-
Guilherme V. Hollweg
Grupo de Eletrônica de Potência e Controle (GEPOC), Universidade Federal de Santa Maria, RS
-
Everson Mattos
Grupo de Eletrônica de Potência e Controle (GEPOC), Universidade Federal de Santa Maria, RS
-
Lucas C. Borin
Grupo de Eletrônica de Potência e Controle (GEPOC), Universidade Federal de Santa Maria, RS
-
Gustavo G. Koch
Universidade Federal do Pampa (UNIPAMPA), RS
-
Rodrigo Varella Tambara
Grupo de Eletrônica de Potência e Controle (GEPOC), Universidade Federal de Santa Maria, RS
-
Vinícius F. Montagner
Grupo de Eletrônica de Potência e Controle (GEPOC), Universidade Federal de Santa Maria, RS
Keywords:
RMRAC, PSO, GA, LCL, adaptive control
Abstract
This work aims to present a proposal for optimized initialization of parameters of a Robust Model Reference Adaptive Controller (RMRAC). Since adaptive controllers need their initialization of gains and constants for proper tuning of the controller, and this choice of gains is related to the designer’s experience, the use of optimization algorithms to choose a suitable set of parameters for the controller is viable, because in addition to presenting optimized performance for the application, it becomes independent of the designer’s experience in tuning the parameters. For optimal tuning of the RMRAC, a Particle Swarm Optimization (PSO) is used, and the controller is applied to the current regulation of a power converter connected to the grid with an LCL filter. Simulation results are presented in Hardware-in-the-Loop, which shows the effectiveness of the proposal and better results compared to an RMRAC initialized by trial and error.