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Abstract: This paper presents a new probabilistic dynamic model of the SIR class that
describes, with appropriate precision, the temporal behavior of epidemics in discrete-time.
Determination of the set of invariance and convergence conditions towards equilibrium are
established. For numerical analysis, data of daily number of new diagnosed cases provided
by the Brazilian Ministry of Health and World Health Organization of COVID-19 epidemic
that currently occurs in Brazil is used. Illustrations and model prediction analysis are provided
and discussed from full data of Italy, a country where the epidemic has already ended. The
same ideas used on the development of the proposed model formulated in discrete-time may be
adopted for continuous-time modelling as well. Three different and complementary strategies
for parameter identification using the daily data available are considered.
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1. INTRODUCTION

We are living in a new time characterized by an unprece-
dented demand of the health system. In Brazil, we have
the Unified Health System – SUS – that is showing its
importance to better serve the population of our country.
It is necessary to highlight the commitment and dedication
of all health care professionals and a significant part of
the population, that also deserves praise, as they try to
maintain effective social distancing, even in the face of
unreasonable opinions that, against the majority of the
world, insist on minimizing its beneficial effects.

From the public health point of view, it is necessary to be
able of evaluating possible scenarios and validating actions
in order to flatten the peak of the epidemic and preserve
the hospitals service capacity.

Social distancing is perhaps the only action we have at
the moment, but the key question is how to assess its
effectiveness and how to decide when and how to mitigate
it, without allowing a second epidemic wave. The research
effort on mathematical models development appears to
be a possible way to find an adequate answer, since a
sufficiently precise model would be an appropriate device
to predict the epidemic time evolution.

The literature presents countless studies dealing with
epidemics. The deterministic modeling presented in the
seminal paper Kermack and McKendrick (1927), almost
a century ago, establishes a solid mathematical basis for
continuous-time modeling. This result gave rise to the
model classes known by the acronym SIR and more specific
sub-classes, see the survey paper Hethcote (2000) for
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more details. Furthermore, it is important to mention the
books Anderson (1987), Bailey (1975) and Brauer and
Castillo-Chavez (2012) including the references therein as
excellent sources of information on model development
analysis, control design and many other related topics
on epidemics. Discrete-time SIR classes modeling and
applications can be found in Brauer and Castillo-Chavez
(2012) and Anastassopoulou et al. (2020).

SIR models are expressed by nonlinear differential or dif-
ference equations, in continuous or discrete-time, respec-
tively. The order depends on the number of state variables
needed to discriminate the various classes of individuals
in the population. Recently, in Giordano et al. (2020), a
complete 8th order continuous-time model of class SIR has
been proposed to evaluate possible scenarios of COVID-
19 epidemic evolution in Italy. The paper Bertozzi et al.
(2020) has established composed modeling useful for fore-
casting the infection spread in the population.

In general, models are parameter dependent. Naturally,
they must be determined in such a way that the final model
is as faithful as possible in the face of reality. As data on
the COVID-19 outbreak is provided daily, it seems more
natural to develop a SIR model in the discrete-time do-
main. In this framework, we present a new epidemiological,
probabilistic, nonlinear, discrete-time varying model. Its
invariant set is calculated and convergence towards equi-
librium points is analysed. In our opinion, the proposed
model is a valid theoretical alternative to the classical SIR
model but its final validation needs to be established in
practice. We note that, focusing on greater accuracy, it is
necessary to allow its parameters to vary over time in order
to capture trends in how the population behaves during
the outbreak evolution. The proposed model is applied to
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data of COVID-19 outbreaks that is presently occurring
in Brazil and has already reached its end in Italy.

The notation used throughout the paper is standard.
Specifically, the symbols R, R+, and N denote the sets of
real, real nonnegative, and natural numbers, respectively.

