
Data Analysis and Preprocessing Method of

Medium Voltage Distribution Network Feeders

Bacalhau, J. M. R. ∗ Fardin, Jussara ∗∗

∗ Programa de Pós-Graduação em Engenharia Elétrica, Universidade
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Abstract: The investment in the energy sector aims to ensure a continuous, reliable, and quality
supply of electrical energy imposed by the electricity regulatory agency with maximum economic-
financial balance. This paper discusses the challenges of processing data from medium voltage
distribution feeders to use on the distribution network planning. The analysis of missing data
and outliers is made on the three-phase voltage, current, and power factor of 459 time series of
real feeders. Furthermore, it is proposed a method of preprocessing, and missing data imputation
using the unbalanced characteristic between phases, interpolation, and the normalized scaled
standard weekday curve. The results show that most missing data are three-phase, however, with
a significant amount of single and dual-phase loss that can be filled by the proportion between
phases. Hence, the challenge is to fill multiple weeks of missing three-phase data, and for that,
it is proposed the use of the standard curve for each day of the week. The method proposed is
a promising alternative for data imputation in medium-voltage feeders. The technique is tested
using real feeder data degraded by its missing data probability function, and compared with the
Näıve approach.

Keywords: Network expansion; Distribution system planning; Data imputation; Feeder; Data
analysis; Missing value; Incomplete data; Imputation; Time series data.

1. INTRODUCTION

1.1 Power distribution network planning

Distribution networks are the last mile on the delivery
of energy from the generators to the end-users. Typi-

cally, following a radial construction, different feeders come
out from the substation running across many different
areas. By far, this part of the system has the highest com-
plexity level because of its extension, the number of equip-
ment, variability of load characteristics, and the number
of possible reconfigurations. Since its an essential part of
the process, the amount of investments in the distribution
network is very high, hence, it demands careful planning
(Gonen, 2007; Muñoz-Delgado et al., 2018).

Regarding the utility company, the power distribution
planning is of extreme relevance as it is responsible for
increasing the capability of the system maintaining a
continuous, reliable, and quality supply of electrical en-
ergy (Vargas, 2015). The distribution planning relies on
the quality of the information and availability to make
decisions on the sector. Therefore, the lack of reliable
data directly impacts the strategic objectives of electricity
companies and the efficiency of the investments of medium
and long term.
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1.2 Data analysis and missing data imputation

The analysis of historical information is a powerful tool
to discover trends and patterns in businesses (Han et al.,
2012). The process of acquisition and storage of data from
the electric distribution system has a chain of actors since
the physical measure until the storage in the Distribution
System Operator (DSO). Furthermore, each step of the
process is subject to interference and, consequently, loss
and alteration of the information. The major players
in the process are the failure of equipment that alters
measurements and weather conditions that prevent the
transfer of information. These facts, together with the
stop of equipment for preventive maintenance and load
maneuvers (specifically in the context of system planning),
cause outliers and vacancies to appear on the dataset.

Since inappropriate treatment of missing values may cause
incorrect results in data mining, the problem of missing
value imputation has become a focus in the analysis of
incomplete data in opposition to sample deletion. Several
imputation methods have been proposed, such as Imputa-
tion with constant, Mean Imputation, Hot Deck Imputa-
tion, Auto-Regression Models, Linear interpolation, Ran-
dom Imputation based on statistical distributions, among
others. Furthermore, k nearest neighbor, neural networks,
support vector machines, and auto-encoders are among
some of the new strategies (Peppanen et al., 2016; Jadhav
et al., 2019; Saunders et al., 2006).
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In this work, an imputation method is proposed based on
the correlation of the time series studied and the weekdays.
The method uses the normalized standard day of the week
linearly scaled by the minimum and maximum values of
samples on its time series.

