 2014). Though these methods
improve the state estimates, all nonlinear filters
based on the stochastic approach provide approx-
imate solutions.

The KF treats each state of a given system as
a RV using usual statistical concepts (Kay, 1993).
It is also possible to represent the same uncer-
tain states by intervals, using interval arithmetic
(Moore et al., 2009), or their derivations using
affine arithmetic (Le et al., 2013).

Over the last decades, the set membership

theory has owned relevance in the literature, since
noise terms in a given system can be considered
unknown but bounded (Alamo et al., 2005). Some
usual compact sets are ellipsoids, polytopes, zono-
topes, parallelotopes and boxes (Le et al., 2013).
Therefore, filters that use the set membership ap-
proach treat the states and sources of uncertainty
as compact sets. Some filters related to set mem-
bership for nonlinear cases are found in the lit-
erature. In (Alamo et al., 2005), the zonotopic
filter (ZF) was proposed based on zonotopes and
interval approximations with segment and volume
minimization approaches. In (Alamo et al., 2008),
an algorithm based on zonotopes and parallelo-
topes was proposed with difference of convex (DC)
programming to bound the linearization error. In
(Bo et al., 2013), an ellipsoidal algorithm was pro-
posed based on linearizations and DC program-
ming. Zonotopes are compact and centrally sym-
metric sets. Using Minkowski sum properties and
affine transformations, a reduction in the compu-
tational burden is achieved.

This paper presents a comparison between the
usual stochastic and zonotopic filtering methods
in the literature for nonlinear cases, UKF and
ZF respectively, exploring their advantages. The
mean and the center estimates of the filters are
compared by means of the performance index root-
mean-square error (RMSE), while the correspond-
ing uncertainty is analyzed graphically. More-
over, the performance index mean processing time
of CPU (TCPU) is evaluated for each algorithm.
This is performed through a unified notation for
both approaches. This paper is the nonlinear
follow-up of (de Paula et al., 2018).



2 Background

Preliminary basic definitions and notations are in-
troduced to characterize a Gaussian RV (GRV)
and a zonotopic variable (ZV). Moreover, results
for the nonlinear transformations of these vari-
ables are presented.

2.1 Nonlinear Transformations of Random Vari-
ables

A RV X is described by a probability density func-
tion (PDF) p(x), where x is a realization of X,
such that x ∈ X. The mean x̂ of the RV X is
defined as x̂ = E[X], where E[•] is the expected
value operator. The covariance matrix P xx of a
RV X is defined as

P xx = cov(X) , E
[
(X − x̂)(X − x̂)T

]
.

In the case of a GRV X, its PDF is fully char-
acterized by its mean x̂ and covariance matrix
P xx. Moreover, for brevity, it is represented by
X ∼ N (x̂, P xx).

Let Y = h (X1, X2, d) be a nonlinear trans-
formation of the prior variables X1 and X2, and
d a deterministic vector. Next, the steps of the
UT are presented according to the systematiza-
tion proposed by Menegaz et al. (2015).

Algorithm 2.1 Unscented transformation.
Let the general nonlinear transformation be

y = h(x1, x2, d), (1)

where x1 and x2 are RVs with means x̂1 ∈ Rn

and x̂2 ∈ Rr and covariances P x1x1 ∈ Rn×n and
P x2x2 ∈ Rr×r, and d ∈ Rp a deterministic vector.
1: Procedure

[ŷ, P yy, P x1y] = UT (x̂1, x̂2, P
x1x1 , P x2x2 , d, h) .

2: Given RVs x1 and x2, define the augmented
state vector x̃ ∈ Rñ

x̃ ,

[
x1

x2

]
, (2)

where ñ = n+ r.
3: Based on matrices P x1x1 and P x2x2 , define the
augmented covariance matrix P x̃x̃ ∈ Rñ×ñ

P x̃x̃ ,

[
P x1x1 0n×r
0r×n P x2x2

]
. (3)

4: Compute the sigma points colj (Xsp) ∈ Rñ and
the corresponding weights γj ∈ R, j = 1, ..., 2ñ,

Xsp ,

[
Xsp1

Xsp2

]
= ˆ̃x11×2ñ +

√
ñ
[
{•} −{•}

]
, (4)