2. CLASSIC AND PROPOSED SIR MODELS

The classic Susceptible-Infected-Removed (SIR) model
in continuous-time and in the deterministic framework
has been first proposed and analysed in the seminal
paper Kermack and McKendrick (1927). Since then, many
generalizations to deal with specific aspects of epidemics
have been developed, as for instance, SEIR, SEIRS, SIRS,
SEI, SEIS, SI, SIS, among others. The paper Hethcote
(2000) provides an interesting overview on this matter
from a unified viewpoint.

The set of natural numbers is N = {0, 1, 2, · · · } and the
independent variable k ∈ N defines time, measured in days.
The initial time instant, k = 0, corresponds to the day
on which the first case of infection was diagnosed 1 . The
population P made up ofM individuals 2 is split into three
classes, and at each time instant k ∈ N, each individual is
supposed to belong to only one of them, namely:

• Susceptible (S) - is the group of healthy individu-
als. The total number of elements in this set, denoted
by s(k), indicates the number of healthy individuals
on day k ∈ N.

• Infected (I) - is the group of infected individuals.
The total number of elements in this set, denoted
by i(k), indicates the number of infected individuals,
capable of transmitting the disease, on day k ∈ N.

• Removed (R) - is the group of individuals who no
longer have the ability to transmit the disease because
they are immunized or dead 3 . The total number of
elements in this set is denoted by r(k), with k ∈ N.

By assumption, the population remains constant through-
out the epidemic horizon, births are not taken into ac-
count, which implies s(k) + i(k) + r(k) = M for all
k ∈ N. Let x(k) be any member of the population on
day k ∈ N. The probability that he is healthy, infected
or removed is s(k)/M , i(k)/M or r(k)/M , respectively.
Thus, the average number of individuals in each of these
classes is s(k), i(k) or r(k). The key issue of SIR models is
the mechanism that determines the susceptible to infected
transition which is responsible for its nonlinear nature. In
the mathematical framework of probabilistic models, the
ones of interest are developed and interpreted in the sequel.

2.1 The Classic SIR Model

Following Hethcote (2000), consider an arbitrary day k ∈
N. Let β(k) be the average number of effective contacts,
those which result on infection of a person at time k ∈
N. Under this assumption, β(k)(i(k)/M) is the average

1 In Brazil, it occurred on February 26, 2020.
2 The current population of Brazil is 210 million inhabitants, that
is, M = 210× 106 individuals.
3 We are not considering the possibility that people in the removed
group may become susceptible again and be infected more often, as
there is not enough evidence for this yet.

number of effective contacts with infected of one individual
of the population. Taking into account that at time k ∈
N the number of susceptibles is s(k), then the average
number of new infected is

n(k) = β(k)

(

s(k)

M

)

i(k) (1)

In the aforementioned reference the time-invariant case
β(k) = β is considered. Moreover, by comparison with the
model resulting from the mass action law, the parameter
dependence β = ηMυ for some (η, υ) is discussed. Mea-
surements strongly suggests that υ ≈ 0. This important
aspect will be addressed in the next subsection.

2.2 The Proposed SIR Model

For an experiment, in a day k ∈ N, let a pair of individuals
(x1, x2) from the population M be randomly chosen,
with replacement 4 . The probability that x1 is healthy
(x1 ∈ S) and x2 is infected (x2 ∈ I), or vice versa, is
2(s(k)/M)(i(k)/M). Assuming that, with probability p(k),
a healthy person becomes infected whenever he meets an
infected person, then the expected value of the number of
new people infected is given by

n(k) = s(k)× p(k)× 2

(

s(k)

M

)(

i(k)

M

)

= γ(k)

(

s(k)

M

)2

i(k) (2)

where γ(k) = 2p(k) ∈ (0, 2). Note that the first term s(k)
in the product shown in the first equality of (2), indicates
that only healthy people, when meet infected people, can
become infected. At this point it is interesting to compare
the estimations for the number of new infected provided
by both SIR models. From (1) and (2) it follows that

β(k) = γ(k)

(

s(k)

M

)

(3)

from which some conclusions can be drawn. First, at the
very beginning of the epidemic evolution the fact that
s(k) ≈ M imposes β(k) ≈ γ(k) meaning that both models
coincide. Of course, the same fact does not remain true
whenever the epidemic evolves in time and the number
of susceptible persons becomes smaller. Second, β(k) may
depend on many factors, as for instance the behavior, at
least in part of the population, changes due to alerts and
awareness campaigns.