1.3 Dataset

This research utilizes a dataset that consists of nine time
series for each one of the 459 medium voltage (MV )
feeders of a utility company in Brazil. The nine time series
are the three-phase voltage (V ), current (I), and power
factor (pf) collected from January the 1st to December
the 31st of 2019 sampled at the relays on the distribution
substation. Similarly to other utilities, the portfolio of
relays is vast and is composed of different manufactures
and technologies. The main implication for the study is
that some relays will sample at 5 min periods were others
at 1 min. Besides the primary dataset other two secondary
datasets were used as support. The first one has the
topological data such as the feeder commissioning date,
cable gauge at substation output, and the nominal voltage.
The second one has the log of the load transfer between
feeders. The last one has the start and the end timestamps
of the load transfers made on the distribution network and
the feeders that were involved.

In this article, all the discussion is focused on primary
information (V, I, pf), given that theoretical relationships
can calculate secondary information. For instance, the
active/reactive power and the energy can be calculated if,
for every timestamp, the voltage, current, and power factor
information exists. Naturally, this assumption requires
that there is no missing data on the primary measurements
dataset. Thus, the importance of the proposed work.

1.4 Context and contribution

This paper, the challenge of using data from medium
voltage distribution feeders as input for power distribu-
tion planning is discussed. The analysis of missing data
and outliers is made on the three-phase data of voltage,
current, and power factor of 459 time series of real feeders.
Furthermore, it is proposed a method of preprocessing
with outlier removal, and missing data imputation using
the unbalanced characteristic between phases, interpola-
tion, and the scaled normalized standard curve for each
day of the week.

The method proposed is tested using real data degraded
by its missing data probability function. The preprocessing
and imputation method proposed is discussed and the last
compared with the Naive approach. It is important to
cite that all the work that is presented was implemented
using python 3.7 and libraries such as, but not limited to,
pandas, NumPy, and matplotlib.

2. METHODS

2.1 Time series synchronization

The time series synchronization is the first step in pro-
cessing the dataset. The synchronization is vital since

Sample Timestamp ϕ𝑎 ϕ𝑏 ϕ𝑣

1 01/01/19 00:00:01 14,29 14,29

2 01/01/19 00:01:49 14,10

3 01/01/19 00:02:01 14,29

4 01/01/19 00:08:01 14,32 14,13 14,34

5 01/01/19 00:09:48 14,32 14,12 14,32

6 01/01/19 00:10:01 14,31
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Sample Timestamp ϕ𝑎 ϕ𝑏 ϕ𝑣

1 01/01/19 00:00:00 14,29 14,10 14,29

- 01/01/19 00:05:00

6 01/01/19 00:10:00 14,32 14,31 14,32

Figure 1. Raw data synchronization and downsampling for
three-phase voltage.

the alignment between phases of the same quantity, be-
tween quantities of the same feeder and between feed-
ers, provides many advantages as described. The first
one being the ability to combine all nine time series of
each feeder and calculate the secondary quantities time
series (Pactive/reactive, Eactive/reactive). Furthermore, the
synchronization between feeders provides the capability
to analyze the iteration between them, for instance, in
load transfers for scheduled maintenance and to estimate
quantities of the substation transformers by the sum of
all feeders related. Finally, in the dataset, there are two
different time sampling periods, being the most prolonged
and predominant 5 min, all the feeders that are sampled
at 1 min period were downsampled to 5 min. Thus, the
process also reduces the size of the dataset.

Figure 1 shows a three-phase time series slice of the
voltage from a feeder and the process of synchronizing
and downsampling. To synchronize the samples of different
feeders all the time series are shifted to start at 01/01/2019
00:00. In the example, all of the three phases were shifted
by one second, and samples three and four were discarded.
Furthermore, phases A and V from sample 5 were used
to fill the missing data from sample 6, and phase B from
sample 2 was used to fill sample one. It is assumed that for
an interval of up to 5 min, the variance would be negligible,
and the use of timestamps i + 1 and i − 1 to fill gaps
in timestamp i would not compromise the analysis. On
the bottom of Fig. 1, the result of the process is shown.
Although there were six samples in the raw data, the
result has only two complete three-phase samples, and
the timestamp of 01/01/19 00:05:00 is missing. In further
steps, the algorithm proposed will insert the resultant
missing samples. Nevertheless, the three main steps in this
part of the process are: synchronizing the start of the time
series, utilize samples i+ 1 and i− 1 to fill missing data in
sample i, as long as they are less than half of the period
distant, and downsampling. In this part of the process, the
start and the end of the period of study are defined. This
outline is essential as each time series is synchronized with
the starting point, and all samples collected after the end
are discarded.
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Figure 2. Example of outlier removal for current.