γj =
1

2ñ
, (5)

where {•} =
(
P x̃x̃

)1/2
, colj (Xsp) is the j-th col-

umn of the matrix Xsp ∈ Rñ×2ñ, 11×2ñ ∈ R1×2ñ

is the vector of unitary elements, and (•)1/2 is the
matrix square root. Moreover, Xsp1 ∈ Rn×2ñ and
Xsp2 ∈ Rr×2ñ are partitions of the matrix Xsp.
5: Propagate each sigma point colj

(
Xsp1

)
and

colj
(
Xsp2

)
by the transformation (1) generating

colj (Y sp) = h
(
colj

(
Xsp1) , colj

(
Xsp2) , d) , (6)

with j = 1, ..., 2ñ.
6: Finally, according to (6), estimate the mean ŷ
and the covariances P yy and P x1y

ŷ =

2ñ∑
j=1

γjcolj (Y sp) , (7)

P yy =

2ñ∑
j=1

γj [colj (Y sp)− ŷ] [colj (Y sp)− ŷ]T , (8)

P x1y =

2ñ∑
j=1

γj
[
colj

(
Xsp1)− x̂1

]
[colj (Y sp)− ŷ]T .

(9)

2

Fact 2.1 (Julier and Uhlmann, 2004) Let X1 ∼
N (x̂1, P

x1x1) and X2 ∼ N (x̂2, P
x2x2) be GRVs.

Applying the nonlinear transformation Y =
h (X1, X2, d) generates the RV Y whose mean ŷ
and covariance P yy are approximated by

[ŷ, P yy, P x1y] = UT (x̂1, x̂2, P
x1x1 , P x2x2 , d, h) . (10)

2.2 Nonlinear Transformations of Zonotopic
Variables

Set is a grouping of elements with similar charac-
teristics, like ellipsoids, polytopes, intervals and
zonotopes. An interval [x] = [x;x] is the set
{x ∈ R : x ≤ x ≤ x}. The unitary interval is de-
noted as [Φ] = [−1; 1]. A box is a n-dimensional
interval vector defined as

[x] , {x ∈ Rn : xi ≤ xi ≤ xi, i = 1, 2, ..., n} .

The unitary box composed by ng unitary in-
tervals is denoted as [Φ]ng . Given a box [x],

mid([x])i ,
xi + xi

2
is the i-th midpoint and

diam([x])i , xi− xi is the i-th diameter. The ab-
solute value of the interval [x] is given by |[x]| ,
max {|x|, |x|}. The ∞-norm of the matrix [A] ∈
Rn×m is defined as ||[A]||∞ , max

i

∑
j

|[ai,j ]|, for

i = 1, ..., n and j = 1, ...,m.
The four basic interval operations, namely,

sum, subtraction, multiplication and division, are
presented in (Moore et al., 2009). Thereby, it is
possible to present the fundamental theorem of
the interval arithmetic.

Theorem 2.1 Natural interval extension (Alamo
et al., 2005). Let y = h(x) be a general nonlinear
transformation, where h : Rn → Rm is a standard
continuous function. Given an interval [x], the



natural interval extension function 4{h} is ob-
tained substituting x by [x] and all standard oper-
ations by corresponding interval operations, such
that h([x]) ⊆ 4{h}([x]), where h([x]) is the exact
transformation of [x].

Note that, due to Theorem 2.1, the natural in-
terval extension is not unique. If an interval vari-
able appears many times in the same expression, it
may lead to an unnecessary overestimation called
dependency effect. The following example shows a
downside of using interval arithmetic.

Example 2.1 Consider the equivalent standard
functions h1(x, y) = (x − y)2 and h2(x, y) =
x2 − 2xy + y2. Given the intervals [x] = [1; 3]
and [y] = [2; 9], the corresponding images are
4{h1}([x], [y]) = [0; 64] and 4{h2}([x], [y]) =
[−49; 86]. This is known as dependency effect.

2

Another effect which can also generate un-
necessary overestimation is called wrapping effect,
which occurs when extra points are included in a
given set by means of an overestimation (Moore
et al., 2009).

Definition 2.1 Minkowski sum (Alamo et al.,
2005). The Minkowski sum of two sets is defined
by the point-to-point sum

X ⊕ Y , {x+ y : x ∈ X , y ∈ Y} .