Defining the index ν = {1, 2} such as ν = 1 selects the
classic SIR model studied in Anastassopoulou et al. (2020)
and ν = 2 selects the proposed SIR model, adopting the
previous assumptions, the time evolution of the number
of susceptible, infected and removed individuals in the
population can be expressed in the unified form

s(k + 1) = s(k)− γ(k)

(

s(k)

M

)ν

i(k) (4)

i(k + 1) = i(k) + γ(k)

(

s(k)

M

)ν

i(k)− α(k)i(k) (5)

r(k + 1) = r(k) + α(k)i(k) (6)

with α(k) ∈ (0, 1), γ(k) ∈ (0, 2) and nonnegative initial
condition s(0) = s0, i(0) = i0 and r(0) = r0 satisfying

4 Since M ≫ 1 the pair of individuals can be chosen sequentially
without replacement.



s0 + i0 + r0 = M . The parameters α = α(k) and γ = γ(k)
are considered to be time-varying because there are strong
evidences that they change in the course of the epidemic,
due to the reasons mentioned before. However, in some
instances, the parameter α = α(k) can be considered
time-invariant, and determined if we know the half-life
of the process with which infected individuals become
removed, under the hypothesis that no contagion occurs.
Considering Nr the half-life expressed in days, we must
impose (1− α)Nr = 1/2, which allows us to determine

α = 1− 2−1/Nr (7)

that is, for a half-life of Nr = 7 days, 1/α ≈ 10 is
obtained, which seems to be quite reasonable, considering
the observed data. By its turn, the parameter γ = γ(k)
indicates the rate at which the infection spreads over time
and whenever it decreases, results on a gradual reduction
of the number of infected people. A possible interpretation
is that the parameter α(k) is a characteristic of the
disease while γ(k) results from the population behavior.
For example, it depends on the social distancing adopted
by the population in some time interval.

In epidemiology, there is a number that defines the sec-
ondary infections produced by one infected individual be-
ing introduced in a susceptible individuals group Hethcote
(2000). This number (which in the present case depends
on time) called basic reproduction number, denoted as R0,
in our time-varying SIR models is calculated as

R0(k) =
γ(k)

α(k)

≥
γ(k)

α(k)

(

s(k)

M

)ν

= Rν(k) (8)

Hence, from (5) it is clear that for values of Rν > 1, the
infection spreads in the susceptible population, and on the
contrary, whenever Rν < 1 the infection declines. The
parameter R0, an upper bound to Rν , has a vital role in
the study of epidemics and it helps us to observe how the
epidemic is evolving in the population and approaches the
end since R0 < 1 implies that Rν < 1. Clearly, R0 depends
only on the model parameters (it does not depend on s(k))
and R0(k) ≥ R1(k) ≥ R2(k), for all k ∈ N.

The proposed probabilistic SIR model has an intrinsic
hypothesis that seems to be unrealistic. On each day,
the average number of new infections is given by (2). To
obtain this value, we assume that each individual in the
population can meet any other, with equal probability.
We believe that this simplifying hypothesis is no longer
realistic when, for example, the population spreads over a
large area with a non-uniform demographic density. The
impact of this hypothesis, in face of reality, is difficult to
measure. In fact, the possibility of all individuals meeting
each other tends to increase the number of new infected,
but not taking into account the eventual existence of
high population densities, in some regions, acts in the
opposite direction. Fortunately, as we will see later, this
undesirable aspect can be mitigated if we consider time-
varying models, as in (4)-(6). The same reasoning is valid
for the classic SIR model for which, on each day, the
average number of new infections is given by (1).