Another relevant aspect is to determine the beginning of
the operation of each medium voltage feeder through the
topological dataset. The start is important as the distri-
bution network changes with time, and new substations
and or feeders can be commissioned in the middle of the
period of study. Therefore, since the start of the period
of study until the commissioning of the feeder, all time
series samples should be set to zero. The information about
the beginning of the operation ensures that an imputation
algorithm would not input data in a period where the
feeder did not exist. For instance, the feeder shown in Fig.
2, commissioned in sample 1250, had all the samples before
that timestamp set to zero.

2.2 Outlier removal

The outlier removal, in the context of this work, can be
split into three parts, as shown in Fig. 2. The first one is to
remove data that was sampled during the load transfer be-
tween medium voltage feeders on the distribution network.
These situations are considered anomalies as they do not
represent the system’s regular operation. The information
from the dataset of load transfers is used and, for each pe-
riod where a feeder received or gave way load, the samples
of current and power factor are discarded. In Fig. 2 around
sample 1500, the feeder receives load, and therefore this
period is marked as not valid and removed. It is essential
to mention that the samples from the voltage time series
were not discarded. Statistically, the load transfer does not
change the characteristics of the substation voltage bar, as
shown in section 3.1. The second part refers to the physical
and theoretical constraints of the system. For example,
power factor samples that are not between zero and one
or current sampled by the relay that is greater than the
capacity of the cables at the substations output. As stated
previously, the physical information of the feeders was
obtained on the utility company’s topological database.

Furthermore, voltage samples that are greater than 1.1 pu
or lower than 0.9 pu are unrealistic in the regular operation
of the system should be removed as outliers. For the case
shown in Fig. 2, the physical capacity of the cable is 220A,
therefore, two samples marked were removed as outliers.

By last, a statistical method was used for removing the
remaining outliers. In LEYS et al. (2019), the authors state
that it is common practice the use of plus and minus the

standard deviation ( ± σ) around the mean (µ), however,
this measurement is particularly sensitive to outliers. In
this work, a variant of the method proposed by LEYS et al.
(2019) was implemented. The limit was set by the median
absolute deviation (±MADi) around the moving median
(Mi) where i denotes the number of samples of the moving
window. Typically, an MV feeder has a seasonality where
in the summer load is higher than in the winter or vice-
versa. Hence, it is vital to use the moving median instead
of the median of all the time series. The top left corner
of Fig. 2 shows the superior (Maxthreshold) and inferior
(Minthreshold) limits defined by (1).

Maxthreshold = Mi +N ∗MADi

Minthreshold = Mi −N ∗MADi
(1)

The length i of the window and the number of median
absolute deviations denoted N were defined empirically,
for each one of quantities analyzed (V, I, pf). In the
example, two samples were marked as outliers as they were
not in between acceptance limits.

2.3 Load transfer and bus voltage

The load transfer between medium voltage feeders, as
stated by Wen-Chih Yang (2011), is an essential part of
ensuring the reliability of the power distribution network.
However, for planning the expansion of capacity for the
system, all data collected during the temporary load trans-
fers must be discarded. The effect of the load transfer for
the current and power factor is very prominent. However,
in the bus voltage of the substation, this is not true.
Hence, the following procedure was conducted to verify
that the load transfer between feeders on the distribution
network did not change the bus voltage characteristics.
For each one of the 115 MV buses in the dataset, the
three-phase voltage average during the load transfer of
any related feeder was compared with the average during
normal operation. This was done using a dependent sample
t-test with 5% α (Shier, 2004), the results are shown in
section 3.1. Therefore, if there is no statistical difference
for the bus voltage in the two cases mentioned, it is not
required to remove the periods of load transfer from the
voltage time series of MV feeders.