The next fact allows to obtain a set less con-
servative than the natural interval extension does.

Fact 2.2 Mean value extension (Alamo et al.,
2005). Let h : Rn → Rm be a standard function,
whose derivatives are continuous in X ⊂ Rn, and
a real vector x̂ ∈ X . Then,

h(X ) ⊆ h(x̂)⊕∇xh(X )(X − x̂), (11)

where ∇xh(X ) is the Jacobian matrix of h(x) re-
lated to x and evaluated in X .

Definition 2.2 Zonotope (Alamo et al., 2005).
Given a vector x̂ ∈ Rn and a matrix Gx ∈ Rn×ng ,
a zonotope X of order ng is defined as

x̂⊕Gx[Φ]ng , {x̂+Gxξ : ξ ∈ [Φ]ng , ||ξ||∞ ≤ 1} ,

where x̂ and Gx are the center and generator ma-
trix of the zonotope X , respectively, and || • ||∞ is
the ∞-norm of a vector.

Thus, a ZV X is a variable whose values sat-
isfy x ∈ X . A width measure of zonotope can be
given by the Frobenius norm, which is based on
the 2-norm of each generator segment, that is, the
column of the generator matrix Gx.

Definition 2.3 Let Gx be the generator matrix
of a zonotope such that Gx =

[
gx1 gx2 . . . gxng

.
]

The Frobenius norm of the generator matrix is de-
fined as

||Gx||F ,

√√√√ ng∑
j=1

∣∣∣∣gx
j

∣∣∣∣2
2
, (12)

where || • ||2 is the 2-norm of a matrix.

Analogously to Theorem 2.1, in the next re-
sult it is possible to compute a zonotope inclu-
sion through the generalization of Kühn’s method
(Kühn, 1998).

Theorem 2.2 Zonotope inclusion (Alamo et al.,
2005). Consider a family of zonotopes represented
by X = x̂⊕ [Gx] [Φ]ng , where x̂ ∈ Rn is the center
and [Gx] ∈ Rn×ng is an interval generator matrix.
A zonotope inclusion �{X} is definided as

�{X} , x̂⊕
[
mid([Gx]) L

] [[Φ]ng

[Φ]n

]
, (13)

where L ∈ Rn×n is a diagonal matrix whose el-

ements are given by li,i =

ng∑
j=1

diam
([
gxi,j
])

2
, i =

1, ..., n.

It is common to reduce the order ng of a zono-
tope X in order ϕ to obtain other one ↓ϕ X , but
with the same center x̂. This new zonotope is
more conservative than the former, but it reduces
the computational burden over operations. Given
a desired order ϕ, the order reduction algorithm
of a zonotope X is presented as follows.

Algorithm 2.2 Zonotope order reduction (Le
et al., 2013).
1: Procedure ↓ϕ Gx = red order(Gx, ϕ).
2: Calculate the 2-norm of each generator gxj =
colj (Gx) ∈ Rn of the matrix Gx and sort them in
descending order:

Gxs =
[
gx

1 ... gx
j ... gx

ng

]
, (14)

where
∣∣∣∣gxj ∣∣∣∣2 ≥ ∣∣∣∣gxj+1

∣∣∣∣
2
.

3: If ng ≤ ϕ, then ↓ϕ Gx = Gxs. Otherwise, given
the sorted matrix Gxs, determine the matrices

Gx
> =

[
gx

1 ... gx
ϕ−n

]
, (15)

which are the first ϕ− n columns of Gxs, and

Gx
< =

[
gx
ϕ−n+1 ... gx

ng

]
, (16)

which are the remaining columns of Gxs.
4: Calculate the matrix

Gb = diag
(
|Gx
<| 1ng<×1

)
, (17)

where |Gx
<| is the absolute value of each element

of the matrix Gx
<, 1ng<×1 is the vector of unitary

elements, and diag(•) is the returned diagonal ma-
trix.
5: Finally, calculate the reduced generator matrix
↓ϕ Gx given by