Finally, adding both sides of equations (4)-(6) it turns out
that s(k) + i(k) + r(k) = M for all k ∈ N which makes

possible to express r(k) = M − s(k)− i(k) and reduce the
model to the following system of two nonlinear equations

s(k + 1) = s(k)− γ(k)

(

s(k)

M

)ν

i(k) (9)

i(k + 1) = i(k) + γ(k)

(

s(k)

M

)ν

i(k)− α(k)i(k) (10)

with nonnegative initial conditions s(0) = s0 and i(0) = i0
such that s0+ i0 ≤ M . As far as the time evolution is con-
cerned the reduced order system (9)-(10) can be considered
with no loss of generality and with the advantage that the
trajectories evolve in the phase plane, a subset of R2 to be
given in the next section.

3. STABILITY ANALYSIS

Dividing both equations (9) and (10) by the population
size M , the one-to-one change of variables

(s(k)/M, i(k)/M, r(k)/M)  (s(k), i(k), r(k))

shows that they must hold for the new variables as well.
Hence, M = 1 can be fixed without loss of generality. Let
us define the closed convex domain D ⊂ R

2 that plays a
central role in the stability analysis of SIR models, that is

D = {(s, i) : s ≥ 0, i ≥ 0, s+ i ≤ 1} (11)

In addition, let us rewrite the previous model as (s(k +
1), i(k+1)) = Qν◦(s(k), i(k)) where the nonlinear operator
Qν : R2 → R

2 is given by

Qν :

(

s
i

)

7−→

(

s− γsνi
i+ γsνi− αi

)

(12)

which exhibits the following important properties.

Lemma 1. Assume that α ∈ (0, 1). The set D ⊂ R
2 is

an invariant set to the operator Qν , that is, Qν ◦ D ⊆ D

provided that:

(i) ν = 2 and γ ∈ (0, 3).
(ii) ν = 1 and γ ∈ (0, 1).

Proof: Denoting (sQ, iQ) = Qν ◦ (s, i), considering α ∈
(0, 1) and (s, i) ∈ D, it is immediate to verify that iQ ≥ 0
and sQ + iQ = (s+ i)−αi ≤ 1 for both ν ∈ {1, 2}. On the
other hand, for any γ > 0, ν ∈ {1, 2}, and (s, i) ∈ D it is
seen that sQ = s − γsνi ≥ s − γsν(1 − s) = gν(s). Since
gν(0) = 0, two cases must be considered:

First, for ν = 2, simple calculations put in evidence that
g′ν(s) ≥ 1−γ/3. For γ ∈ (0, 3) the function gν(s) is strictly
increasing in the interval s ∈ [0, 1]. As a consequence
sQ ≥ 0 for all (s, i) ∈ D. Second, for ν = 1, it can be
verified that g′ν(s) ≥ 0 for all s ∈ [0, 1], provided that
|γ| < 1. Hence, in the interval γ ∈ (0, 1) we have that
sQ ≥ 0 for all (s, i) ∈ D. The proof is concluded. ✷

From Lemma 1, it is clear that for the proposed SIR
model, the trajectories (s(k), i(k)) ∈ D for all k ∈ N

provided that (s0, i0) ∈ D, since its parameters are such
that α(k) ∈ (0, 1) and γ(k) ∈ (0, 2) for each k ∈ N. For the
classical SIR model the situation is more restrictive since
this property is assured whenever the parameters satisfy
α(k) ∈ (0, 1) and γ(k) ∈ (0, 1). If this last condition is
violated, it may occur that s(k) < 0 for some k ∈ N, in
which case, the meaning of the classic SIR model is lost.

