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Abstract: This paper deals with robust static output feedback (SOF) stabilization of linear
time-invariant (LTI) systems with transient performance. The proposed approach considers
uncertainties on the system matrices and does not impose any constraints on the output
matrix. We use the definition of strict QSR-dissipativity to formulate new sufficient conditions
in the form of linear matrix inequalities (LMIs) for asymptotic stabilization. One of the main
advantages of the developed strategy is that in many cases static output feedback can be designed
in a non-iterative manner. Numerical examples highlight the effectiveness of the proposed
approach.
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1. INTRODUCTION

A linear static output feedback (SOF) gain is a very simple
controller in comparison with other control methods. It can
be applied when it is not possible to access all the plant
state information (Sadabadi and Peaucelle, 2016). Design-
ing a SOF is a challenging problem in control theory and,
in general, it results in non-convex conditions which cannot
be solved through linear matrix inequalities (LMIs). Over
the last decades, many papers have proposed iterative and
non-iterative strategies to deal with this problem through
LMI conditions. See Veselý (2001), Crusius and Trofino
(1999), Apkarian and Noll (2006), Gahinet and Apkarian
(2011), Sadabadi and Peaucelle (2016) for an overview of
the subject.

In this work, we use the concept of dissipativity to for-
mulate a strategy for the linear SOF design. Dissipativity
theory was introduced some decades ago and provides
some mathematical definitions for general input-affine sys-
tems (Willems, 1972; Brogliato et al., 2020). Dissipative
systems can also be Lyapunov stable, asymptotic or even
exponentially stable. For these reasons, dissipativity the-
ory has been extensively used in stability analysis and
control systems design (Brogliato et al., 2020). Dissipa-
tivity is a generalization of the notion of passivity and
numerous works in the literature have proposed passivity-
and dissipativity-based stabilization strategies (Hill and
Moylan, 1976; Astolfi et al., 2002; Feng et al., 2013; Or-
tega and Garcia-Canseco, 2004; Shishkin and Hill, 1995).
Madeira and Viana (2020) applied the definition of strict
QSR-dissipativity to formulate sufficient LMI conditions
for the design of a robust SOF gain that stabilizes rational
or polynomial nonlinear systems. In Madeira (2021), it
was proved that strict QSR-dissipativity, under mild as-
sumptions, is a necessary and sufficient condition for SOF
stabilizabity of LTI systems.

This paper uses the same definition of dissipativity consid-
ered in Madeira and Viana (2020). We propose a frame-

work for the robust SOF design for stabilization of uncer-
tain linear systems. The proposed strategy provides new
sufficient LMI conditions for feedback stabilization with a
lower bound on the decay rate that guarantees transient
performance, as in Sereni et al. (2018). Differently from
most papers dealing with SOF design, our strategy pro-
vides LMI conditions to deal with this problem, which in
many cases can be solved in a non-iterative manner. In
addition, we do not impose any restriction on the output
plant matrix.

This paper is organized as follows. In section 2, we present
the problem formulation. In section 3, some preliminaries
used to obtain the conditions are presented. In section
4, the main result of the paper is shown. In section 5,
some numerical examples are provided to illustrate the
effectiveness of the strategy. Finally, in section 6, we have
the conclusion of the paper.

Notation. For a matrix H ∈ Rn×m, H> ∈ Rm×n means
its transpose. Operators H � 0 and H � 0 means that
the symmetric matrix H is positive definite or positive
semidefinite, respectively. He{A} stands for A+A>. Im is
them×m identity matrix. For a polytope B, V(B) is the set
of vertices of B and V(B)i is the ith vertex of the polytope.
For a symmetric block matrix, the symbol ∗ stands for the
transpose of the blocks outside the main diagonal block.