↓ϕ Gx =
[
Gx
> Gb

]
. (18)
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Fact 2.3 (Alamo et al., 2005) Let X1 = x̂1 ⊕
Gx1 [Φ]n

x1
g ⊂ Rn and X2 = x̂2 ⊕ Gx2 [Φ]n

x2
g ⊂ Rr

be ZVs. Using the mean value extension (11),
the nonlinear transformation Y = h(X1,X2, d) is
overestimated by the zonotope

Y = ŷ ⊕Gy[Φ]n
y
g ⊂ Rm

= mid (h(x̂1,X2, d))⊕
[
U Gi

]
[Φ]n

y
g , (19)

where U is the generator matrix of the set
h(x̂1,X2, d), Gi is the generator matrix of the in-

clusion zonotope �
{

0m×1 ⊕ [M ][Φ]n
x1
g

}
given by

(13), [M ] = 4{∇x1
h(X1,X2, d)}Gx1 is the inter-

val matrix and nyg = nug + n+ nx1
g .

3 Problem Formulation

Consider the discrete-time nonlinear dynamical
system

xk = f (xk−1, wk−1, uk−1) , (20)

yk = h (xk, vk) , (21)

where f : Rn×Rq×Rp → Rn and h : Rn×Rr →
Rm are the process and measurement models, re-
spectively, and xk ∈ Rn is the state vector to
be estimated. The variables wk−1 and vk rep-
resent process and measurement noise terms, re-
spectively. Since k ≥ 1, the measurement vector
yk ∈ Rm and the input vector uk−1 ∈ Rp are as-
sumed to be known. Two different assumptions
can be made on the noise terms.

In the stochastic approach, the noise terms
are white, Gaussian and uncorrelated, with zero
mean and covariance matrices E

[
wkw

T
k

]
= Qk

and E
[
vkv

T
k

]
= Rk. The estimates of the initial

state x̂0 with covariance P xx
0 and the covariance

matrices Qk−1 and Rk are assumed to be known.

In the zonotopic approach, the noise terms
are unknown but bounded by the corresponding
zonotopes wk−1 ∈ Wk−1 and vk ∈ Vk. The ini-
tial states must satisfy the zonotopic set x0 ∈ X0.
The sets Wk−1 = ŵk−1 ⊕ Gw

k−1[Φ]n
w
g , Vk = v̂k ⊕

Gv
k[Φ]n

v
g and X0 = x̂0 ⊕Gx

0[Φ]n
x
g are known.

4 Nonlinear State Estimators

The UKF and the ZF basically use the process
model to obtain the a priori estimates. After, this
information is used with the measurement model
to calculate the transformed estimates, which are
consistent with the measurements. Finally, each
estimate is weighted by an uncertainty reduction
criterion to obtain the a posteriori estimates.

4.1 Unscented Kalman Filter

First, determine the a priori estimates Xk|k−1 ∼
N
(
x̂k|k−1, P

xx
k|k−1

)
by

[
x̂k|k−1,P

xx
k|k−1,P

c
k|k−1

]
=UT(x̂k−1,0q×1,P

xx
k−1,Qk−1,uk−1,f),

(22)

where P c
k|k−1 = cov

(
Xk−1, Xk|k−1

)
.

After, determine the transformed estimates of
mean ŷk|k−1 and covariances P yy

k|k−1 and P xy
k|k−1

by

[
ŷk|k−1,P

yy
k|k−1

,P
xy
k|k−1

]
=UT

(
x̂k|k−1,0r×1,P

xx
k|k−1,Rk,0,h

)
.

(23)

These proceedings compound the forecast step.
The data-assimilation step is the same of the

KF, where the Kalman gain

Kk = P xy
k|k−1

(
P yy
k|k−1

)−1

(24)

is used to calculate the a posteriori estimates
Xk ∼ N (x̂k, P

xx
k )

x̂k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
, (25)

P xx
k = P xx

k|k−1 −KkP
yy
k|k−1K

T
k . (26)

4.2 Zonotopic Filter

This algorithm is presented for the non-
autonomous case (Rego and Raffo, 2016), with
two types of minimization, namely: segment min-
imization, proposed by Alamo et al. (2005), and
volume minimization, proposed by Bravo et al.
(2006). Like the UKF algorithm, the ZF algo-
rithm uses information related to the system (20)-
(21) and the measurements yk to determine the
predicted and consistent state sets. Through an
intersection between these sets subject to any min-
imization criterion, the final zonotope incorpo-
rates information related to both system model
and measurements. Finally, this zonotope is re-
duced based on the order ϕ.