2.4 Imputation method proposed

The imputation method proposed is shown in algorithm 1.
The process has three main parts: initial processing and in-
terpolation, data filling based on the ratio between phases,
and data filling based on the normalized scaled standard
day of the week curve (NSSC). The initial part handles
the data synchronization (section 2.1), outlier removal
(section 2.2), and the first linear interpolation. The first
linear interpolation, done individually for each quantity
and phase, is limited by Nsamples in length. Empirically,
for the dataset studied, it was assumed Nsamples = 18 (1.5
hours) as for this number of samples, the characteristics
of the voltage, current, and power factor do not change
dramatically. As shown in section 3.2, this will make for
the most of the data that is missing. However, the inter-
polation will not solve the most problematic case, which
is when the number of consecutive missing values is large
(days, weeks, and months).



Algorithm 1: Preprocessing and imputation method

Input: MV feeder dataset, Topological dataset, Load
Transfer dataset and period of study start/end

for each feeder do
Syncronize time series
for V, I and pf do

Remove outliers
Apply linear interpolation (Nsamples = 18)
for each missing sample i do

if Xi
φa

= null and Xi
φb
∧Xφi

v
6= null then

Apply (2)

if (Xi
φb
∨Xi

φv
) 6= null then

Apply (3)

for each phase (φ) do
if Every wd has at least 3 vd then

Calculate the NSSC using (4)

else
Find equivalent feeder in dataset with
at least 3 vd for each wd

Calculate the NSSC based of equivalent
feeder using (4)

for each day (d) do
if No missing samples then

Calculate Min/Max vd values
Add Max of vd to γ vector
Add Min of vd to ζ vector

Coompute the moving average of two
samples of γ and ζ vectors

for each day (d) do
if Missing samples >= 50% then

if Between vd then
Subst. day with (5)

else
Subst. day with (6)

else
for each period (p) of day (d) do

if Missing samples >= 50% then
if Between vd then

Subst. part of day with
(5)

else
Subst. part of day with
(6)

Final linear interpolation (Nsamples =∞)

return

After the first interpolation, the second stage uses the
correlation between phases (φa, φb, φv) of the same quan-
tity (V, I, pf) to infer a missing sample value based on
adjacent samples. Adjacent samples are those of the same
timestamp i but from different phases that the one which
is missing. In this step, different periods T of analysis
are considered (dawn, morning, afternoon, night, month,
and year). Where T i denotes the part of the day (dawn,
morning, afternoon, and night), month or year in which the
sample Xi

φa
is contained. Therefore, if the period T i of all
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Figure 3. Example of using the normalized scaled standard
weekday curve method, (4), (5), and (6), to fill missing
days. The circles indicates the maximum values (γ)
whereas the crosses indicates the minimum values (ζ)
for each valid day (vd).

the three-phases (φa, φb, φv) has more than 50% of data,
the ratio between the phases is calculated and the missing
sample is filled, refer to (2) and (3). If there is not enough
data in part of the day (p), the process is repeated for the
month (m) and then for the year (y) in which the missing
sample is contained. The 50% limit of data for the period
T i is set to guaranty that it has enough data to estimate
the ratio between phases with less probability of error. This
part of the algorithm will input all the missing samples
where there is at least one adjacent sample and enough
data on the three-phase time series to insert based on the
ratio between phases. Equations (2) and (3) formulates the
solution for a sample i of phase φa and, it can be similarly
used for phases φb and φv.

For a given time stamp i where Xi
φa

= null and Xi
φb
∧

Xφi
v
6= null.

