-
Erick Araujo Nunes
Departamento de Engenharia de Telecomunicações e Controle, Universidade de São Paulo, SP
-
Bruno Augusto Angélico
Departamento de Engenharia de Telecomunicações e Controle, Universidade de São Paulo, SP
-
Alessandro Goedtel
Departamento de Engenharia Elétrica, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, PR
Keywords:
Induction Motors, Stator Short-Circuit Diagnosis, Mutual Information, Artificial Neural Networks, Clarke Transform
Abstract
This study presents a system for short-circuit fault diagnosis in three-phase induction motors directly connected to the grid. The methodology is based on delayed mutual information in order to extract relevant characteristics relating electrical current signals in α−β orthogonal reference system. Those data are submitted to a multilayer perceptron artificial neural network which performs the pattern classification. Tests considering several operation conditions validate the robustness and accuracy of the proposed methodology.