Power Control for a Wind Power Generation from SCIG and Harmonic Current Filtering

Ángelo Marcílio M. dos Santos *
Ricardo Parcelle C. Pacífico ** Leonardo P. S. Silva **
Marcos Vinícius S. França **
Vanessa Siqueira de C. Teixeira * Adson Bezerra Moreira *

* PPGEEC/UFC, Campus Sobral, Federal University of Ceará, Sobral-CE, Brazil, (e-mail: angelomarcilio@alu.ufc.br).
** Electrical Engineering, Campus Sobral, Federal University of Ceará, Sobral-CE, Brazil.

Abstract: The main contribution of this paper is to present a proposal for the development of an active power filter (APF) for a wind power generation system connected to the electric grid, using the three-phase induction generator with squirrel cage rotor (SCIG). In the induction generator side converter (IGSC) the power control is done by the magnetizing current and electromagnetic torque in coordinates dq. Thus, the wind system controls the active and reactive powers, as well as performing the active filtering function in the grid currents. Harmonic compensation is performed by an algorithm applied to the grid side converter (GSC). That technique improves the power quality and keeps the voltage at DC bus. The studied system was mathematically modeled and simulated using the Matlab / Simulink software. When SCIG provides 2 kW of active power, the THD from 18.94% (without APF) was reduced to 3.93% for GSC operating with APF function.

Keywords: Electric power generation; Electronic back-to-back converter; SCIG; Wind energy; Active power filter; THD.

1. INTRODUCTION

With the progressive decline of fossil fuels reserves and ever-increasing demand of energy, the production of electric energy from renewable resources, such as solar, wind and tidal streams oceans, has now been accepted as a potentially promising solution to the energy problem. Wind power is an effective measure, and development of wind power generation has increasingly attracted attention in several countries (Chen et al., 2010).

There are several types of electric generators used in wind power system. Therefore, the choice of which type of electric generator depends on the application of a distributed machine, wind farms, electric transmission, machine power and cost (Navas et al., 2015), (Mahajan et al., 2017).

The back-to-back converter is composed of two voltage source converters connected together via a DC bus capacitor. One converter stays between the SCIG and the DC bus capacitor, called induction generator side converter (IGSC), which has the function to produce the machine flux for SCIG and to optimum the energy capture from the wind. The second converter stays between the DC bus capacitor and the grid, called grid side converter (GSC), which has the function to regulate the DC bus voltage (HEYDARI et al., 2012).

The schematic diagram of the wind power generation system connected to the grid using SCIG is shown in the Fig. 1.

![Figure 1. Traditional operation diagram of SCIG.](image)

Power quality is an important factor in a power system connected to the electric grid. One of the main terms related to power quality they are the“harmonic”, which are defined as alternating components with a frequency different from the fundamental frequency. Those harmonics are caused mainly by the use of electronic devices, resulting in the injection of harmonics into the grid, which distort the voltage and current waveforms of the grid. Harmonic components promote low power factor, voltage flickering (flicker), sudden voltage increases (swell), among others (Moreira et al., 2019).

Active filtration is a widespread solution to reduce harmonic currents. The active power filter (APF) detects the harmonic current of the nonlinear load and injects a current compensation to mitigate the harmonic components in the grid. The control strategy to mitigate the harmonic current components in the electric grid can be accomplished through modifications in the GSC control (Souza et al., 2018).

This work proposes a control strategy for a wind system using SCIG. In addition to power control, the system
improves power quality using the GSC to perform active filtering at the point of common coupling (PCC) at dq coordinates.

The Fig. 2 shows the control scheme for the SCIG / APF. The operation diagram illustrates how occurs the power generation and the harmonic current mitigation for the system connected to electric grid. Simulation results obtained are presented to prove the idea of this paper.

![Operation diagram for the proposed SCIG/ APF.](image)

Figure 2. Operation diagram for the proposed SCIG/ APF.

2. POWER CONTROL OF THE SQUIRREL CAGE INDUCTION GENERATOR (SCIG)

In SCIG the rotor terminals are shorted and the rotor current is not measured. Then, \(V_{rdg} = 0 \) and \(i_{rdg} \) are not measured. Thus, the rotor currents in dq coordinates are given by (1) and (2), where \(V_{rdg} \) are the voltages in the rotor, \(i_{rdg} \) are the currents in the rotor, \(i_{eq} \) are the currents in the stator, \(\sigma_p \) is the magnetizing current, \(\sigma_r \) is the dispersion factor of the rotor, \(\theta_r \) is the rotation angle of the rotor and \(\rho \) is the angle of the rotating axis of stator voltages and currents (Navas et al., 2015).

\[
i_{rd} = \frac{\hat{i}_{mr} - i_{ed}}{1 + \sigma_r} e^{-j\theta_r}, \tag{1}
\]

\[
i_{eq} = \frac{-i_{eq}}{1 + \sigma_r} e^{-j\theta_r}, \tag{2}
\]

The electromagnetic torque and the rotor time constant \((\tau_r) \) are defined in (3) and (4), where \(L_m \) is the magnetization inductance, and \(R_r \) is the rotor resistance.

\[
T_e = \frac{L_m}{2(1 + \sigma_r)} \dot{i}_{mr} i_{eq} \tag{3}
\]

\[
\tau_r = \frac{L_m (1 + \sigma_r)}{R_r} \tag{4}
\]

The rotating magnetic field speed and the rotor speed are determined in (5) and (6).

\[
\omega_m = \frac{d\rho}{dt} \tag{5}
\]

\[
\omega_r = \frac{d\theta_r}{dt} \tag{6}
\]

In SCIG the flux observer is required to obtain the magnetizing current, the rotating field angle and the speed of the rotating field.