Lemma 2. Assume that the conditions of Lemma 1 hold.
For any initial condition (s0, i0) ∈ D the trajectory
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Fig. 1. Phase plane for γ = 1.75 and α = 0.50
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Fig. 2. Phase plane for γ = 0.75 and α = 0.50

(s(k), i(k))k∈N ∈ D converges to an equilibrium point
(s∗, i∗) satisfying the conditions 0 ≤ s∗ ≤ s0 and i∗ = 0.

Proof: Since any equilibrium point solves (s∗, i∗) = Qν ◦
(s∗, i∗), it follows that i∗ = 0. On the other hand, from
Lemma 1, it has been established that (s, i) ∈ D provides
(sQ, iQ) ∈ D, which implies that the inequalities 0 ≤ sQ ≤
s ≤ 1 hold as well. Consequently, the sequence s(k), k ∈ N

converges to some 0 ≤ s∗ ≤ 1 because it is bounded below
and non increasing putting in evidence that s∗ ≤ sQ. Now
consider the linear function v(s, i) = (s − s∗) + i which
is a valid Lyapunov function candidate for trajectories
evolving in the region (s, i) ∈ D∗ = D ∩ {s ≥ s∗} of the
phase plane. Simple algebraic manipulations yield

v(sQ, iQ) = (sQ − s∗) + iQ
= (s− s∗) + i− αi

≤ v(s, i) (13)

for all (s, i) ∈ D∗, concluding thus the proof. ✷

For illustration we have drawn the phase plane, for some
parameters, of the classic and proposed SIR models in
discrete-time. Figure 1 has been determined for γ = 1.75
and α = 0.50. On the left side part the phase plane of the
classic SIR model (ν = 1) is shown. It is clearly seen that,
as expected, D is not an invariant set since the condition
of Lemma 1 is violated. In this case, the stability property
of Lemma 2 is no longer valid. For comparison, from the
right side part of the same figure it is clear that D is an
invariant set for the proposed SIR model (ν = 2).

Figure 2 has been determined for γ = 0.75 and α = 0.50.
For both models, D is confirmed as an invariant set. For
this particular choice of parameters, it is interesting to
notice the similar behavior of both models but with the
number of susceptibles at equilibrium s∗ being bigger for
the proposed model when compared to the one of the
classic model. Under the same epidemic conditions, the
proposed model appears to drawn a less severe situation
as the classic model does. This important aspect needs
factual confirmation.

4. PARAMETER IDENTIFICATION

In this section we consider the parameter identification
problem where the goal is to determine the parameters
(α(k), γ(k)) and the initial condition from the available
data. The World Health Organization as well as the
Brazilian Ministry of Health daily reports the number
of new diagnosed cases nm(k) and its accumulated sum
am(k). Notice that n(k) becomes very different from i(k)
as the epidemic progresses. This is because infected people
stop being infected when they transit to the removed class.
The number of days of available data is denoted by Nm.

Defining the state space variable z(k) = [s(k) i(k) a(k)]′ ∈
R

3 with a(k) being the accumulated number of new
diagnosed cases, the coupling variable w(k) and the output
variable y(k) = a(k), the unified version of the SIR model
state space minimal realization can be written as

z(k + 1) = A(k)z(k) +G(k)w(k), z(0) = z0 (14)

y(k) = Hz(k) (15)

w(k) = fν(z(k)) (16)

where the indicated matrices are

A(k) =

[

1 0 0
0 1− α(k) 0
0 0 1

]

, G(k) =

[

−γ(k)
γ(k)
γ(k)

]

, H ′ =

[

0
0
1

]

and the nonlinear function fν : R3 → R+ is

fν(z(k)) =

(

s(k)

M

)ν

i(k) (17)

Finally, it is important to keep in mind that the initial
condition z0 = [s0 i0 a0]