At first, given the process model (20), the

zonotope Xk−1 = x̂k−1⊕Gx
k−1[Φ]n

x
g and the zono-

tope Wk−1 = ŵk−1 ⊕ Gw
k−1[Φ]n

w
g , determine the

zonotope

Z , f (x̂k−1,Wk−1, uk−1) , (27)

the interval matrix

[M ] , 4{∇xf (Xk−1,Wk−1, uk−1)}Gx
k−1, (28)

and, then, the predicted zonotope is given by

Xk|k−1 = Z ⊕ �
{

0n×1 ⊕ [M ][Φ]n
x
g

}
. (29)

Next, given the zonotope Vk = v̂k ⊕ Gv
k[Φ]n

v
g

and the measurement model (21), obtain through



interval arithmetic the vector ci and the scalars
si, ρi ∈ R

ci = mid
(
4
{
∇xhi

(
Xk|k−1,Vk

)T })
, (30)

[Λ] = 4
{
cTi X x

k|k−1 − hi
(
X x
k|k−1,X v

k

)}
, (31)

si = mid([Λ]) ∈ R, (32)

ρi =
1

2
diam([Λ]) ∈ R. (33)

Based on ci, the i-th measurement yi,k
and the scalars si and ρi, a strip Yi,k|k−1 ={
x ∈ Rn :

∣∣cTi x− di∣∣ ≤ ρi} is defined, where di =
yi,k + si.

After, calculate the intersection Xk between
the predicted zonotope Xk|k−1 = x̂k|k−1 ⊕[
gx1 gx2 . . . gxng

]
[Φ]ng and the strip Yk|k−1 ={

x ∈ Rn :
∣∣cTx− d∣∣ ≤ ρ}. In this paper, two cri-

teria are presented to do intersection, namely: vol-
ume minimization and segment minimization.

In the volume minimization, (ng + 1) zono-
topes X̄ (j) = x̄(j) ⊕ Ḡ(j)[Φ]ng are defined, for
j = 0, 1, ..., ng, as the intersection between Xk|k−1
and Yk|k−1, where

x̄(j) =


x̂k|k−1 +

(d−cTx̂k|k−1)
cTgxj

gx
j , if 1 ≤ j ≤ ng

and cTgx
j 6= 0

x̂k|k−1, otherwise,

(34)

ḡji =

 gx
i −

cTgxi
cTgxj

gx
j , if i 6= j

ρ
cTgxj

gx
j , if i = j,

(35)

Ḡ(j) =


[
ḡj1 ḡj2 ... ḡjng

]
, if 1 ≤ j ≤ ng

and cTgx
j 6= 0

Gx, otherwise.

(36)

The chosen zonotope is the one with the
smallest volume based on the zonotope volume
equation

Vol
(
X̄
)

= 2n
N(ng,n)∑
i=1

|det(Ti)| , (37)

where N (ng, n) is the mathematical combination
that returns all possible ways to choose n elements
of a set ng, and Ti ∈ Rn×n denotes all matrices
that can be obtained taking n columns of the ma-
trix Ḡ.

If there are more than one measurement, that
is, m > 1, this zonotope is used to define another
strip and a new intersection is performed with all
of them, until all measurements yi,k, i = 1, ...,m,
are used.

Finally, given the desired order ϕ, use Algo-
rithm 2.2 on the zonotope X̄ to obtain ↓ϕ Gx

k =
red order(Ḡ, ϕ).

Alternatively, another criterion to compute
the intersection Xk is to minimize the Frobenius
norm of its generator matrix, called segment min-
imization. This criterion is used when it is neces-
sary to reduce computational burden. According

to the predicted zonotope Xk|k−1 and the strip
Yk|k−1, compute the vector λ ∈ Rn

λ =
Gx
k|k−1

(
Gx
k|k−1

)T
c

cTGx
k|k−1

(
Gx
k|k−1

)T

c+ ρ2

. (38)

Thus, the intersection Xk is given by

x̂k = x̂k|k−1 + λ
(
d− cTx̂k|k−1

)
, (39)