2. PROBLEM FORMULATION

2.1 Uncertain LTI system

Consider an uncertain LTI system as presented in Bernus-
sou et al. (1989),{

ẋ(t) = A(δ)x(t) +B(δ)u(t),

y(t) = C(δ)x(t),
(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
control input, y(t) ∈ Rp is the measured output. Moreover,
δ ∈ D ⊆ Rq is a vector of system uncertainties and A(δ) ∈
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Rn×n, B(δ) ∈ Rn×m, C(δ) ∈ Rp×n are uncertain matrices
affine on δ. The uncertainties are bounded, then the vector
δ lies inside a polytope D of N = 2q vertices, where q is
the number of elements of δ. In addition, δ can be related

with a set of constants αi by δ =
∑N
i=1 αiV(δ)i. Then, the

polytope D can be defined in terms of α = {α1, . . . , αN}
as an unitary simplex (Oliveira and Peres, 2007),

Ω = {α(δ) ∈ RN :
N∑
i=1

αi = 1;αi ≥ 0; i = 1, . . . , N}. (2)

Moreover, matrices A(δ), B(δ) and C(δ) can be repre-
sented in a polytopic domain

Θ = {(A,B,C)(δ) =
N∑
i=1

αi(A,B,C)i, α ∈ Ω}. (3)

2.2 Problem Statement

The problem we intend to solve can be summarized as
follows.

Problem 1. Find a static output feedback gain K, i.e., a
control law u(t) = Ky(t), such that the closed-loop system
given by

ẋ(t) = (A(δ) +B(δ)KC(δ))x(t) (4)

is asymptotically stable for all δ ∈ D with a lower bound
on the decay rate given by γ.

3. PRELIMINARIES

Here, we present some definitions that are necessary to
formulate the strategy. The following lemma will be used
on the demonstration of our main results in section 4.

Lemma 2. If the following LMIs hold

Yii ≺ 0, for i = 1, 2, ..., N, (5)

Yij + Yji ≺ 0, for 1 ≤ i < j ≤ N, (6)

then it is true that
N∑
i=1

αi

N∑
j=1

αjYij ≺ 0. (7)

Proof. See Tanaka et al. (1998).

3.1 Decay rate

The decay rate is a performance index associated with
the system transient duration. As presented in (Boyd and
Vandenberghe, 2004), the mathematical definition of decay
rate is the largest γ such that

lim
t→∞

eγt||x(t)|| = 0, (8)

holds for all trajectories of the vector x(t).

A lower bound on the decay rate γ can be computed at the
same time that system stability is ensured if we consider
a quadratic Lyapunov function (V (x) = x>Px � 0), such
that

V̇ (x) ≤ −2γV (x), (9)

holds for all trajectories of x(t), with γ > 0 (Boyd and
Vandenberghe, 2004).

3.2 Dissipativity

Consider, first, the following LTI system without uncer-
tainties {

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).
(10)

System (10) is said to be dissipative if it is completely
reachable and there exists a nonnegative storage function
V (x(t)), where V : X → R and V ∈ C1, and a locally

integrable supply rate r(u(t), y(t)) such that V̇ ≤ r(u, y)
(Haddad and Chellaboina, 2011). Further definitions of
dissipativity can be found in Brogliato et al. (2020). In
this work, we mainly apply the definition of strict QSR-
dissipativity, which is defined below.

Definition 3. If there exists a storage function V (x) � 0,
a supply rate r(u, y) = y>Qy + 2y>Su + u>Ru, and a
function T (x) � 0 such that

V̇ (x) + T (x) ≤ y>Qy + 2y>Su+ u>Ru, (11)

then system (10) along all possible trajectories starting at
x(0), for all t ≥ 0, is said to be strictly QSR-dissipative.
S ∈ Rp×m is real matrix and Q ∈ Rp×p, R ∈ Rm×m are
real and symmetric matrices.

In practice, condition (11) express that only a fraction of
the energy supplied from r(u, y) is stored by the dissipative
system. Also, only a fraction of its stored energy V (x)
can be delivered to its surroundings. Moreover, Definition
3 can be related with system stability. If a system is
strictly QSR-dissipative with V (x) � 0 and Q � 0,
then the free system is asymptotically stable (Haddad and
Chellaboina, 2011). In this work, we consider quadratic
Lyapunov functions V (x)

V (x) = x>Px, P � 0, (12)

and, to compute a lower bound on the decay rate of the
system, we restrict T (x) to be a multiple of V (x)

T (x) = 2γV (x), γ > 0. (13)

In the following, the application of dissipativity for static
output feedback stabilization of linear systems is presented
by some lemmas.

