-
Gustavo Henrique de Paula Santos
Departamento de Engenharia Elétrica e Computação, Universidade de São Paulo - USP, São Carlos
-
Paul Junior Zapana Vargas
Departamento de Engenharia Elétrica e Computação, Universidade de São Paulo - USP, São Carlos
-
Elmer Pablo Tito Cari
Departamento de Engenharia Elétrica e Computação, Universidade de São Paulo - USP, São Carlos
-
Moisés Carlos Tanca Villanueva
Departamento de Ingeniería Eléctrica, Universidad Nacional de San Agustín de Arequipa - UNSA, Arequipa
Keywords:
Renewable sources, Photovoltaic power, Photovoltaic energy, Power forecasting, PV system, Artificial neural networks
Abstract
Renewable energy sources such as solar photovoltaic have grown every year. Although beneficial, the integration of photovoltaic solar generation systems can cause problems due to meteorological variations that lead to uncertainties in energy production. In this sense, this work evaluated three artificial neural networks topologies to improve the forecasting of photovoltaic power and energy. The results show that the topology with 5 neurons in the hidden layer was able to predict the photovoltaic energy with an error of less than 1.3% in relation to the measured energy.