Gx
k =

[(
In×n − λcT

)
Gx
k|k−1 ρλ

]
. (40)

When the measurement model is nonlinear,
the computed strip has varying width due to the
dependency effect. Therefore, the ZF can diverge.
To circumvent this, the system is linearized as

xk =f(xeq,weq,ueq)+∇xf(xeq,weq,ueq)(xk−1−xeq)

+∇uf(xeq,weq,ueq)(uk−1−ueq)+∇wf(xeq,weq,ueq)w̄k−1,

(41)

yk =h(xeq,veq)+∇xh(xeq,veq)(xk−xeq)+∇vh(xeq,veq)v̄k,

(42)

where the noise terms w̄k−1 and v̄k represent dis-
turbances and errors of linearization at the same
time. This linearization takes into account the
correction of the equilibrium points weq = 0q×1
and veq = 0r×1, being xeq set as the most current
center of the zonotope X . Therefore, note that
(30)-(31) are rewritten as

ci = ∇xhi (xeq, veq)T , (43)

[Λ] = ∇xhi (xeq, veq)xeq − hi (xeq, veq)− Vi,k. (44)

5 Numerical Examples

5.1 Batch Reactor

5.1.1 Process Description

The reversible gas-phase reaction in a batch
reactor is considered (Alamo et al., 2005)

2RA
k1


k2

RB, where k1 = 0.16min−1atm−1 and

k2 = 0.0064min−1. The reactions occur in isother-
mal and constant volume conditions. Defining the
state vector x(t) ∈ R2

+ as the partial pressures of
RA and RB in atm, the system is modeled by[

ẋ1(t)
ẋ2(t)

]
=

[
−2k1x

2
1(t) + 2k2x2(t)

k1x
2
1(t)− k2x2(t)

]
. (45)

It is considered that the output pressure is mea-
sured

yk =
[
1 1

]
xk + vk, (46)

where vk ∈ Vk is the measurement noise.

The system is simulated with x0 =
[
3 1

]T
using the sampling time Ts = 1s, and a fixed
step fourth-order Runge Kutta integration to dis-
cretize the continuous dynamics. No process noise
is added on the states. The noise realizations vk
are such that Vk ∼ N (0, 0.01). To estimate the



states, the UKF and the ZF are used. The pa-

rameters of the UKF are set as x̂0 =
[
2.5 1.5

]T
with covariance P xx

0 = 0.16I2×2, and the covari-
ance matrices Qk−1 = 10−10I2×2 and Rk = 0.01.
Although there is no process noise, the covariance
matrix Qk−1 is added to improve the convergence
of the UKF.
The parameters of the ZF are set as X0 = x̂0 ⊕
1.2I2×2[Φ]2, Wk−1 = 02×1 ⊕ 3 × 10−5I2×2[Φ]2,
Vk = 0⊕ 0.3[Φ] and order reduction ϕ = 14, such
that each interval contains the corresponding un-
certainty with confidence level 99.73%. In this
case, the ZF is used with the volume minimiza-
tion.
The states estimated by each filter are compared
through the root-mean-square error of the j-th
state (RMSEj)

RMSEj =
1

100

100∑
m=1

√√√√ 1

N

N∑
k=1

(xj,k − x̂j,k,m)2, (47)

where j = 1, ..., n, is the j-th element of the state
vector, N is the final time step, and m is the m-th
Monte Carlo realization.
Moreover, the mean processing time of CPU
(TCPU) is used to compare the algorithms. The
used computer configuration is: HD 160Gb, RAM
memory 3.25Gb, Windows 7 Ultimate, Intel core
2 Quad CPU Q6700 2.66GHz and off-board video
card Geforce 9600Gt 512Mb.

5.1.2 State Estimation

The tuning of states and noise terms is in the con-
vergence threshold of the ZF, that is, for larger
values there is some realization where the ZF di-
verges. Figure 1 corresponds to a Monte Carlo
realization of the state estimation for the batch
reactor. Due to the ZF using the worst case of
noise tuning as 3σ of the uncertainties related to
the UKF, its interval is larger than the confidence
level 3σx. However, as the ZF sometimes fails
to include the true state x2 around 1350s, it ev-
idences that some assumption on bounded noise
terms has been violated. Furthermore, the ZF
with the volume minimization is more sensitive
to linearization errors, since the state estimation
x2 presents amplitude fast transitions.