Lemma 4. (Haddad and Chellaboina (2011)) The LTI
system (10) is said to be strictly QSR-dissipative if the
following LMI holds[

A>P + PA+H − C>QC PB − C>S
B>P − S>C −R

]
� 0, (14)

for some symmetric matrices Q,P � 0, R � 0, and
matrices S,H � 0.

Lemma 5. (Madeira (2021)) The LTI system (10) is linear
SOF stabilizable if and only if (14) is satisfied with
symmetric matrices Q,P � 0, R � 0, matrices S,H � 0,
and ∆ = 0, where

∆ = SR−1S> −Q, (15)

and a stabilizing gain is given by

K = −R−1S>. (16)

For the uncertain LTI system (1), dissipativity condition
(11) can be rewritten as

t(x, u, δ) = ∇V >[A(δ)x+B(δ)u] + 2γV

−y>Qy − 2y>Su− u>Ru ≤ 0,
(17)
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and system (1) is said to be robust strictly QSR-dissipative
if t(x, u, δ) ≤ 0 for all δ ∈ D.

4. STATIC OUTPUT FEEDBACK DESIGN

In this section, Theorem 6 presents the proposed strategy
that uses strictly QSR-dissipativity and Lemma 2 to solve
Problem 1.

Theorem 6. Let D be a polytope of δ, described by (2).
Given some γ > 0, suppose that there exists symmetric
matrices P � 0 ∈ Rn×n, R � 0 ∈ Rm×m, Q ∈ Rp×p and
a matrix S ∈ Rp×m such that

Yii ≺ 0, for i = 1, . . . , N, (18)

Yij + Yji ≺ 0, for 1 ≤ i < j ≤ N, (19)
and

∆ = SR−1S> −Q � 0, (20)
where Yij is given by[

PAi +A>i P + 2γP − C>i QCj ∗
B>i P − S>C −R

]
(21)

then,

(i) System (1) is strictly QSR-dissipative for all δ ∈ D.
(ii) The SOF given by

K = −R−1S>, (22)

asymptotically stabilizes (1) for all δ ∈ D around the
origin with a lower bound on the decay rate given by
γ.

Proof. First, if conditions (18) and (19) are satisfied, then
by Lemma 2, the following holds

N∑
i=1

αi

N∑
j=1

αjYij =


N∑
i=1

αi

N∑
j=1

αjΠij ∗

N∑
i=1

αi

N∑
j=1

αjΠi

N∑
i=1

αi

N∑
j=1

αj(−R)

 ≺ 0,

(23)

where Πij = PAi + A>i P + 2γP − C>i QCj and Πi =

B>i P − S>Ci. Since
∑N
i=1 αi =

∑N
j=1 αj = 1, (23) can

be rewritten as Ψi ∗
N∑
i=1

αiB
>
i P − S>

N∑
i=1

αiCi −R

 ≺ 0, (24)

where Ψi is given by

He{P
N∑
i=1

αiAi}+ 2γP −
N∑
i=1

αiC
>
i Q

N∑
i=1

αiCi.

The summation of matrices Ai, Bi, Ci are defined in (3),
then (24) can be expressed as[

He{PA(δ)}+ 2γP − C(δ)>QC(δ) ∗
B(δ)>P − S>C(δ) −R

]
≺ 0. (25)

Multiplying (25) by [x> u>] on the left and by [x> u>]>

on the right, we obtain

x>PA(δ)x+ x>A>(δ)Px+ x>2γPx+ x>PB(δ)u

+ u>B(δ)>Px− x>C(δ)>QC(δ)x− x>C(δ)>Su

− u>S>C(δ)x− u>Ru < 0,

(26)

as y = C(δ)x and V = x>Px, (26) can be rewritten as

∇V >[A(δ)x+B(δ)u] + 2γV

−y>Qy − 2y>Su− u>Ru < 0.
(27)

From (17), condition (27) implies that the system (1) is
strictly QSR-dissipative for all δ ∈ D, completing the proof
of item (i).