The flux observer is performed by the block diagram of Fig. 3, and is based on (7) and (8), where \(\hat{i}_{mr} \) is set to a constant value \(\hat{i}_{ed} \), what is required for a linear torque control by \(i_{eq} \) (Yazdani and Iravani, 2010).

\[
\tau_r \frac{d}{dt} [\hat{i}_{mr}] = -\dot{i}_{mr} + i_{ed} \quad \tag{7}
\]

\[
\omega_m = \frac{i_{eq}}{\tau_r \hat{i}_{mr}} + \omega_r \quad \tag{8}
\]

The magnetizing current reference and electromagnetic torque reference are obtained by (9) and (10), where \(V_{em} \) is the rated line voltage of the stator, \(\sigma_e \) is the dispersion factors of the stator, \(\omega_{m0} \) is the rated angular speed of the generator (\(\omega_{m0} = 2 \pi f_{m0} \)) and \(P_{ref} \) is the desired reference power.

\[
\hat{i}_{mr-ref} = \sqrt{\frac{2}{3}} \frac{V_{em}}{(1 + \sigma_e) L_m \omega_{m0}} \tag{9}
\]

\[
T_{cref} = \frac{P_{ref}}{\omega_r} \tag{10}
\]

The vector control of the SCIG as function of the rotor coordinates is shown in Fig. 4, where \(G_{ig}(s) \) is a PI controller.

![Block diagram of the vector control of the SCIG as a function of the coordinates of the rotor field.](image)

Figure 4. Block diagram of the vector control of the SCIG as a function of the coordinates of the rotor field.

Fig. 5 shows the block diagram of the IGSC control, where \(G_{ig}(s) \) is a PI controller, \(R_e \) is the stator resistance and \(\tau_e \) is the stator time constant. The IGSC controls the active and reactive powers of SCIG.

2.1 Grid Side Converter (GSC)

The grid side converter is an three-phase DC-to-AC electronic converter, what controls the DC bus voltage and injects current into the grid. The GSC control is performed by the block diagram of Fig. 6, what the current loop is shown in (a) and the voltage loop in (b) (Yazdani and Iravani, 2010).
The PLL (phase locked loop) is responsible for maintaining the synchronism between the voltages of the grid and those produced by the inverter, generating an angle θ in phase with the grid voltage, where V_A, V_B and V_C are grid line voltages (Moreira et al., 2019).

$$P_{\text{ref}} = \frac{3}{2}[V_d i_{d \text{ref}} + V_q i_{q \text{ref}}] \quad (11)$$

$$Q_{\text{ref}} = \frac{3}{2}[-V_d i_{q \text{ref}} + V_q i_{d \text{ref}}] \quad (12)$$

Since $V_q = 0$, (11) and (12) can be simplified as (13) and (14).

$$i_{d \text{ref}} = \frac{2}{3V_d} P_{\text{ref}} \quad (13)$$

$$i_{q \text{ref}} = -\frac{2}{3V_d} Q_{\text{ref}} \quad (14)$$

![Figure 5. Current Control Loop of IGSC.](image)

The signal reference generator (Fig. 6) produces the current references $i_{d \text{ref}}$ and $i_{q \text{ref}}$ from (11) and (12), where V_d and V_q are the dq voltages of the grid, i_d and i_q are the d-q currents of the grid. P_{ref} and Q_{ref} are references of active and reactive powers.

For the proposed APF, the new references currents of the GSC for harmonic compensation are $i_{d \text{ref}}^*$ and $i_{q \text{ref}}^*$, given in (15) and (16), where i_{Lhd} and i_{Lhq} are the harmonic components of the nonlinear load current.

$$i_{d \text{ref}}^* = i_{d \text{ref}} + i_{Lhd} \quad (15)$$

$$i_{q \text{ref}}^* = i_{q \text{ref}} + i_{Lhq} \quad (16)$$

The current of the electric grid is filtered in the PCC from the measurement of the currents of the three-phase nonlinear load and extracting the desired components. The components of measured currents are transformed to dq coordinates (i_{Ld}, i_{Lq}). The currents of the three-phase nonlinear load (i_{Lhd}, i_{Lhq}) are processed by low pass filters to extract the fundamental component, as shown in Fig. 8.