Due to sensitivity to initial conditions, the ZF
can diverge when the Jacobian matrix is subject
to the wrapping effect, while the UKF does not
diverge but retards its convergence. Although the
initial conditions are well tuned, as the segment
minimization does not reduce effectively volume,
the ZF can become sensitive to nonlinear dynam-
ics and diverge.

Based on the index RMSE after 100 Monte
Carlo realizations in Table 1, it is verified that
the estimated means are more accurate than the
estimated centers. It occurs due to the confidence
level being more accurate than the interval. The
index TCPU for UKF and ZF is 1.5µs and 40µs,

respectively. These values are smaller than the
sampling time Ts = 1s, allowing practical applica-
tion of these algorithms.
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Figure 1: State estimation of the batch reactor for
one Monte Carlo realization. The black solid lines
are the true states of the system, the red and blue
solid lines are, respectively, the estimated means
and centers, and the dotted lines are their corre-
sponding uncertainty, the usual confidence level

3σxi,k
, 3

√
P xx
(i,i),k for i = 1, 2 and the interval

4{Xk}.

Table 1: RMSE of estimated means and centers
for the batch reactor after 100 Monte Carlo real-
izations.

UKF ZF

x̂1(10−2atm) 1.11 3.63

x̂2(10−2atm) 1.62 10.3

5.2 Tracking a Ground Vehicle

5.2.1 Process Description

Consider the vehicle tracking problem presented
in (Xu et al., 2017), whose nonlinear process
model is modified to

xk =


x1,k−1 + Tsx3,k−1

x2,k−1 + Tsx4,k−1

x3,k−1s/s
a
k

x4,k−1s/s
a
k

+ wk−1, (48)

where Ts = 0.5s is the sampling time, s =
15m/s is the reference constant speed and sak =√
x23,k−1 + x24,k−1 is the normalization term of the

speed components such that

x2
3,k + x2

4,k = s2. (49)

The process noise term wk−1 ∼ N (04×1, Qk−1)
is white with covariance

Qk−1 =
([

0 0 0.01 0.01
]T)

, (50)

and with standard deviation σw, such that
σw3,4

= 0.1m/s is considered an accurate error
for the speed states.



The position of this vehicle is assumed to be mea-
sured in polar coordinates on the plane R2 and is
given by the measurement model

yk =

√x2
1,k + x2

2,k

atan
(
x2,k
x1,k

) + vk, (51)

where vk ∼ N (02×1, Rk) is the measurement
noise term with standard deviation σv such that
3σv1 = 0.15m and 3σv2 = 2.618× 10−3rad, which
are given by accurate sensors, GPS NovAtel
OEMStar and IMU Xsens MTi-G respectively
(Rego and Raffo, 2016).
This system is simulated with x0 =[
5 5 1 1

]T
. To estimate the states

using UKF, the parameters are set as

x̂0 =
[
3 3 3 3

]T
and covariance matrices

P xx
0 = I4×4, Q̄k−1 = 1.5Qk−1 and R̄k = 1.5Rk,

which represent the effective noise terms, includ-
ing errors of statistical linearization. The terms Q̄
and R̄ are set based on the minimal noise tuning
such that the UKF can include the true states.
To estimate the states using the ZF, all system
is linearized with xeq set as the center of the
most current zonotope X , since the measure-
ment model (51) is nonlinear. The parameters
are set as X0 = x̂0 ⊕ 3I4×4[Φ]4, Wk−1 =

04×1 ⊕ diag
([

0 0 0.3674 0.3674
]T)

[Φ]4 and

Vk = 02×1⊕10−2diag
([

18.37 0.32
]T)

[Φ]2. The

noise tuning for the ZF is set as the minimal
boxes that contain the noise tuning for the
UKF with 3σ. To reduce the uncertainty of the
estimated zonotope, the order reduction ϕ is set
as ϕ = 10, 000, being impracticable to use the
volume minimization. Then, the ZF is used with
the segment minimization, since this approach is
faster.