′ ∈ R
3 must be nonnegative

and satisfy the constraint previously obtained s0 + i0 ≤
M . This is indicated simply by z0 ∈ Z0. Additionally,
the notation (α, γ) ∈ Πν denotes the constraints 0 ≤
α ≤ 1 and 0 ≤ γ ≤ ν whenever the classic SIR
model (ν = 1) or the proposed SIR model (ν = 2) is
concerned. Under these constraints Lemma 1 and Lemma
2 state that D is an invariant set and convergence towards
the equilibrium point belonging to D is assured. In this
section, two complementary situations are analysed. First,
the parameters are supposed to be time-invariant which
naturally imposes that they are constant during the entire
time horizon of interest. Afterwards, the time-varying case
with constant by parts parameters is treated.

4.1 Time-invariant Parameter Optimization

A well know procedure for parameter identification is
adopted. It consists on the determination of the mean
square error eti between the model and data through the



optimal solution of the nonlinear mathematical program-
ming problem

min
z0∈Z0,(α,γ)∈Πν

1

2
log10

(

1

Nm

Nm−1
∑

k=0

(y(k)− am(k))2

)

(18)

where y(k) is the output provided by the model (14)-
(17). It is worth mentioning that this problem is highly
non-convex and, by consequence, only a local optimum
is expected to be reached by the numerical procedure
applied, see Mathworks (2005).

4.2 Time-varying Parameter Optimization

We assume that the time interval [0, Nm) is subdivided
into N sub-intervals {Tj}

N
j=1, without overlapping, such

that (α(k), γ(k)) = (αj , γj) for all k ∈ Tj, and all
j = 1, · · ·N . In other words, at each time interval the
parameters to be determined remain constant. We have to
determine etv from

min
z0∈Z0,(αj ,γj)∈Πν

1

2
log10





1

Nm

N
∑

j=1

∑

k∈Tj

(y(k)− am(k))2





(19)

where as before, y(k) is the output provided by the
model (14)-(17). This problem is similar to (18). The only
difference between them is the number of variables to
handle. Moreover, since the constraints (αj , γj) ∈ Πν for
j = 1, · · · , N are decoupled, at the optimal solution, the
minimum cost naturally satisfies etv ≤ eti because any
solution to (18) is feasible to (19). This aspect will be
confirmed numerically by the examples solved.

4.3 Sequential Forward Optimization

In the time-varying parameter optimization context,
whenever new measurements are treated during the out-
break evolution, the whole time evolution of all param-
eters can be modified. To preserve optimal past values,
a strategy inspired on receding horizon seems to be well
adapted, see Bemporad et al. (2002) for details. In other
words, the future of the outbreak evolution can not modify
the values of parameters in the past and present. This im-
poses causality to the parameter identification procedure.
It can be stated by considering again that the parameters
(α(k), γ(k)) are constant by parts. At an arbitrary time
sub-interval Tj for some j = 1, · · · , N , we need to solve

e2j = min
(αj ,γj)∈Πν

∑

k∈Tj

(

y(k)− am(k)
)2

(20)

where y(k) is the output provided by the model (14)-
(17) starting from the initial condition z0 = [(M −
am(0)) am(0) am(0)]′ ∈ R

3. Proceeding in this way it is
possible to determine the parameters (α(k), γ(k)) for all
k ∈ [0, Nm). Finally, the mean square error

eso =
1

2
log10





1

Nm

N
∑

j=1

e2j



 (21)

between the sequence a(k) determined through the pro-
posed time-varying model and the corresponding measured
values am(k), actually observed, gives a measure of the
model adherence to reality. Compared to the previous

strategy this one is simpler but sub-optimal implying that
etv ≤ eso. However, in general, it has been verified that
eso < eti whenever the time sub-intervals Tj, j = 1, · · · , N
are appropriately chosen.

Finally, from the previous results it is important to men-
tion that, with precaution, since estimation errors can
be expressive, epidemics short-term evolution can be es-
timated by keeping the parameters constant, and equal to
the values identified during the last time sub-interval, that
is (α(k), γ(k)) = (αN , γN ) for all k ≥ Nm, see Geromel
et al. (2002).