Xi
φa

=
1

2

(
Xφa (T i)

Xφb (T i)

Xi
φb

+
Xφa (T i)

Xφv (T i)

Xi
φv

)
(2)

If only one adjacent sample exist (Xi
φb
∨Xi

φv
) 6= null then,

Xi
φa

=
Xφa (T i)

Xφb (T i)

Xi
φb

+
Xφa (T i)

Xφv (T i)

Xi
φv

(3)

Finally, the last part will input data for more extended
periods of consecutive three-phase missing values (periods
of the day, days, weeks, and months), which is shown in
Fig. 3 and described by the algorithm (1). Equation (4)
is used to calculate the normalized standard day of the

week curve (Swd,φstd ) where wd is the weekday, φ a specific
phase and V D is the number of valid days (vd) for a
specific weekday. It is essential to notice that Xvd

φ stands
for all the samples of a valid day vd. A valid day is one
with no missing values for any one of the three-phases.
Furthermore, it is important to notice that if V D < 3
for any day of the week (wd), this means that there is

not enough data to calculate the Swd,φstd . Therefore, an
alternative is to find another feeder time series with similar
characteristics in the dataset.



Swd,φstd =
1

V D

V D∑
d=1

Xvd
φ −min

(
Xvd
φ

)
max

(
Xvd
φ

) (4)

As shown in Fig. 3, the second important information in

order to use the Swd,φstd to fill parts of a day or whole
days are the maximum and minimum values of each
valid day (vd). The vectors are computed taking into
account all the days in the time series, as described
by algorithm 1. Additionally, in order to smooth any
inconsistency, the moving average of two samples of the
minimum and maximum vectors ζ and γ is used. Both
pieces of information will be used to scale the NSSC curve
to input on a specific day, as shown in (5) and (6).

Equations (4), (5) and (6) were used to fit the normalized
standard weekday curve to a missing day on the dataset.
Additionally, md stands for a missing day (more than 50%
missing samples), γ is the vector of maximum values, and
ζ is the vector of minimum values of each valid day of a
specific phase of a given quantity of an MV feeder.

For a missing day (md) that is between valid days (vd) of
same (wd),

Xmd
φ =

1

2
[(γvd<mdφ + γvd>mdφ )− (ζvd<mdφ + ζvd>mdφ )]·

· Swd,φstd +
1

2
(ζvd<mdφ + ζvd>mdφ )

(5)

if the missing day (md) is not between valid days (vd) of
same (wd),

Xmd
φ = (γvdclosestφ − ζvdclosestφ )Swd,φstd + ζvdclosestφ (6)

Where Xmd
φ is a day with more than 50% of missing data,

γvd<mdφ and ζvd<mdφ are the maximum and minimum value,
respectively, of a valid day of the same weekday before
the missing day is filled. The γvd>mdφ and ζvd>mdφ are the
maximum and minimum value, respectively, of a valid day
of the same weekday after the missing day is filled. If the
missing day is not between two valid days, the closest one
of same (wd) is used, as shown in (6).

Equations (4), (5) and (6) are also used to fill a period
of the day (dawn, morning, afternoon, or night). The
difference is that the result of the equations is sliced

in a particular period of interest (X
mdpart

φ ) before being
inserted.

Figure 3 shows 21 days of one-phase current time series
(light grey) with three days of missing data being filled
(dashed dark black) and the values of the γ and ζ vectors.
In this example, days 9 (Tuesday), 13 (Saturday), and 14
(Sunday) were missing from the middle week. Based on
the maximum and minimum values of those same days
from the week before and after, the missing days were
filled using the normalized scaled standard day of the week
curve (NSSC) obtained from the whole time series from
that specific feeder.

One caveat of the imputation method proposed using the
NSSC is that it must have at least three valid days for
each weekday. It is possible that for a large amount of
degradation, 60% or more, of the time series quantity
(V, I, pf), there is not enough data to calculate the NSSC.
The requirement of having at least three valid days was

set empirically based on the analysis of the dataset used.
Hence, an alternative is to use data from other feeders of
the dataset to calculate the NSSC and apply it to the cur-
rent feeder, as shown in the algorithm 1. The choice of the
alternative feeder can be made considering the geographic
region where each feeder is located or the characteristics
of the majority of its consumers (households, industries,
commercial buildings, etc.). In this work, the alternative
feeder was chosen randomly on the database.