5.2.2 State Estimation

As all system is nonlinear, linearization errors are
more expressive than those in the prior example.
Then, it is necessary to consider errors larger than
those effectively present in the nonlinear system.
The ZF with volume minimization generates re-
sults more accurate (not shown) than the segment
minimization does, but its index TCPU is larger
than 0.5s, since many candidate zonotopes and
their volume are computed, and the uncertainty
varies fastly the order of magnitude, since the
linearization errors are dynamic and can lead to
zonotopes with much different volumes over time.
Using the nonlinear system to estimate states with
ZF does not guarantee convergence, due to wrap-
ping and dependency effects in the prediction step,
and dependency effect in the measurement step.
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Figure 2: State estimation of the vehicle tracking
system. (a)-(b) present the error results related
to the position and speed states, x1 and x4 re-
spectively, for one Monte Carlo realization. The
red and blue solid lines are the estimated means
and centers, respectively, and the dotted lines are
their uncertainties, confidence level 3σxk

and in-
terval 4{Xk}.

In Figure 2, the state estimation errors for x1
and x4 are presented for one Monte Carlo realiza-
tion. The results related to the remaining states
are omitted, because they are similar to the cor-
responding states. Note that the integrating fea-
ture of the position states is transferred for the
speed states. This is the reason why the error of
each state increases over time. Moreover, the in-
terval generated by the ZF is more conservative
than the usual 3σx of the UKF. This occurs due
to two factors: (i) the design tuning of the ZF
being more conservative, which is an alternative
to lead to guaranteed estimation, and (ii) the seg-
ment minimization, since this approach does not
reduce volume effectively.

Table 2: RMSE of estimated means and centers
for the tracking system after 100 Monte Carlo re-
alizations.

x̂1(m) x̂2(m) x̂3(m/s) x̂4(m/s)

UKF/ZF 0.87 0.87 0.22 0.22

Based on the RMSE of each estimated state
after 100 Monte Carlo realizations in Table 2, it
is verified that the estimated centers are as accu-
rate as the estimated means due to three factors:



(i) the noise terms are accurate, (ii) the segment
minimization reduces 2-norm and (iii) there are no
wrapping and dependency effects. It shows the es-
timated means are not always more accurate than
the estimated centers. The index TCPU for UKF
and ZF is 0.226ms and 27.2ms, respectively, which
are smaller than the sampling time Ts = 0.5s, al-
lowing practical application. In this case, TCPU

for ZF is much larger due to zonotope order in-
creasing over time.

6 Conclusions

This paper compared the estimated mean to the
estimated center and the corresponding uncer-
tainty related to each filter, namely, covariance
and generator matrices. On one hand, the main
advantage of the UKF is the accuracy of the
mean and the uncertainty due to the measurement
sequence and the Kalman gain, that performs
the minimum-variance sub-optimal criterion. On
other hand, the main disadvantage is to generate
approximated estimates, which can fail to include
the true states, since nonlinearity does not pre-
serve the Gaussian feature. In general, the UKF
is sensitive to initial conditions, but it does not
diverge, since the poor tuning retards the conver-
gence. The ZF is an algorithm based on numerical
approximations and it allows estimate guaranteed
state sets when the performed assumptions on ini-
tial states and noise terms are satisfied. This is
the main advantage of the ZF. The accuracy of its
uncertainty depends on the number of generators,
which defines in practice what minimization cri-
terion is applicable, namely, segment or volume.
The first one generates results faster while the
second one generates more accurate results tak-
ing much time. Then, computational burden is
a disadvantage. Specially for nonlinear cases, the
ZF is sensitive to initial conditions and it can di-
verge due to the interval arithmetic being used. In
general, divergence can be observed in ZF when:
(i) process model is nonlinear, due to the wrap-
ping and/or dependency effects, and (ii) measure-
ment model is nonlinear, due to the dependency
effect. Moreover, the segment minimization gives
to the ZF sensitivity to nonlinear systems, but the
volume minimization is not enough to guarantee
neither convergence for any nonlinear system nor
the same accuracy for each state.
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Särkkä, S. (2013). Bayesian filtering and smoothing,
Vol. 3, Cambridge University Press.

Xu, L., Li, X. R., Liang, Y. and Duan, Z. (2017). Con-
strained dynamic systems: Generalized model-
ing and state estimation, IEEE Transactions on
Aerospace and Electronic Systems 53(5): 2594–
2609.