5. SIMULATION AND VALIDATION

In this section two outbreak evolutions are analysed in
detail. First, the outbreak in Brazil, which is until now in
franc expansion, is considered. Afterwards, the outbreak in
Italy, which already reached the end, is handled through
the same proposed model in order to put in evidence the
adherence to data and precision. It is important to mention
that all parameters identification problems have been
solved with MatLab Version R14, see Mathworks (2005)
for details and, to avoid undesirable numerical singularity
on the determination of R0(k) from (8), we have included
the constraint α(k) ≥ 1/10 for all k ∈ [0, Nm) which is not
effective since the minimum mean square errors remain
approximately unchanged.

5.1 Outbreak in Brazil

Since the first reported Brazilian case up to the day this
article was written, 146 days have passed, according to of-
ficial data 5 provided in MS (2020) and WHO (2020). The
identification error produced by each method presented
before with Nm = 146 [day], N = 9 and T1 = [0, 28),
T2 = [28, 42), T3 = [42, 56), T4 = [56, 70), T5 = [70, 84),
T6 = [84, 98), T7 = [98, 112), T8 = [112, 126), T9 =
[126, 146) was eti = 4.75, etv = 3.72, and eso = 3.72.
The first interesting aspect is etv ≈ eso < eti which means
that the sub-optimality imposed by the sequential forward
optimization is negligible. However, the identified parame-
ters trajectories associated to the minimum errors etv and
eso are very different. Indeed, Figure 3 shows the time
evolution of R0(k), becoming clear that at the beginning
they are different but they approach to the same value
(≈ 1.01) as the infection spreads in the population. Due to
the fact that, until this moment, the number of susceptible
individuals is very close to the population (≈ 99%), it
can be verified that R0(k) ≈ Rν(k) for all k ∈ [0, Nm)
and ν ∈ {1, 2}, see (9). As mentioned before, we have
considered M = 210 million inhabitants, IBGE (2020).

With the parameters (α(k), γ(k)) obtained from the Se-
quential Forward Optimization procedure, we have com-
pared the long-term behavior of the classic (ν = 1) and
the proposed variant (ν = 2) of the SIR model. As already
mentioned, until the 126th epidemic day, the outcome
of both models are practically identical. Figure 4 shows
the outbreak evolution one more year from now, approx-
imately. On the top the estimated number of new daily
cases is shown. While the classic SIR model estimates a
5 Data from both cited sources are slightly different. We have used
those provided by WHO.
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maximum of about sixty thousand, for the proposed model
this number reduces to forty thousand. As a consequence,
on the bottom of Figure 4, for both models, the accu-
mulate sum of daily new cases is shown. The reduction
previewed by the proposed SIR model in comparison to
the classical one is expressive. In other words, from now to
the end of the outbreak evolution, the difference between
the outcomes of both models is significant, even though
their behaviour until now are very similar. This claim
is supported by official data plotted in red marks “·” in
both parts of the aforementioned figure. However, it is
important to make clear that these situations may not be
confirmed due to parameter changing that may occur in
the future and obviously can not be taken into account in
the present. This aspect will be discussed in the sequel.

5.2 Outbreak in Italy

The outbreak in Italy reached the end after 124 days.
Data for the entire evolution of the epidemic is available
WHO (2020) and, consequently, all stages can be taken
into account for parameter identification. Hence, we have
considered Nm = 124 [day], N = 5 and the time sub-
intervals T1 = [0, 42), T2 = [42, 49), T3 = [49, 77),
T4 = [77, 98), T5 = [98, 124). The values of the parameter
identification error were eti = 4.44, etv = 2.61, and
eso = 2.59. Some aspects must be put in evidence. First,
the large value of eti ≫ etv ≈ eso indicates that the model
with time-invariant parameters is inappropriate because
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the minimum error is very expressive. Second, the total
of accumulated cases is very small (less that 0.4%) when
compared to the population of M = 60 million inhabitants
which naturally means that both models with ν = 1
or ν = 2 provide virtually the same solutions. For this
reason we have adopted, from now on, the proposed SIR
model with time-varying parameters determined by the
Sequential Forward Optimization procedure.