In addition, the control input u is a static output feedback
given by the following equation

u = −R−1S>y, (28)

by substitution of (28) into (27), we obtain

V̇ + 2γV < −y>∆y, (29)

where ∆ = SR−1S> − Q. Then, ∆ � 0 is a sufficient
condition for (9) to be satisfied, as follows

V̇ < −2γV, (30)

and system (1) is asymptotically stabilizable for all δ ∈ D
by the SOF (20) with a lower bound on the decay rate
given by γ, completing the proof of all items.

4.1 Optimization Problem

Here, we formulate a linear SDP program in order to
achieve ∆ � 0. Firstly, from Madeira (2021) notice that
∆ � 0 if [

Q S
S> R

]
� 0, (31)

as this is equivalent to

SR−1S> −Q = ∆ � 0, (32)

if R � 0. On the other hand, our objective is achieve
∆ � 0. Then, if we define a matrix Md, such as

Md =

[
Q+ βI S
S> R

]
� 0, (33)

with a scalar β > 0, we obtain the following condition

∆ = SR−1S> −Q ≤ βI, (34)

which means that 0 ≤ ∆ ≤ βI can be true. Then,
by minimizing the function tr(Md), that is equivalent to
minimize matrices Q and R, we might approach some
positive value for the left side of condition (34), i.e. ∆ � 0,
as tr(Md) = 0⇔Md = 0 (Yang, 1995).

4.2 SOF Design Algorithm

A systematic procedure for SOF design can be proposed.

(i) Consider an uncertain LTI system (1) with system
matrices represented in the polytopic form (3).

(ii) Specify a lower bound on the decay rate γ > 0, some
β > 0 for Md in (33), and solve the following linear
SDP program.

minimize tr(Md),

subject to P � 0, (18), (19) and (33).
(35)

By applying this algorithm, we intend to find matrices
(Q,S,R, P ) that guarantee robust strict QSR-dissipativity
of the system and, at the same time, fulfills ∆ � 0, which
guarantees the asymptotic stabilization by the SOF gain
K = R−1S>. Also, if we consider the system output
matrix C = I, a static state feedback gain can be designed
to stabilize system (1) by solving the same optimization
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problem (35). Moreover, it is important to highlight that
the scalar β > 0 can be chosen as small a value, typically
smaller than 1, without loss of generality (Madeira, D. de
S., 2021). In many cases, β = 0.1 is a good choice, however
if ∆ � 0 is not achieved with this initial guess, a line search
can be done.

5. NUMERICAL EXAMPLES

In this section, we present simulation results of our strat-
egy by applying it to uncertain LTI systems. For the
implementation we use conventional SDP tools provided
by Lofberg (2004) and Sturm (1999).

5.1 Example 1

Consider the open-loop unstable system recently analyzed
as the first numerical example of Behrouz et al. (2021),
where the two vertices are given by the following matrices

A1 =

[−0.9896 17.41 96.15
0.2648 −0.8512 −11.39

0 0 −30

]
,

A2 =

[−1.702 50.72 263.5
0.2201 −1.418 −31.99

0 0 −30

]
,

B1 =

[−97.78
0
3

]
, B2 =

[−85.09
0
3

]
,

C1 =

[
1 0 0
0 1 0

]
, C2 =

[
1 0 0
0 0 0

]
.

(36)

Applying the algorithm presented in section 4.2 we can
determine matrices Q,S,R, P and a SOF gain that ensures
closed-loop stability with a lower bound on the decay rate.
For γ = 1, β = 0.1, and assuming P ≥ 10−2In, we obtain

Q =

[
5.1449 −0.0223
−0.0223 −0.0578

]
, S =

[
−4.8164
0.0448

]
,

R = 4.4371, P =

[
0.1719 −0.1766 2.9419
−0.1766 4.2030 −5.5909
2.9419 −5.5909 121.1968

]
� 0,

which leads to

∆ =

[
0.0833 −0.0264
−0.0264 0.0583

]
� 0.

