-
Miguel N. Marques
Faculdade de Engenharia Mecânica (FEM) - UNICAMP, Campinas, SP 13083-860
-
Cristiano O. Pontelli
Máquinas Agrícolas Jacto, Pompeia, SP 17580-000 e Universidade de Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília-SP, Cep 17.525–902
-
Ely C. de Paiva
Faculdade de Engenharia Mecânica (FEM) - UNICAMP, Campinas, SP 13083-860
Keywords:
computer vision, DCNN, HLB, deep learning, citrus, inceptionv3
Abstract
The most common method for the identification of HLB infected plants is visual inspection. The present work aims to present a technique using deep convolutional neural networks to identify the presence of the disease in citrus plants using digital camera images. Two types of images are used: leaves with real background (field) and homogeneous background (studio) from two different classes: healthy and sick.