Figure 5 shows the basic reproduction number provided
by the solution of problems (19) and (20), respectively.
The optimal solution of (20) corresponding to the first
time interval, namely T1 = [0, 42) satisfies exactly the
lower bound α1 = 1/10 indicating that in this time sub-
interval the value of the basic reproduction number may
be very high. This fact occurs in the first time interval
only. However, if this lower bound is removed, it has
been verified that the minimum error eso provided by
the optimal solution of problem (20) remains practically
the same. Figure 5 makes clear that, as the outbreak
progresses, the basic reproduction numbers approach each
other.

We now move our attention to the long-term behavior
prediction using this epidemic model. It is well known
that long-term behavior prediction is very hard to perform
in the context of dynamic systems with time-varying
parameters. Indeed, parameters identification based on
past and present data may define a precise model for a
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certain time interval, but it may become poor in terms
of precision in the future face the possibility of parameter
changing. To illustrate this claim we have simulated the
proposed model in several situations.

First, supposing that we are at the 42th epidemic day,
with the available data, we have adopted the Sequential
Forward Optimization procedure to estimate the accumu-
lated number of new cases for all epidemic days (label
42th). In a second run, we did the same but considering
the available data until the 49th epidemic day (label 49th).
Figure 6 shows the number of new cases (on the top) and
the accumulated number of new cases (on the bottom),
respectively, and data with red marks “·”. Figure 7 has
been obtained exactly in the same way assuming that we
are at the 77th, 98th and 124th epidemic day, respectively.
Until the 49th day the outbreak proceeds in acceleration
phase, the model is very precise but long-term prediction
is very poor and with clear lack of precision. It suffices
to compare the predicted maximum number of daily new
cases (about 500, 000 occurring at the 118th day) with the
true value (about 7, 000 occurred at the 49th day).

The same difficulty is not observed when the available data
correspond to the 77th and the 98th epidemic days because
the social distancing and other measures adopted in the
country moved the outbreak behaviour to a retraction
phase. The model fits very well to data and prediction
is precise as well. This claim is clearly supported by
verifying the red marks “·”, and solid curves in Figure
7. The ones corresponding to data available until the
98th epidemic day and all data available until the end
of the epidemic are practically identical. This leads to
the conclusion that more research effort must be done
towards the development of more accurate prediction
models depending on time-varying parameters. Another
possibility, successfully adopted in Giordano et al. (2020),
is to consider scenarios defined by parameters leading to
prescribed R0(k) and evaluating by the model the impact
of each scenario on the epidemic evolution. To accomplish
this goal, more precise models are essential.

6. CONCLUSION

The dynamic model proposed in this paper has good
adherence to reality, however, due to the presence of

time-varying parameters, it does not allow reliable long-
term prediction of the epidemic evolution. After all, if
the parameters change in the future, there is no way to
estimate them from observations of the past and present.
Fortunately, the reported results seem to indicate that
this fact becomes less important as new data is processed,
which makes possible short-term prediction. Hence, the
impact of well-defined scenarios on the epidemic evolution
can be done with accuracy. For long-term prediction time-
varying parameters modeling seems to be essential to
increase accuracy. It is important to mention that in this
paper we proposed an alternative probabilistic dynamic
model of SIR class that, in principle, can be generalized
to obtain continuous and discrete-time models like SEIR,
SEIRS, SIRS, SEI, SEIS, SI, SIS, among others. Finally,
we would like to emphasize once again that its practical
viability needs factual confirmation.
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