The fundamental component of the current is obtained from total load current. Therefore the harmonic components currents are isolated from (17) and (18), where i_{Lhd} and i_{Lhq} are the fundamental components of the current of nonlinear load.

$$i_{Lhd} = i_{Ld} - i_{Lfd} \quad (17)$$

$$i_{Lhq} = i_{Lq} - i_{Lfq} \quad (18)$$

To evaluate the harmonic current content, the total harmonic distortion (THD) is considered. THD calculation is given in (19), where I_1 is the fundamental component and I_h is the h-th harmonic current component of the electric grid. For the THD calculation interharmonic components are not considered.

$$\text{THD}(\%) = 100 \sqrt{\frac{\sum_{h=2}^{50} I_h^2}{I_1}} \quad (19)$$

4. SIMULATION RESULTS AND DISCUSSION

The wind power generation system shown in Fig. 2 was implemented in the Matlab/Simulink software in order to analyze the proposed SCIG / APF control strategy. The
parameters of the generation system used in the simulation are shown in Table 1, where the SCIG parameters were obtained in (HEYDARI et al., 2012). The switching frequency of the converters is 10 kHz.

4.1 Case 1 - Without APF

In the first case, the wind turbine with SCIG operates providing 2kW. The Figure 9 illustrates the measured magnetizing current of the generator and its reference, and measured torque of the generator and its reference. As can be seen, the magnetization current and the torque follow its references, which proves the suitable functioning of the control. The Figure 10 shows the responses of IGSC current control loops.

The Figure 11 show the GSC currents in direct and quadrature axis following their references.
The Fig. 14 shows the waveforms of the grid voltage \((V_a) \), currents of the electric grid, GSC and load of the system operating without APF, feeding a nonlinear load.

Figure 13. Response to DC bus voltage.

The current spectrum of the nonlinear load is shown in Fig. 15. The waveform of load current is distorted and has a THD of 17.55%.

Figure 14. Waveforms of the voltage and current of the electric grid, currents of the load and from GSC when the system operates without APF.

The current spectrum of the nonlinear load shown in Fig. 15. The waveform of load current is distorted and has a THD of 17.55%.

Figure 15. Spectrum of the nonlinear load current.

The Fig. 16 shows the current spectrum of the electric grid. The waveform of electric grid current is distorted and has a THD of 18.94%. This value is accordance with the main rules governing the connection of generators to the low voltage electrical grid, (IEEE, 2014) and (IEC, 2009).

The current spectrum of the electric grid shown by Fig. 16, it can be seen that the main harmonics that contributing to this distortion are those of an odd order (5 to and 7).

4.2 Case 2 - With APF

In the second case, the proposed APF was added to the system of wind power generation, being included in the GSC control.

The results related to the torque and magnetizing current from generator, control of the currents of the IGSC and the

Figure 16. Spectrum of the grid current.

DC bus voltage presented behavior similar to the Figures 9, 10 and 13.

The Figures 17 and 18 show the currents in direct and quadrature axis of the GSC and the active and reactive power. It is possible to note that the GSC current references changes with the inclusion of harmonic filtering, which is due to the harmonic currents of the identified non-linear load being added to the current meshes of the AC / DC electronic converter. In addition, it is possible to note a slight change in reactive power, since with the addition of active filtration to the wind system, it starts to feed the non-linear load entirely.

Figure 17. Response of control loop of the GSC current controllers \(I_d \) and \(I_q \).

Figure 18. Response of active and reactive powers delivered at PCC.

Fig. 19 shows the waveforms of the electric grid voltage \((V_a) \), currents of the electric grid, GSC and load system operating with APF, feeding a nonlinear load.

In Fig. 19, the current waveform of the electric grid is sinusoidal, different from the situation presented shown in Fig. 14, due to harmonic compensation current produced by the active power filter.

Fig. 20 shows The THD obtained for one phase of grid current was 3.92%. The THD value obtained is adequate in
In accordance with the main rules governing the connection of generators to the low voltage electrical grid.

Figure 19. Waveforms of the voltage and current of the electric grid, currents of the load and from GSC when the system operates with APF.

Figure 20. Spectrum of the grid current with APF.

When analyzing the harmonic spectrum of the electric grid with power system operating in traditional mode (case 1) and with APF incorporated to the system (case 2), it is possible to observe an improvement in the THD of the electric current was reduced from 18.94% to 3.92%, and that the odd harmonic components are attenuated.

5. CONCLUSION

This work investigates the behavior of a wind power system with SCIG operating in a traditional mode (case 1) and operating with an active power filter (case 2). In both cases, the active and reactive powers delivered to the grid and the DC bus voltage remain at the same values, which proves that the system control behavior for both cases is satisfactory.

When analyzing the harmonic spectrum of the electric current before the harmonic compensation and after the harmonic compensation, THD was reduced from 18.94% to 3.86%, proving the good functioning of the APF and attesting that the harmonic compensation strategy incorporated into the wind power generation system with SCIG improves power quality, as shown by the simulation results.

REFERENCES

IEEE (2014). Ieee recommended practices and requirements for harmonic control in electric power system. Project IEEE-519.