The final step is to apply another linear interpolation with
Nsamples = ∞ to take into account any missing sample
that was not filled by the previous steps.

2.5 Probability density function of missing data

An essential step in studying the dataset and testing
an imputation method is to know the characteristics of
the missing data. The probability density function (PDF)
describes the probability of a random variable to assume a
given value and, in this case, would provide the likelihood
of occurrence, duration, and the number of phases that
were lost (Miller and Childers, 2004).

For the missing data, as stated previously, three PDFs
must be obtained. The first one is the probability of a
sample being missed. In this case, it was defined that
it has a uniform probability. Hence, at any given time,
the probability of a sample being lost is equal. Secondly
is the probability of the type of a missing sample being
of one, two, or three-phases. Finally, there is the PDF
that describes the duration of the data lost, therefore, of
losing one, two, fifty, or any given length. The last two
probability density functions were determined empirically
based on the histogram of occurrences of each type on the
whole dataset. It is important to notice that the PDFs are
different for each quantity (voltage, current, and power
factor) (Murphy, 2012).

Knowing the PDFs, they can be used to tailor the impu-
tation algorithm for optimal performance. Additionally, it
can be used to degraded a valid time series at different
levels, as described in section 2.6, and test the imputation
method comparing with the original data.

2.6 Imputation method test methodology

The evaluation of the missing data imputation method was
conducted in a sub dataset for each quantity (V, I, pf),
where there was no outlier or missing data. The Fig. 4
shows the flowchart for testing the imputation method. As
described, the first step is to find, for each quantity, the
portion of a feeder in the dataset with no inconsistencies.
Therefore, this subset is degraded in different levels by
the probability density function (PDF) of missing data
extracted from all the datasets, as discussed in 2.5. With
the degraded time series, the imputation method proposed
in 2.4 was applied and compared with the original data.
This procedure was also done using the Naive approach
in order to compare the two methods performance. The
comparison of the two methods was conducted using
three metrics: R-squared (R2), mean absolute percentage
error (MAPE), and root mean squared error (RMSE).
Finally, it is important to mention that the time series
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Figure 4. Flowchart of the imputation test methodology

were degraded from the following levels of data loss:
1%, 2%, 3%, 4%, 5%, 10%, 15%, ..., 85%, 90%, 95%.

3. RESULTS AND DISCUSSION

3.1 Load transfer implication in bus voltage

A dependent sample t-test conducted the comparison of
each one of the 115 MV buses. The comparison was
between the average three-phase voltage during the load
transfer of any of the related feeder and the average
during regular operation (no load transfer). The results
showed with 95% of confidence that there is no statistical
difference for the three-phase voltage of the distribution
substation during normal operation and load transfer of
any of the related medium-voltage feeders.

3.2 Analysis of missing data

The analysis of missing data in the dataset of MV feeders
can be done in two aspects. The first one regards the length
or duration of consecutive missing samples, which indicates
that a given attribute, for example, (Vφ), lost information
for a sequence of timestamps. On the other hand, given
that the quantities studied are the combination of three
time series, an important aspect is the number of phases
that were lost in a specific timestamp. Figure 5 shows
the percentage of occurrences in the dataset of each type
of data lost, whereas Fig. 6 shows the percentage of
occurrences of each length of consecutive data samples lost
for the period between January the 1st and December the
31st of 2019.

Most missing values, 73.99% for voltage, 90.53% for cur-
rent, and 82.75% for power factor, comprehend the loss
of all three-phases. However, the dataset still has missing
values of only one and two-phases: 26.01% for voltage,
9.47% for current, and 17.25%, as shown in Fig. 5.