Then the system is stabilizable and the SOF gain is given
by

K = [1.0855 −0.0101] .

The two vertices of the system (36) are open loop
unstable. The eigenvalues for the two vertices of the
closed-loop system are (−111.1108,−25.8358,−1.0343)
and (−106.1111,−14.2648,−5.1093), respectively. Figure
1 presents the closed-loop response of both vertices with
x(0) = [1 1 1]>. The designed SOF stabilized the system,
then the effectiveness of the strategy on the stabilization
is verified. Behrouz et al. (2021) also proposed a strategy
for SOF stabilization of uncertain LTI systems. While we
consider a lower bound on the decay rate, they consider the
constraint on the closed-loop pole location. Also, as in our
work, they do not impose any restriction on the output
matrix. However, Theorem 1 from Behrouz et al. (2021)
employs more decision variables (d.v.) for the design of
the SOF than the strategy presented herein, as shown in
Table 1, thus being more numerically complex to solve.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

-0.5

0

0.5

1

1.5

2

2.5

Figure 1. Example 1: States of the closed-loop response.

0 1 2 3 4
0

0.1

0.2

0 1 2 3 4

0

0.1

0.2

Figure 2. Example 2: States of the closed-loop response.

Table 1. Numerical complexity of SOF design
for system (36)

(Behrouz et al., 2021) Proposed Approach

Nº of d.v. 18 12

5.2 Example 2

Consider the system analysed in Sereni et al. (2018) , where
the two vertices are as follows

A1 =

[
−1 10
−1 −1

]
, A2 =

[
a −4
−2 −3

]
, B2 =

[
b
0

]
B1 =

[
−9
0

]
, C1 = [1 0] , C2 = C1.

(37)

Sereni et al. (2018) presented a feasibility analysis with the
variation of coefficients 80 ≤ a ≤ 200 and −180 ≤ b ≤ −80
of system (37), and a fixed decay rate γ = 0.6. Here, we
choose a = 80 and b = −180 that is not in the feasibily
region obtained in Sereni et al. (2018). Also, we selected a
bigger decay rate γ = 1. Applying the algorithm presented
in section 4.2 with β = 0.1 and assuming P ≥ 10−2In as
an initialization, we obtain
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Q = 20.7209, S = −12.9715, R = 8.0813,

P =

[
0.1000 −0.0002
−0.0002 0.9041

]
� 0,

which leads to ∆ = 0.1 � 0, then the system is stabilizable
and the SOF gain is given by

K = 1.6051.

The eigenvalues of the closed-loop system for the two ver-
tices are (−14.7171,−1.7290) and (−208.9617,−2.9612),
respectively. Simulation results for two vertices of the
closed-loop system are presented in Figure 2, for initial
conditions x(0) = [0.2 0.2]>. The closed-loop system is
stable as expected.

6. CONCLUSION

A new strategy for static output feedback stabilization
of uncertain linear systems with a lower bound on the
decay rate has been proposed in this paper. We used the
definition of strict QSR-dissipativity to formulate suffi-
cient LMI conditions to solve the SOF control problem.
Some numerical examples from the literature were used
to demonstrate the effectiveness of the proposed strategy.
The advantages of this approach are: i) it does not need to
solve a state feedback control problem in a first stage, as
it is common in the field, ii) in many cases it can be solved
in a non-iterative manner, iii) no restriction on the output
matrix is considered. Moreover, future work envisages the
development of an iterative approach, to deal with the
cases that we do not achieve ∆ � 0, and also a detailed
comparison with strategies already known in the literature
as Felipe and Oliveira (2020); Agulhari et al. (2012); Shu
and Lam (2009); Dong and Yang (2007). Finally, future
works will also consider parameter dependent Lyapunov
functions in order to decrease conservatism of conditions.
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