Regarding the length of consecutive missing samples, the
majority are of one sample. In the dataset of MV feeders,
95% of the occurrences were up to a duration of four
samples for voltage, up to nine samples for current and up
to thirty-five for power factor, hence, less than two hours
and 55 min. Although most of the occurrences are far from
days of duration, it is essential to notice that for a given
feeder, one occurrence of consecutive three-phase loss of
3x104 samples is sufficient to compromise the analysis of
the feeder with months of missing values.
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Figure 5. Percentage of occurrences of one, two and three-
phase data loss.
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Figure 7. Percentage of missing values per feeder in the
dataset.

Figure 7 shows the percentage of loss for each feeder in the
dataset. For the period of study, 98.91% of feeders lost less
than 60% of the voltage information, 96.95% of feeders lost
less than 60% of the current information, and 95.39% of
feeders lost less than 60% of the power factor information.

3.3 Imputation method

The results shown in this section were obtained after 20
executions of the method on each degradation level, as
shown in Fig. 4. Figures 8, 9 and 10 show the result for
the method proposed in section 2.4 using real feeder data
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Figure 9. Evaluation of the method proposed for different
degradation levels using R2.

and tested as described in section 2.6. Figure 11 shows the
statistical differences between the method and the Naive
approach using a dependent sample t-test with 5% α. The
procedure discussed previously of missing data imputation
has better performance than the Naive approach for most
of the degradation levels tested. However, for more than
60% of missing data, the performance starts to degrade
rapidly. For the power factor, the point of no statistical
difference between the methods stars at 65% whereas for
voltage, it is 75%. For current, the method is statistically
better than the Naive for any of the values tested. The
normalized version of the metrics discussed in section
2.6 was an alternative to accommodate all the quantities
results on the same graph for analysis.

Figure 12 shows six months of a three-phase current time
series. The original data has no outliers or missing values.
The 25% degraded version has long periods of three-phase
and one-phase data loss. This curve was obtained by the
method discussed in 2.6. The last two graphs in Fig. 12
shows the results of the proposed method in 2.4 and the
Naive approach of missing data imputation.

4. CONCLUSIONS

In this study, a method of preprocessing and missing
sample imputation for medium voltage feeders is proposed
based on the analysis of the missing values after the
outlier and load transfer removal. It was verified that the
information of the medium voltage feeders sampled at the
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Figure 10. Evaluation of the method proposed for different
degradation levels using NRMSE.
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Figure 11. Statistical analysis: performance of the algo-
rithm proposed and the Naive approach.

substations relays must be treated before being used on the
distribution network planning as it may still be impossible
to avoid data incompleteness or with the absence of
outliers. In this context, the process of synchronizing the
samples is of extreme importance in order to perform
operations with the voltage, current, and power factor
of each feeder. Furthermore, it provides the capability to
analyze load transfers and correlations between feeders. A
three-part process is proposed to remove the outliers. In
the first part, the maneuvers are removed based on the load
maneuvers dataset. Secondly, the its the removal of other
samples that do not respect the physical and or theoretical
constraints of the system. Finally, its applied a statistical
method based on the median absolute deviation around
the moving median to contemplate the seasonality of the
feeder.

The missing values analysis showed that most of the
missing samples were of three-phase nature. However, it
still exists a significant percentage of one or two-phase
voltages that were addressed by the ratio between phases.
Regarding the length of consecutive missing values, the
majority is of less than two hours and 55 min. For
these samples that could not be filled by the ration
between phases, the linear interpolation was used. For
more extensive periods of three-phase missing values were
imputed by the normalized scaled standard weekday curve
(NSSC). This method utilizes the correlation between the
quantities and the periods of the days and weekdays.
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Figure 12. Example of an current time series with all the samples and its version degraded by 25%. Its all so shown the
imputation method proposed and the Naive results. The curves in red, green and blue, shows the phases φa, φb,
and φv respectively.

The method proposed was compared with the Naive ap-
proach and shows promising results that were statistically
significant for up to 60% of feeder degradation.
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